

 ISO/IEC JTC 1/SC 22 N 4311 2008-02-26

 Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;
 Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org

ISO/IEC JTC 1/SC 22
Programming Languages

Document Type: Text for CD Ballot

Document Title: CD Registration and Approval Ballot for Revision of ISO/IEC 10967-1,

Information technology – Language independent arithmetic – Part 1:
Integer and floating point arithmetic

Document Source: WG 11 Convener (W. Wakker)

Reference:

Document Status: Please submit your vote via the online balloting system by the due date

indicated.

Action ID: VOTE

Due Date:

No. of Pages: 123

DRAFT INTERNATIONAL ISO/IEC
STANDARD WD 10967-1

Working draft for the Second edition
2008-02-12

Information technology —

Language independent arithmetic —

Part 1: Integer and floating point arithmetic

Technologies de l’information —
Arithmétique indépendante des languages —

Partie 1: Arithmétique des nombres entiers et en virgule flottante

Warning

This document is not an ISO/IEC International Standard. It is distributed for review
and comment. It is subject to change without notice and shall not be referred to as an
International Standard.
Recipients of this draft are invited to submit, with their comment, notification of any
relevant patent rights of which they are aware and to provide supporting documentation.

EDITOR’S WORKING DRAFT
February 13, 2008 10:29

Editor:
Kent Karlsson
E-mail: kent.karlsson14@comhem.se

Reference number
ISO/IEC WD 10967-1.1:2008(E)

ISO/IEC WD 10967-1.1:2008(E) Working draft

Copyright notice

This ISO document is a Working Draft for an International Standard and is not copyright-
protected by ISO.

ii

Working draft ISO/IEC WD 10967-1.1:2008(E)

Contents

Foreword vii

Introduction viii

1 Scope 1
1.1 Inclusions . 1
1.2 Exclusions . 2

2 Conformity 3

3 Normative references 4

4 Symbols and definitions 4
4.1 Symbols . 4

4.1.1 Sets and intervals . 4
4.1.2 Operators and relations . 4
4.1.3 Exceptional values . 5
4.1.4 Datatypes . 6
4.1.5 Special values . 6
4.1.6 Operation specification framework . 6

4.2 Definitions of terms . 7

5 Specifications for integer and floating point datatypes and operations 10
5.1 Integer datatypes and operations . 12

5.1.1 Integer result function . 13
5.1.2 Integer operations . 13

5.1.2.1 Comparisons . 13
5.1.2.2 Basic arithmetic . 14

5.2 Floating point datatypes and operations . 15
5.2.1 Conformity to IEC 60559 . 17
5.2.2 Range and granularity constants . 17
5.2.3 Approximate operations . 17
5.2.4 Rounding and rounding constants . 18
5.2.5 Floating point result function . 19
5.2.6 Floating point operations . 20

5.2.6.1 Comparisons . 20
5.2.6.2 Basic arithmetic . 22
5.2.6.3 Value dissection . 24
5.2.6.4 Value splitting . 25

5.3 Operations for conversion between numeric datatypes 26
5.4 Numerals as operations in a programming language 26

6 Notification 26
6.1 Model handling of notifications . 26
6.2 Notification alternatives . 27

6.2.1 Recording in indicators . 27
6.2.2 Alteration of control flow . 29

iii

ISO/IEC WD 10967-1.1:2008(E) Working draft

6.2.3 Termination with message . 29
6.3 Delays in notification . 29
6.4 User selection of alternative for notification . 30

7 Relationship with language standards 30

8 Documentation requirements 31

Annex A (normative) Partial conformity 33
A.1 Integer overflow notification relaxation . 33
A.2 Infinitary notification relaxation . 34
A.3 Denormalisation loss notification relaxations . 34
A.4 Subnormal values relaxation . 35
A.5 Accuracy relaxation for add, subtract, multiply, and divide 35
A.6 Comparison operations relaxation . 38
A.7 Sign symmetric value set relaxation . 38

Annex B (informative) IEC 60559 bindings 39
B.1 Summary . 39
B.2 Notification . 40
B.3 Rounding . 41

Annex C (informative) Requirements beyond IEC 60559 43

Annex D (informative) Rationale 45
D.1 Scope . 45

D.1.1 Inclusions . 45
D.1.2 Exclusions . 45
D.1.3 Companion parts to this part . 46

D.2 Conformity . 46
D.2.1 Validation . 47

D.3 Normative references . 47
D.4 Symbols and definitions . 47

D.4.1 Symbols . 48
D.4.2 Definitions of terms . 48

D.5 Specifications for integer and floating point datatypes and operations 49
D.5.1 Integer datatypes and operations . 50

D.5.1.0.1 Unbounded integers . 50
D.5.1.0.2 Bounded non-modulo integers 51
D.5.1.0.3 Modulo integers . 51
D.5.1.0.4 Modulo integers versus overflow 52

D.5.1.1 Integer result function . 52
D.5.1.2 Integer operations . 52

D.5.1.2.1 Comparisons . 52
D.5.1.2.2 Basic arithmetic . 52

D.5.2 Floating point datatypes and operations . 53
D.5.2.0.1 Constraints on the floating point parameters 54
D.5.2.0.2 Radix complement floating point 55

D.5.2.1 Conformity to IEC 60559 . 56

iv

Working draft ISO/IEC WD 10967-1.1:2008(E)

D.5.2.1.1 Subnormal numbers . 56
D.5.2.1.2 Signed zero . 57
D.5.2.1.3 Infinities and NaNs . 57

D.5.2.2 Range and granularity constants 57
D.5.2.2.1 Relations among floating point datatypes 58

D.5.2.3 Approximate operations . 58
D.5.2.4 Rounding and rounding constants 59
D.5.2.5 Floating point result function . 60
D.5.2.6 Floating point operations . 60

D.5.2.6.1 Comparisons . 61
D.5.2.6.2 Basic arithmetic . 61
D.5.2.6.3 Value dissection . 61
D.5.2.6.4 Value splitting . 62

D.5.2.7 Levels of predictability . 62
D.5.2.8 Identities . 63
D.5.2.9 Precision, accuracy, and error . 65

D.5.2.9.1 LIA-1 and error . 66
D.5.2.9.2 Empirical and modelling errors 66
D.5.2.9.3 Propagation of errors . 67

D.5.2.10 Extra precision . 68
D.5.3 Conversion operations . 68

D.6 Notification . 69
D.6.1 Model handling of notifications . 69
D.6.2 Notification alternatives . 69

D.6.2.1 Recording of indicators . 69
D.6.2.2 Alteration of control flow . 70
D.6.2.3 Termination with message . 71

D.6.3 Delays in notification . 71
D.6.4 User selection of alternative for notification 71

D.7 Relationship with language standards . 72
D.8 Documentation requirements . 73

Annex E (informative) Example bindings for specific languages 75
E.1 Ada . 76
E.2 C . 80
E.3 C++ . 86
E.4 Fortran . 91
E.5 Common Lisp . 95

Annex F (informative) Example of a conformity statement 101
F.1 Types . 101
F.2 Integer parameters . 101
F.3 Floating point parameters . 102
F.4 Definitions . 102
F.5 Expressions . 103
F.6 Notification . 103

Annex G (informative) Example programs 105

v

ISO/IEC WD 10967-1.1:2008(E) Working draft

G.1 Verifying platform acceptability . 105
G.2 Selecting alternate code . 105
G.3 Terminating a loop . 106
G.4 Estimating error . 106
G.5 Saving exception state . 106
G.6 Fast versus accurate . 107
G.7 High-precision multiply . 107

Annex H (informative) Bibliography 109

vi

Working draft ISO/IEC WD 10967-1.1:2008(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotech-
nical Commission) are worldwide federations of national bodies (member bodies). The work of
preparing International standards is normally carried out through ISO or IEC technical com-
mittees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, gov-
ernmental and non-governmental, in liaison with ISO and IEC, also take part in the work. ISO
collaborates closely with the IEC on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules in the ISO/IEC Directives,
Part 2 [1].

The main task of technical committees is to prepare International Standards. Draft Interna-
tional Standards adopted by the technical committees are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. ISO or IEC shall not be held responsible for identifying any or all such
patent rights.

ISO/IEC 10967-1 was prepared by Technical Committee ISO/IEC JTC 1, Information tech-
nology, Subcommittee SC 22, Programming languages, their environments and system software
interfaces.

This second edition cancels and replaces the first edition which has been technically revised.

ISO/IEC 10967 consists of the following parts, under the general title Information technology
— Language independent arithmetic:

– Part 1: Integer and floating point arithmetic
– Part 2: Elementary numerical functions
– Part 3: Complex integer and floating point arithmetic and complex elementary numerical

functions

Additional parts will specify other arithmetic datatypes or arithmetic operations.

vii

ISO/IEC WD 10967-1.1:2008(E) Working draft

Introduction

EDITOR’S NOTE – This needs to be rewritten. Especially considering the success of IEEE
754, and its revision.

The aims

Programmers writing programs that perform a significant amount of numeric processing have
often not been certain how a program will perform when run under a given language processor.
Programming language standards have traditionally been somewhat weak in the area of numeric
processing, seldom providing an adequate specification of the properties of arithmetic datatypes,
particularly floating point numbers. Often they do not even require much in the way of documen-
tation of the actual arithmetic datatypes by a conforming language processor.

It is the intent of this document to help to redress these shortcomings, by setting out precise
definitions of integer and floating point datatypes, and requirements for documentation.

It is not claimed that this document will ensure complete certainty of arithmetic behaviour in
all circumstances; the complexity of numeric software and the difficulties of analysing and proving
algorithms are too great for that to be attempted.

The first aim of this document is to enhance the predictability and reliability of the behaviour
of programs performing numeric processing.

The second aim, which helps to support the first, is to help programming language standards
to express the semantics of arithmetic datatypes. These semantics need to be precise enough for
numerical analysis, but not so restrictive as to prevent efficient implementation of the language
on a wide range of platforms.

The third aim is to help enhance the portability of programs that perform numeric processing
across a range of different platforms. Improved predictability of behaviour will aid programmers
designing code intended to run on multiple platforms, and will help in predicting what will happen
when such a program is moved from one conforming language processor to another.

Note that this document does not attempt to ensure bit-for-bit identical results when pro-
grams are transferred between language processors, or translated from one language into another.
Programming languages and platforms are too diverse to make that a sensible goal. However,
experience shows that diverse numeric environments can yield comparable results under most
circumstances, and that with careful program design significant portability is actually achievable.

The content

This document defines the fundamental properties of integer and floating point datatypes.
These properties are presented in terms of a parameterised model. The parameters allow enough
variation in the model so that several integer and floating point datatypes on several platforms
are covered. In particular, the IEEE 754 datatypes are covered, both those of radix 2 and those
of radix 10, and both limited and unlimited integer datatypes are covered.

The requirements of this document cover four areas. First, the programmer must be given
runtime access to the specified operations on values of integer or floating point datatype. Second,
the programmer must be given runtime access to the parameters (and parameter functions) that
describe the arithmetic properties of an integer or floating point datatype. Third, the executing
program must be notified when proper results cannot be returned (e.g., when a computed result

viii

Working draft ISO/IEC WD 10967-1.1:2008(E)

is out of range or undefined). Fourth, the numeric properties of conforming platforms must be
publicly documented.

This document focuses on the classical integer and floating point datatypes. Subsequent parts
considers common elementary numerical functions (part 2), complex numerical numbers (part 3),
and possibly additional arithmetic types such as interval arithmetic and fixed point.

Relationship to hardware

This document is not a hardware architecture standard. It makes no sense to talk about an
“LIA machine”. Future platforms are expected either to duplicate existing architectures, or to
satisfy high quality architecture standards such as IEC 60559 (also known as IEEE 754). The
floating point requirements of this document are compatible with (and enhance) IEC 60559.

This document provides a bridge between the abstract view provided by a programming lan-
guage standard and the precise details of the actual arithmetic implementation.

The benefits

Adoption and proper use of this document can lead to the following benefits.

Language standards will be able to define their arithmetic semantics more precisely without
preventing the efficient implementation of their language on a wide range of machine architectures.

Programmers of numeric software will be able to assess the portability of their programs in
advance. Programmers will be able to trade off program design requirements for portability in
the resulting program.

Programs will be able to determine (at run time) the crucial numeric properties of the imple-
mentation. They will be able to reject unsuitable implementations, and (possibly) to correctly
characterize the accuracy of their own results.

Programs will be able to extract data such as the exponent of a floating point number in an
implementation independent way.

Programs will be able to detect (and possibly correct for) exceptions in arithmetic processing.

End users will find it easier to determine whether a (properly documented) application program
is likely to execute satisfactorily on their platform. This can be done by comparing the documented
requirements of the program against the documented properties of the platform.

Finally, end users of numeric application packages will be able to rely on the correct execution
of those packages. That is, for correctly programmed algorithms, the results are reliable if and
only if there is no notification.

ix

ISO/IEC WD 10967-1.1:2008(E) Working draft

x

EDITOR’S WORKING DRAFT ISO/IEC WD 10967-1.1:2008(E)

Information technology —
Language independent arithmetic —

Part 1: Integer and floating point arithmetic

1 Scope

This document specifies the properties of many of the integer and floating point datatypes avail-
able in a variety of programming languages in common use for mathematical and numerical
applications.

It is not the purpose of this document to ensure that an arbitrary numerical function can be
so encoded as to produce acceptable results on all conforming datatypes. Rather, the goal is to
ensure that the properties of the arithmetic on a conforming datatype are made available to the
programmer. Therefore, it is not reasonable to demand that a substantive piece of software run
on every implementation that can claim conformity to this document.

An implementor may choose any combination of hardware and software support to meet the
specifications of this document. It is the datatypes, and operations on values of those datatypes,
of the computing environment, as seen by the programmer/user, that does or does not conform
to the specifications.

The term implementation (of this document) denotes the total computing environment perti-
nent to this document, including hardware, language processors, subroutine libraries, exception
handling facilities, other software, and documentation.

1.1 Inclusions

This document provides specifications for properties of integer and floating point datatypes as
well as basic operations on values of these datatypes. Specifications are included for bounded and
unbounded integer datatypes, as well as floating point datatypes. Boundaries for the occurrence
of exceptions and the maximum error allowed are prescribed for each specified operation. Also the
result produced by giving a special value operand, such as an infinity or a NaN (not-a-number),
is prescribed for each specified floating point operation.

This document provides specifications for:

a) The set of required values of the arithmetic datatype.

b) A number of arithmetic operations, including:

1) comparison operations on two operands of the same type,

2) primitive operations (addition, subtraction, etc.) with operands of the same type,

3) operations that access properties of individual values,

4) conversion operations of a value from one arithmetic datatype to another arithmetic
datatype, at least one of the datatypes conforming to this document, and

1. Scope 1

ISO/IEC WD 10967-1.1:2008(E) Working draft

5) numerals for all values specified in this document in a conforming datatype.

This document also provides specifications for:

c) The results produced by an included floating point operation when one or more argument
values are IEC 60559 special values.

d) Program-visible parameters that characterise the values and certain aspects of the opera-
tions.

e) Methods for reporting arithmetic exceptions.

Some operations specified in part 2 (ISO/IEC 10967-2) are included by reference in this doc-
ument, making them required rather than optional. EDITOR’S NOTE – TO DO: move them
completely to this document

1.2 Exclusions

This document provides no specifications for:

a) Arithmetic and comparison operations whose operands are of more than one datatype. This
document neither requires nor excludes the presence of such “mixed operand” operations.

b) An interval datatype, or the operations on such data. This document neither requires nor
excludes such data or operations.

c) A fixed point datatype, or the operations on such data. This document neither requires nor
excludes such data or operations.

d) A rational datatype, or the operations on such data. This document neither requires nor
excludes such data or operations.

e) The properties of arithmetic datatypes that are not related to the numerical process, such
as the representation of values on physical media.

f) The properties of integer and floating point datatypes that properly belong in programming
language standards. Examples include:

1) the syntax of numerals and expressions in the programming language, including the
precedence of operators in the programming language,

2) the syntax used for parsed (input) or generated (output) character string forms for
numerals by any specific programming language or library,

3) the presence or absence of automatic datatype coercions, and the consequences of
applying an operation to values of improper type, or to uninitialized data,

4) the rules for assignment, parameter passing, and returning value.

NOTE – See Clause 7 and Annex E for a discussion of language standards and language
bindings.

The internal representation of values is beyond the scope of this standard. E.g., the value of
the exponent bias, if any, is not specified, nor available as a parameter specified by this document.
Internal representations need not be unique, nor is there a requirement for identifiable fields (for
sign, exponent, and so on).

2 Scope

Working draft ISO/IEC WD 10967-1.1:2008(E)

Furthermore, this document does not provide specifications for how the operations should be
implemented or which algorithms are to be used for the various operations.

2 Conformity

It is expected that the provisions of this document will be incorporated by reference and further
defined in other International Standards; specifically in programming language standards and in
binding standards.

A binding standard specifies the correspondence between one or more of the arithmetic datatypes,
parameters, and operations specified in this document and the concrete language syntax of some
programming language. More generally, a binding standard specifies the correspondence between
certain datatypes, parameters, and operations and the elements of some arbitrary computing en-
tity. A language standard that explicitly provides such binding information can serve as a binding
standard.

When a binding standard for a language exists, an implementation shall be said to conform to
this document if and only if it conforms to the binding standard. In the case of conflict between a
binding standard and this document, the specifications of the binding standard takes precedence.

When a binding standard requires only a subset of the integer or floating point datatypes
provided, an implementation remains free to conform to this document with respect to other
datatypes independently of that binding standard.

When no binding standard for a language exists, an implementation conforms to this document
if and only if it provides one or more datatypes and operations that together satisfy all the
requirements of clauses 5 through 8 relevant to that datatype.

Conformity to this document is always with respect to a specified set of datatypes. Under
certain circumstances, conformity to IEC 60559 is implied by conformity to this document.

An implementation is free to provide arithmetic datatypes and arithmetic operations that do
not conform to this document or that are beyond the scope of this document. The implementation
shall not claim conformity to this document for such datatypes or operations.

An implementation is permitted to have modes of operation that do not conform to this doc-
ument. A conforming implementation shall specify how to select the modes of operation that
ensure conformity. However, a mode of operation that conforms to this document should be the
default mode of operation.

NOTES

1 Language bindings are essential. Clause 8 requires an implementation to supply a binding
if no binding standard exists. See Annex D.7 for recommendations on the proper content
of a binding standard. See Annex F for an example of a conformity statement, and Annex
E for suggested language bindings.

2 A complete binding for this document may include (explicitly or by reference) a binding
for IEC 60559 as well. See 5.2.1 and annex B.

3 This document requires that certain integer operations are made available for a conform-
ing integer datatype, and that certain floating point operations are made available for a
conforming floating point datatype.

4 It is not possible to conform to this document without specifying to which datatypes (and
modes of operation) conformity is claimed.

2. Conformity 3

ISO/IEC WD 10967-1.1:2008(E) Working draft

5 All the operations specified in this document for a datatype must be provided for a con-
forming datatype, in a conforming mode of operation for that datatype.

3 Normative references

The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems.

ISO/IEC 10967-2:2001, Information technology – Language independent arithmetic –
Part 2: Elementary numerical functions.

ISO/IEC 10967-3:2006, Information technology – Language independent arithmetic –
Part 3: Complex integer and floating point arithmetic and complex elementary numer-
ical functions.

4 Symbols and definitions

4.1 Symbols

4.1.1 Sets and intervals

In this document, Z denotes the set of mathematical integers, G denotes the set of complex
integers. R denotes the set of classical real numbers, and C denotes the set of complex numbers
over R. Note that Z ⊂ R ⊂ C, and Z ⊂ G ⊂ C.

The conventional notation for set definition and manipulation is used.

The following notation for intervals is used:

[x, z] designates the interval {y ∈ R | x 6 y 6 z},
]x, z] designates the interval {y ∈ R | x < y 6 z},
[x, z[designates the interval {y ∈ R | x 6 y < z}, and
]x, z[designates the interval {y ∈ R | x < y < z}.

NOTE – The notation using a round bracket for an open end of an interval is not used, for
the risk of confusion with the notation for pairs.

4.1.2 Operators and relations

All prefix and infix operators have their conventional (exact) mathematical meaning. The con-
ventional notation for set definition and manipulation is also used. In particular:

⇒ and ⇔ for logical implication and equivalence
+, −, /, |x|, bxc, dxe, and round(x) on real values
· for multiplication on real values
<, 6, >, and > between real values
= and 6= between real as well as special values

4 Symbols and definitions

Working draft ISO/IEC WD 10967-1.1:2008(E)

max on non-empty upwardly closed sets of real values
min on non-empty downwardly closed sets of real values
∪, ∩, ∈, 6∈, ⊂, ⊆, *, 6=, and = with sets
× for the Cartesian product of sets
→ for a mapping between sets
| for the divides relation between integer values
xy,
√
x, logb on real values

NOTE 1 – ≈ is used informally, in notes and the rationale.

For x ∈ R, the notation bxc designates the largest integer not greater than x:

bxc ∈ Z and x− 1 < bxc 6 x

the notation dxe designates the smallest integer not less than x:

dxe ∈ Z and x 6 dxe < x+ 1

and the notation round(x) designates the integer closest to x:

round(x) ∈ Z and x− 0.5 6 round(x) 6 x+ 0.5

where in case x is exactly half-way between two integers, the even integer is the result.

The divides relation (|) on integers tests whether an integer i divides an integer j exactly:

i|j ⇔ (i 6= 0 and i · n = j for some n ∈ Z)
NOTE 2 – i|j is true exactly when j/i is defined and j/i ∈ Z.

4.1.3 Exceptional values

The parts of ISO/IEC 10967 use the following five exceptional values:

a) underflow: the result has a denormalised representation and may have lost accuracy due
to the denormalisation (more than lost by ordinary rounding if the exponent range was
unbounded).

b) overflow: the rounded result (when rounding as if the exponent range was unbounded) is
larger than can be represented in the result datatype.

c) infinitary: the corresponding mathematical function has a pole at the finite argument
point, or the result is otherwise infinite from finite arguments.

NOTE 1 – infinitary is a generalisation of divide by zero.

d) invalid: the operation is undefined, or in C but not in R, but not infinitary, for the given
arguments.

e) absolute precision underflow: indicates that the argument is such that the density of
representable argument values is too small in the neighbourhood of the given argument
value for a numeric result to be considered appropriate to return. Used for operations that
approximate trigonometric functions (part 2 and part 3), and hyperbolic and exponentiation
functions (part 3).
NOTE 2 – The exceptional value inexact is not specified in ISO/IEC 10967, but IEC 60559
conforming implementations will provide it. It should then be used also for operations approx-
imating transcendental functions, when the returned result may be approximate. This part
of ISO/IEC 10967 does not specify when it is appropriate to return this exceptional value,
but does specify an appropriate continuation value. Thus, v is specified by ISO/IEC 10967

4.1.3 Exceptional values 5

ISO/IEC WD 10967-1.1:2008(E) Working draft

when v or inexact(v) should be returned by implementations that are based on IEC 60559.
underflow and overflow implies inexact, implicitly or explicitly.

For the exceptional values, a continuation value may be given in this document in parenthesis
after the exceptional value.

4.1.4 Datatypes

The datatype Boolean consists of the two values true and false.
NOTE 1 – Mathematical relations are true or false (or undefined, if an operand is undefined),
which are abstract conditions, not values in a datatype. In contrast, true and false are values
in Boolean.

4.1.5 Special values

The following symbols represent special values defined in IEC 60559 and used in this document:

−−−0, +∞+∞+∞, −∞−∞−∞, qNaN, and sNaN.

These floating point values are not part of the set F (see clause 5.2), but if iec 559F (see clause
5.2.1) has the value true, these values are included in the floating point datatype in the imple-
mentation that corresponds to F .

NOTE 1 – This document uses the above five special values for compatibility with IEC 60559.
In particular, the symbol −−−0 (in bold) is not the application of (mathematical) unary − to
the value 0, and is a value logically distinct from 0.

The specifications cover the results to be returned by an operation if given one or more of the
IEC 60559 special values −−−0, +∞+∞+∞, −∞−∞−∞, or NaNs as input values. These specifications apply only
to systems which provide and support these special values. If an implementation is not capable of
representing a −−−0 result or continuation value, 0 shall be used as the actual result or continuation
value. If an implementation is not capable of representing a prescribed result or continuation
value of the IEC 60559 special values +∞+∞+∞, −∞−∞−∞, or qNaN, the actual result or continuation value
is binding or implementation defined.

4.1.6 Operation specification framework

Each of the operations are specified using a mathematical notation with cases. Each case condition
is intended to be disjoint with the other cases, and encompass all non-special values as well as
some of the special values.

Mathematically, each argument is a pair of a value and a set of exceptional values and likewise
for the return value. However, in most cases only the first part of this pair is written out. The
set of exceptional values returned from an operation is at least the union of the set of exceptional
values from the arguments. Any new exceptional value that the operation itself gives rise to is
given in the form exceptional value(continuation value) indicating that the second (implicit)
part of the mathematical return value not only is the union of the second (implicit) parts of the
arguments, but in addition is unioned with the singleton set of the given exceptional value.

In an implementation, the exceptional values usually do not accompany each argument and
return value, but are instead handled as notifications. See clause 6.

6 Symbols and definitions

Working draft ISO/IEC WD 10967-1.1:2008(E)

4.2 Definitions of terms

For the purposes of this document, the following definitions apply.

4.2.1
accuracy
The closeness between the true mathematical result and a computed result.

4.2.2
arithmetic datatype
A datatype whose non-special values are members of Z, G, R, or C.

4.2.3
continuation value
A computational value used as the result of an arithmetic operation when an exception occurs.
Continuation values are intended to be used in subsequent arithmetic processing. A continuation
value can be a (in the datatype representable) value in R or an IEC 60559 special value. (Contrast
with exceptional value. See 6.2.1.)

4.2.4
denormalisation loss
A larger than normal rounding error caused by the fact that subnormal values (including zeros)
have less than full precision. (See 5.2.4 for a full definition.)

4.2.5
error
〈in computed value〉 The difference between a computed value and the mathematically correct
value. Used in phrases like “rounding error” or “error bound”.

4.2.6
error
〈computation gone awry〉 A synonym for exception in phrases like “error message” or “error
output”. Error and exception are not synonyms in any other contexts.

4.2.7
exception
The inability of an operation to return a suitable finite numeric result from finite arguments.
This might arise because no such finite result exists mathematically (infinitary (e.g., at a pole),
invalid (e.g., when the true result is in C but not in R)), or because the mathematical result
cannot, or might not, be representable with sufficient accuracy (underflow, overflow) or viability
(absolute precision underflow).

NOTES

1 absolute precision underflow is not used in this document, but in Part 2 (and thereby
also in Part 3).

4.2 Definitions of terms 7

ISO/IEC WD 10967-1.1:2008(E) Working draft

2 The term exception is here not used to designate certain methods of handling notifications
that fall under the category ‘change of control flow’. Such methods of notification han-
dling will be referred to as “[programming language name] exception”, when referred to,
particularly in annex E.

4.2.8
exceptional value
A non-numeric value produced by an arithmetic operation to indicate the occurrence of an excep-
tion. Exceptional values are not used in subsequent arithmetic processing. (See clause 5.)

NOTES

3 Exceptional values are used as a defining formalism only. With respect to this document,
they do not represent values of any of the datatypes described. There is no requirement
that they be represented or stored in the computing system.

4 Exceptional values are not to be confused with the NaNs and infinities defined in IEC 60559.
Contrast this definition with that of continuation value above.

4.2.9
helper function
A function used solely to aid in the expression of a requirement. Helper functions are not visi-
ble to the programmer, and are not required to be part of an implementation. However, some
implementation defined helper functions are required to be documented.

4.2.10
implementation (of this document)
The total arithmetic environment presented to a programmer, including hardware, language pro-
cessors, exception handling facilities, subroutine libraries, other software, and documentation
pertinent to this document.

4.2.11
literal
A syntactic entity, that does not have any proper sub-entity that is an expression, denoting a
constant value.

4.2.12
normalised
Those values of a floating point type F that provide the full precision allowed by that type. (See
FN in 5.2 for a full definition.)

4.2.13
notification
The process by which a program (or that program’s user) is informed that an arithmetic exception
has occurred. For example, dividing 2 by 0 results in a notification. (See clause 6 for details.)

4.2.14
numeral
A numeric literal. It may denote a value in Z or R, −−−0, an infinity, or a NaN.

8 Symbols and definitions

Working draft ISO/IEC WD 10967-1.1:2008(E)

4.2.15
operation
A function directly available to the programmer, as opposed to helper functions or theoretical
mathematical functions.

4.2.16
precision
The number of digits in the fraction of a floating point number. (See clause 5.2.)

4.2.17
rounding
The act of computing a representable final result for an operation that is close to the exact (but
unrepresentable) result for that operation. Note that a suitable representable result may not exist
(see 5.2.5). (See also D.5.2.4 for some examples.)

4.2.18
rounding function
Any function rnd : R → X (where X is a discrete and unlimited subset of R) that maps each
element of X to itself, and is monotonic non-decreasing. Formally, if x and y are in R,

x ∈ X ⇒ rnd(x) = x
x < y ⇒ rnd(x) 6 rnd(y)

Thus, if u is between two adjacent values in X, rnd(u) selects one of those adjacent values.

4.2.19
round to nearest
The property of a rounding function rnd that when u ∈ R is between two adjacent values in X,
rnd(u) selects the one nearest u. If the adjacent values are equidistant from u, either value can
be chosen deterministically, but shall be such that rnd(−u) = −rnd(u).

4.2.20
round toward minus infinity
The property of a rounding function rnd that when u ∈ R is between two adjacent values in X,
rnd(u) selects the one less than u.

4.2.21
round toward plus infinity
The property of a rounding function rnd that when u ∈ R is between two adjacent values in X,
rnd(u) selects the one greater than u.

4.2.22
shall
A verbal form used to indicate requirements strictly to be followed in order to conform to the
standard and from which no deviation is permitted. (Quoted from the directives [1].)

4.2 Definitions of terms 9

ISO/IEC WD 10967-1.1:2008(E) Working draft

4.2.23
should
A verbal form used to indicate that among several possibilities one is recommended as particu-
larly suitable, without mentioning or excluding others; or that (in the negative form) a certain
possibility is deprecated but not prohibited. (Quoted from the directives [1].)

4.2.24
signature (of a function or operation)
A summary of information about an operation or function. A signature includes the function or
operation name; a subset of allowed argument values to the operation; and a superset of results
from the function or operation (including exceptional values if any), if the argument is in the
subset of argument values given in the signature.

The signature addI : I×I → I∪{overflow} states that the operation named addI shall accept
any pair of values in I as input, and when given such input shall return either a single value in I
as its output or the exceptional value overflow possibly accompanied by a continuation value.

A signature for an operation or function does not forbid the operation from accepting a wider
range of arguments, nor does it guarantee that every value in the result range will actually be
returned for some argument(s). An operation given an argument outside the stipulated argument
domain may produce a result outside the stipulated result range.

NOTE 5 – Operations are permitted to accept argument values not listed in the signature of
the operation. In particular, IEC 60559 special values are not in F , but must be accepted as
arguments if iec 559F has the value true.

4.2.25
subnormal
Values of a floating point datatype F , including 0 and also the special value −−−0 (not in F), that
provide less than the full precision allowed by that type. (See FS in 5.2 for a full definition.)

4.2.26
ulp
The value of one “unit in the last place” of a floating point number. This value depends on
the exponent, the radix, and the precision used in representing the number. Thus, the ulp of a
normalised value x (in F), with exponent t, precision pF , and radix rF , is rt−pF

F , and the ulp of a
subnormal value is fminDF . (See clause 5.2.)

5 Specifications for integer and floating point datatypes and op-
erations

An arithmetic datatype consists of a set of values and is accompanied by operations that take
values from an arithmetic datatype and return a value in an arithmetic datatype (usually the same
as for the arguments, but there are exceptions, like for the conversion operations) or a boolean
value. For any particular arithmetic datatype, the set of non-special values is characterized by a
small number of parameters. An exact definition of the value set will be given in terms of these
parameters.

10 Specifications for integer and floating point datatypes and operations

Working draft ISO/IEC WD 10967-1.1:2008(E)

Given the datatype’s non-special value set, V , the accompanying arithmetic operations will
be specified as mathematical functions on V union special values (the special values are not
written out in the argument part of the signature). These functions typically return values in
V or a special value (only the ones that can arise from non-special-value arguments), but they
may instead nominally return certain exceptional values (not to be confused with the special
values) that are not in any arithmetic datatype. Though nominally listed as a return value,
mathematically it is really part of a second component of the result, as explained in clause 4.1.6,
and to be handled in an implementation as described in clause 6.

The exceptional values used in this document are underflow(generalisation of underflow),
overflow, infinitary(generalisation of division-by-zero), and invalid. Parts 2 and 3 will also use
the exceptional value absolute precision underflowfor the operations corresponding to cyclic
functions. For many cases this document specifies which continuation value, that is actual value,
to use with a specified exceptional value. The continuation value is then expressed in parenthesis
after the expression of the exceptional value. For example, infinitary(+∞+∞+∞) expresses that the
exceptional value infinitary in that case is to be accompanied by a continuation value of +∞+∞+∞
(unless the binding states differently). In case the notification is by recording in indicators (see
clause 6.2.1), the continuation value is used as the actual return value. This document sometimes
leaves the continuation value unspecified, in which case the continuation value is implementation
defined.

Whenever an arithmetic operation (as defined in this clause) returns an exceptional value
(mathematically, that a non-empty exceptional value set is unioned with the union of exceptions
from the arguments, as the exceptional values part of the result), notification of this shall occur
as described in clause 6.

Each operation specified in this document is given with a signature. Each operation is further
specified by a specification in cases. The definition may use helper functions that may in part be
defined by a binding or an implementation.

An implementation of a conforming integer or floating point datatype shall include all non-
special values defined for that datatype by this document. However, the implementing datatype is
permitted to include additional values (for example, and in particular, IEC 60559 special values).
This document specifies the behaviour of integer operations when applied to infinitary values,
but not for other such additional values. This document specifies the behaviour of floating point
operations when applied to IEC 60559 special values, but not for other such additional values.

An implementation of a conforming integer or floating point datatype shall be accompanied
by all the operations specified for that datatype by this document. Additional operations are
explicitly permitted.

The datatype Boolean is used for parameters and the results of comparison operations. An
implementation is not required by this document to provide a Boolean datatype, nor is it re-
quired by this document to provide operations on Boolean values. However, an implementation
shall provide a method of distinguishing true from false as parameter values and as results of
operations.

NOTE 1 – This document requires an implementation to provide methods to access values,
operations, and other facilities. Ideally, these methods are provided by a binding standard,
and the implementation merely cites this standard. Only if a binding standard does not exist,
must an individual implementation supply this information on its own. See D.7.

5. Specifications for integer and floating point datatypes and operations 11

ISO/IEC WD 10967-1.1:2008(E) Working draft

5.1 Integer datatypes and operations

The non-special value set, I, for an integer datatype shall be a subset of Z, characterized by the
following parameters:

bounded I∈ Boolean (whether the set I is finite)
minintI ∈ I ∪ {−∞−∞−∞} (the smallest integer in I if boundedI = true)
maxintI ∈ I ∪ {+∞+∞+∞} (the largest integer in I if boundedI = true)

In addition, the following parameter characterises one aspect of the special values in the datatype
corresponding to I in the implementation:

hasinfI∈ Boolean (whether the corresponding datatype has −∞−∞−∞ and +∞+∞+∞)

NOTE 1 – The first edition of this document also specified the parameter moduloI . For
conformity to this second edition, that parameter shall be regarded as having the value false.
Part 2 includes specifications for operations add wrapI , sub wrapI , and mul wrapI . A binding
may still have a parameter moduloI , and it having the value true (non-conforming case)
indicates that the binding binds the basic integer arithmetic operations to the corresponding
wrapping operation instead of the addI , subI , and mulI operations of this second edition of
this document.

If boundedI is false, the set I shall satisfy

I = Z
In this case, hasinfI shall be true, and the value of minintI shall be−∞−∞−∞ and the value of maxintI
shall be +∞+∞+∞.

If boundedI is true, then minintI ∈ Z and maxintI ∈ Z and the set I shall satisfy

I = {x ∈ Z | minintI 6 x 6 maxintI}
and minintI and maxintI shall satisfy

maxintI > 0

and one of:

minintI = 0,
minintI = −maxintI , or
minintI = −(maxintI + 1)

A bounded integer datatype with minintI < 0 is called signed. A bounded integer datatype
with minintI = 0 is called unsigned. An integer datatype in which boundedI is false is signed,
due to the requirement above.

An implementation may provide more than one integer datatype. A method shall be provided
for a program to obtain the values of the parameters boundedI , hasinfI , minintI , and maxintI ,
for each conforming integer datatype provided.

NOTES

2 The value of hasinfI does not affect the values of minintI and maxintI for bounded integer
datatypes.

3 Most traditional programming languages call for bounded integer datatypes. Others allow
or require an integer datatype to have an unbounded range. A few languages permit the
implementation to decide whether an integer datatype will be bounded or unbounded. (See
D.5.1.0.1 for further discussion.)

12 Specifications for integer and floating point datatypes and operations

Working draft ISO/IEC WD 10967-1.1:2008(E)

4 Operations on unbounded integers will not overflow, but may fail due to exhaustion of
resources.

5 Unbounded natural numbers are not covered by this document.

6 If the value of a parameter (like boundedI) is dictated by a language standard, implemen-
tations of that language need not provide program access to that parameter explicitly. But
for programmer convenience, minintI should anyway be provided for all signed integer
datatypes, and maxintI should anyway be provided for all integer datatypes.

5.1.1 Integer result function

If boundedI is true, the mathematical operations +, −, and · can produce results that lie outside
the set I even when given values in I. In such cases, the computational operations addI , subI ,
negI , absI , and mulI shall cause an overflow notification.

In the integer operation specifications below, the handling of overflow is specified via the resultI
helper function:

resultI : Z → I ∪ {overflow}
is defined by

resultI(x) = x if x ∈ I
= overflow(−∞−∞−∞) if x ∈ Z and x 6∈ I and x < 0
= overflow(+∞+∞+∞) if x ∈ Z and x 6∈ I and x > 0

NOTES

1 For integer operations, this document does not specify continuation values for overflow
when hasinf I = false nor the continuation values for invalid. The binding or implemen-
tation must document the continuation value(s) used for such cases (see clause 8).

2 For the floating point operations in clause 5.2 a resultF helper function is used to consis-
tently and succinctly express overflow and denormalisation loss cases.

5.1.2 Integer operations

For each provided conforming integer datatype, the operations specified below shall be provided.

5.1.2.1 Comparisons

eqI : I × I → Boolean

eqI(x, y) = true if x ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and x = y
= false if x ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and x 6= y

neqI : I × I → Boolean

neqI(x, y) = true if x ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and x 6= y
= false if x ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and x = y

lssI : I × I → Boolean

5.1.1 Integer result function 13

ISO/IEC WD 10967-1.1:2008(E) Working draft

lssI(x, y) = true if x, y ∈ I and x < y
= false if x, y ∈ I and x > y
= true if x ∈ I ∪ {−∞−∞−∞} and y = +∞+∞+∞
= true if x = −∞−∞−∞ and y ∈ I
= false if x ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and y =−∞−∞−∞
= false if x = +∞+∞+∞ and y ∈ I ∪ {+∞+∞+∞}

leqI : I × I → Boolean

leqI(x, y) = true if x, y ∈ I and x 6 y
= false if x, y ∈ I and x > y
= true if x ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and y = +∞+∞+∞
= true if x = −∞−∞−∞ and y ∈ I ∪ {−∞−∞−∞}
= false if x ∈ I ∪ {+∞+∞+∞} and y =−∞−∞−∞
= false if x = +∞+∞+∞ and y ∈ I

gtrI : I × I → Boolean

gtrI(x, y) = lssF (y, x)

geqI : I × I → Boolean

geqI(x, y) = leqF (y, x)

5.1.2.2 Basic arithmetic

If I is unsigned, it is permissible to omit the operations negI , absI , and signumI .

addI : I × I → I ∪ {overflow}
addI(x, y) = resultI(x+ y) if x, y ∈ I

=−∞−∞−∞ if x ∈ I ∪ {−∞−∞−∞} and y = −∞−∞−∞
=−∞−∞−∞ if x =−∞−∞−∞ and y ∈ I
= +∞+∞+∞ if x ∈ I ∪ {+∞+∞+∞} and y = +∞+∞+∞
= +∞+∞+∞ if x = +∞+∞+∞ and y ∈ I
= invalid if x = +∞+∞+∞ and y =−∞−∞−∞
= invalid if x =−∞−∞−∞ and y = +∞+∞+∞

negI : I → I ∪ {overflow}
negI(x) = resultI(−x) if x ∈ I

= +∞+∞+∞ if x =−∞−∞−∞
=−∞−∞−∞ if x = +∞+∞+∞

subI : I × I → I ∪ {overflow}
subI(x, y) = addI(x, negI(y))

absI : I → I ∪ {overflow}

14 Specifications for integer and floating point datatypes and operations

Working draft ISO/IEC WD 10967-1.1:2008(E)

absI(x) = resultI(|x|) if x ∈ I
= +∞+∞+∞ if x ∈ {−∞−∞−∞,+∞+∞+∞}

The operation signumI , specified in clause 5.1.2 of part 3, shall be supplied.
NOTE 1 – The first edition of this document specified a slightly different operation signI .
signumI is consistent with signumF (also specified in part 3), which in turn is consistent with
the branch cuts for the complex trigonometric operations (part 3).

mulI : I × I → I ∪ {overflow}
mulI(x, y) = resultI(x · y) if x, y ∈ I

= +∞+∞+∞ if x = +∞+∞+∞ and (y = +∞+∞+∞ or (y ∈ I and y > 0))
=−∞−∞−∞ if x = +∞+∞+∞ and (y = −∞−∞−∞ or (y ∈ I and y < 0))
=−∞−∞−∞ if x ∈ I and x > 0 and y =−∞−∞−∞
= +∞+∞+∞ if x ∈ I and x < 0 and y =−∞−∞−∞
= +∞+∞+∞ if x =−∞−∞−∞ and (y = −∞−∞−∞ or (y ∈ I and y < 0))
=−∞−∞−∞ if x =−∞−∞−∞ and (y = +∞+∞+∞ or (y ∈ I and y > 0))
=−∞−∞−∞ if x ∈ I and x < 0 and y = +∞+∞+∞
= +∞+∞+∞ if x ∈ I and x > 0 and y = +∞+∞+∞
= invalid if x ∈ {−∞−∞−∞,+∞+∞+∞} and y = 0
= invalid if x = 0 and y ∈ {−∞−∞−∞,+∞+∞+∞}

The operations quotI , modI , ratioI , residueI , groupI , and padI , are specified in clause 5.1.7
of part 2. The operations quotI and modI shall be provided. The operations ratioI , residueI ,
groupI , and padI should be provided.

NOTE 2 – The first edition of this document specified the operations divf
I , divt

I , moda
I , modp

I ,
remf

I , and remt
I . However, divf

I = quotI , and moda
I = remf

I = modI . divt
I , modp

I , and remt
I

are not recommended and should not be provided as their use may give rise to late-discovered
bugs.

5.2 Floating point datatypes and operations

A floating point datatype shall have a non-special value set F that is a finite subset of R, char-
acterized by the following parameters:

rF ∈ Z (the radix of F)
pF ∈ Z (the precision of F)
emaxF ∈ Z (the largest exponent of F)
eminF ∈ Z (the smallest exponent of F)
denormF ∈ Boolean (whether F contains non-zero subnormal values)

In addition, the following parameter characterises the special values in the datatype corresponding
to F in the implementation, and the operations in common for this document and IEC 60559:

iec 559F ∈ Boolean (whether the datatype and operations conform to IEC 60559)
NOTE 1 – This standard does not advocate any particular representation for floating point
values. However, concepts such as radix, precision, and exponent are derived from an abstract
model of such values as discussed in D.5.2.

The parameters rF , pF , and denormF shall satisfy

5.2 Floating point datatypes and operations 15

ISO/IEC WD 10967-1.1:2008(E) Working draft

rF > 2
pF > 2 ·max{1, dlogrF (2 · π)e}
denormF = true

Furthermore, rF should be even, and pF should be such that pF > 2 + dlogrF (1000)e.
NOTE 2 – The first edition of this standard only required pF > 2. The requirement in
this edition guarantees that radian trigonometric operations never has denormalisation loss for
angles close to zero for any conforming datatype.

The parameters eminF and emaxF shall satisfy

1− rpF
F 6 eminF 6 −1− pF

pF 6 emaxF 6 rpF
F − 1

and should satisfy

0 6 emaxF + eminF 6 4

Given specific values for rF , pF , eminF , emaxF , and denormF , the following sets are defined:

FS= {s ·m · re−pF
F | s ∈ {−1, 1}, m, e ∈ Z, 0 6 m < rpF−1

F , e = eminF }

FN= {s ·m · re−pF
F | s ∈ {−1, 1}, m, e ∈ Z, rpF−1

F 6 m < rpF
F , eminF 6 e 6 emaxF }

FE= {s ·m · re−pF
F | s ∈ {−1, 1}, m, e ∈ Z, rpF−1

F 6 m < rpF
F , emaxF < e}

F ∗= FS ∪ FN ∪ FE

F = FS ∪ FN if denormF = true
= {0} ∪ FN if denormF = false (non-conforming case, see annex A)

F ∗ is the unbounded extension of F , including (in addition) all subnormal values that would
be in F for denormF being true.

NOTE 3 – The set F ∗ contains values of magnitude larger than those that are representable
in the type F . F ∗ will be used in defining rounding.

The elements of FN are called normal floating point values because of the constraint
rpF−1
F 6 i 6 rpF

F − 1. The elements of FS, including 0, as well as −−−0 are called subnormal
floating point values.

NOTE 4 – The terms normal and subnormal refer to the mathematical values involved, not
to any method of representation.

An implementation may provide more than one floating point datatype.

For each of the parameters rF , pF , eminF , emaxF , denormF , and iec 559F , and for each
conforming floating point datatype provided, a method shall be provided for a program to obtain
the value of the parameter.

NOTE 5 – The conditions placed upon the parameters rF , pF , eminF , and emaxF are suffi-
cient to guarantee that the abstract model of F is well-defined and contains its own parameters,
as well as enabling the avoidance of denormalisation loss (in particular for expm1 F and ln1pF

of Part 2). More stringent conditions are needed to produce a computationally useful floating
point datatype. These are design decisions which are beyond the scope of this document. (See
D.5.2.)

16 Specifications for integer and floating point datatypes and operations

Working draft ISO/IEC WD 10967-1.1:2008(E)

5.2.1 Conformity to IEC 60559

The parameter iec 559F shall be true only when the datatype corresponding to F and the relevant
operations completely conform to the requirements of IEC 60559. F may correspond to any of
the floating point datatypes defined in IEC 60559.

When iec 559F has the value true, all the facilities required by IEC 60559 shall be provided.
Methods shall be provided for a program to access each such facility. In addition, documentation
shall be provided to describe these methods, and all implementation choices. When iec 559F has
the value true, all operations and values common to this document and IEC 60559 shall satisfy
the requirements of both standards.

NOTES

1 IEC 60559 is also known as IEEE 754 [37].

2 The IEC 60559 facilities include values for infinities and NaNs, extended comparisons,
rounding towards positive or negative infinity, an inexact exception flag, and so on. See
annex B for more information.

3 IEC 60559 only specifies an rF of 2. An extended interpretation of iec 559F for the case
of an rF of 10 can be, if the binding allows it, that the datatype and relevant operations
satisfy the requirements of IEEE 854 [38].

4 If iec 559F is true, then denormF must also be true. Note that denormF = false is
non-conforming also to this standard.

5.2.2 Range and granularity constants

The range and granularity of F is characterized by the following derived constants:

fmaxF = max F = (1− r−pF
F) · remaxF

F

fminNF = min {z ∈ FN | z > 0} = reminF−1

fminDF = min {z ∈ FS | z > 0} = reminF−pF

fminF = min {z ∈ F | z > 0} = fminDF if denormF = true
= fminNF if denormF = false (non-conforming case)

epsilonF = r1−pF
F (the maximum relative spacing in FN ∪ FE on either side of 0)

For each of the derived constants fmaxF , fminNF , fminF , and epsilonF , and for each conform-
ing floating point datatype provided, a method shall be provided for a program to obtain the
value of the derived constant.

5.2.3 Approximate operations

The operations (specified below) addF , subF , mulF , divF and, upon denormalisation loss, scaleF,I

are approximations of exact mathematical operations. They differ from their mathematical coun-
terparts, not only in that they may accept special values as arguments, but also in that

a) they may produce “rounded” results,

b) they may produce a special value (even without notification, or for values in F as arguments),
and

5.2.1 Conformity to IEC 60559 17

ISO/IEC WD 10967-1.1:2008(E) Working draft

c) they may produce notifications (with values in F or special values as continuation values).

Approximate floating point operations are specified as if they were computed in three stages:

a) compute the exact mathematical answer (if there is any),

b) determine if notification is required,

c) round the exact answer to pF digits of precision in the radix rF (the precision will be less if
the rounded answer is subnormal), maybe producing a special value as the rounded result.

These stages will be modelled by two helper functions: nearestF (part of stage c) and resultF
(stages b and c). These helper functions are not visible to the programmer, and are not required
to be part of the implementation. An actual implementation need not perform the above stages
at all, merely return a result (or produce a notification and a continuation value) as if it had.

5.2.4 Rounding and rounding constants

Define the helper function eF : R → Z such that

eF (x) = blogrF (|x|)c+ 1 if |x| > fminNF

= eminF if |x| < fminNF

Define the helper function uF : R → R such that

uF (x) = r
eF (x)−pF

F

NOTES

1 The value eF (x) is that of the e in the definitions of FS, FN, and FE. When x is in
]−2 · fminNF , 2 · fminNF [, then eF (x) is eminF regardless of x.

2 The value uF (x) is that of the distance between values in F ∗ in the immediate neighbour-
hood of x (which need not be in F ∗). When x is in]−2 · fminNF , 2 · fminNF [, then uF (x)
is fminDF regardless of x.

For floating point operations, rounding is the process of taking an exact result in R and
producing a pF -digit approximation.

NOTE 3 – In Annex A of this document, and in Parts 2 and 3 of ISO/IEC 10967, the “exact
result” may be a prerounding approximation, through approximation helper functions.

The nearestF , downF , and upF helper functions are introduced to model the rounding process:
The floating point helper function

nearestF : R → F ∗

is the rounding function that rounds to nearest, ties rounded to even last digit. The floating point
helper function

downF : R → F ∗

is the rounding function that rounds towards negative infinity. The floating point helper function

upF : R → F ∗

is the rounding function that rounds towards positive infinity.

If, for some x ∈ R and some i ∈ Z, such that |x| < fminNF , |x · ri
F | > fminNF , and rounding

function rnd : R → F ∗, the formula

rnd(x · ri
F) = rnd(x) · ri

F

does not hold, then rnd is said to have a denormalisation loss at x.

18 Specifications for integer and floating point datatypes and operations

Working draft ISO/IEC WD 10967-1.1:2008(E)

5.2.5 Floating point result function

A floating point operation produces a rounded result or a notification. The decision is based on
the computed result (either before or after rounding).

The resultF helper function is introduced to model this decision. resultF is partially imple-
mentation defined. resultF has a signature:

resultF : R× (R → F ∗)→ F ∪ {underflow,overflow}
NOTE 1 – The first input to resultF is the computed result before rounding, and the second
input is the rounding function to be used.

For the overflow cases for the three roundings nearestF , upF , and downF , and for x ∈ R, the
following shall apply:

resultF (x, nearestF) = overflow(+∞+∞+∞) if nearestF (x) > fmaxF

resultF (x, nearestF) = overflow(fmaxF) or fmaxF

if nearestF (x) = fmaxF and x > fmaxF

resultF (x, nearestF) = overflow(−∞−∞−∞) if nearestF (x) < −fmaxF

resultF (x, nearestF) = overflow(−fmaxF) or −fmaxF

if nearestF (x) = −fmaxF and x < −fmaxF

resultF (x, upF) = overflow(+∞+∞+∞) if upF (x) > fmaxF

resultF (x, upF) = overflow(−fmaxF) if upF (x) < −fmaxF

resultF (x, upF) = overflow(−fmaxF) or −fmaxF

if upF (x) = −fmaxF and x < −fmaxF

resultF (x, downF) = overflow(−∞−∞−∞) if downF (x) < −fmaxF

resultF (x, downF) = overflow(fmaxF) if downF (x) > fmaxF

resultF (x, downF) = overflow(fmaxF) or fmaxF

if downF (x) = fmaxF and x > fmaxF

For other cases for either of the thee rounding functions as rnd, and for x ∈ R, the following shall
apply:

resultF (x, rnd) = rnd(x) if fminNF 6 |x| and |x| 6 fmaxF

= rnd(x) if |x| < fminNF and
rnd has no denormalisation loss at x

= underflow(−−−0)
if x < 0 and rnd(x) = 0

= underflow(rnd(x))
otherwise

NOTES

2 Overflow may be detected before or after rounding. If overflow is detected before rounding,
the bounds for overflow are independent of rounding.

3 There is no notion of underflow, but underflow coincides with underflow when underflow
is detected as denormalisation loss.

4 When inexact notifications are supported, the notifications underflow and overflow im-
plies inexact just as x 6= rnd(x) implies inexact.

5 Approximation helper functions (parts 2 and 3) are to return a value in F only if that result
is exact.

Define the no resultF and no result2F helper functions:

no resultF : F → {invalid}

5.2.5 Floating point result function 19

ISO/IEC WD 10967-1.1:2008(E) Working draft

no resultF (x) = invalid(qNaN) if x ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

no result2F : F × F → {invalid}
no result2F (x, y)

= invalid(qNaN) if x, y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if at least one of x and y is a quiet NaN and

neither a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

These helper functions are used to specify both NaN argument handling and to handle non-NaN-
argument cases where invalid(qNaN) is the appropriate result.

NOTE 6 – The handling of other special values, if available, is left unspecified by this
document.

5.2.6 Floating point operations

5.2.6.1 Comparisons

For each provided floating point type, the following operations shall be provided:

eqF : F × F → Boolean

eqF (x, y) = true if x, y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and x = y
= false if x, y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and x 6= y
= eqF (0, y) if x = −−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= eqF (x, 0) if x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and y =−−−0
= false if x is a quiet NaN and y is not a signalling NaN
= false if y is a quiet NaN and x is not a signalling NaN
= invalid(false) if x is a signalling NaN or y is a signalling NaN

neqF : F × F → Boolean

neqF (x, y) = true if x, y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and x 6= y
= false if x, y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and x = y
= neqF (0, y) if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= neqF (x, 0) if y =−−−0 and x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= true if x is a quiet NaN and y is not a signalling NaN
= true if y is a quiet NaN and x is not a signalling NaN
= invalid(true) if x is a signalling NaN or y is a signalling NaN

lssF : F × F → Boolean

lssF (x, y) = true if x, y ∈ F and x < y
= false if x, y ∈ F and x > y
= lssF (0, y) if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= lssF (x, 0) if y =−−−0 and x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= true if x =−∞−∞−∞ and y ∈ F ∪ {+∞+∞+∞}

20 Specifications for integer and floating point datatypes and operations

Working draft ISO/IEC WD 10967-1.1:2008(E)

= false if x = +∞+∞+∞ and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= false if x ∈ F ∪ {−∞−∞−∞} and y = −∞−∞−∞
= true if x ∈ F and y = +∞+∞+∞
= invalid(false) if x is a NaN or y is a NaN

leqF : F × F → Boolean

leqF (x, y) = true if x, y ∈ F and x 6 y
= false if x, y ∈ F and x > y
= leqF (0, y) if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= leqF (x, 0) if y =−−−0 and x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= true if x =−∞−∞−∞ and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= false if x = +∞+∞+∞ and y ∈ F ∪ {−∞−∞−∞}
= false if x ∈ F and y =−∞−∞−∞
= true if x ∈ F ∪ {+∞+∞+∞} and y = +∞+∞+∞
= invalid(false) if x is a NaN or y is a NaN

gtrF : F × F → Boolean

gtrF (x, y) = lssF (y, x)

geqF : F × F → Boolean

geqF (x, y) = leqF (y, x)

isnegzeroF : F → Boolean

isnegzeroF (x) = true if x =−−−0
= false if x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= invalid(false) if x is a NaN

istinyF : F → Boolean

istinyF (x) = true if (x ∈ F and |x| < fminNF) or x = −−−0
= false if (x ∈ F and |x| > fminNF) or x ∈ {−∞−∞−∞,+∞+∞+∞}
= invalid(false) if x is a NaN

isnanF : F → Boolean

isnanF (x) = false if x ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= true if x is a quiet NaN
= invalid(true) if x is a signalling NaN

issignanF : F → Boolean

issignanF (x) = false if x ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= false if x is a quiet NaN
= true if x is a signalling NaN

5.2.6 Floating point operations 21

ISO/IEC WD 10967-1.1:2008(E) Working draft

5.2.6.2 Basic arithmetic

For each provided floating point datatype, the following round to nearest operations shall be
provided, and the round towards negative and positive infinity should be provided:

addF : F × F → F ∪ {overflow}
addF (x, y) = resultF (x+ y, nearestF)

if x, y ∈ F
=−−−0 if x = −−−0 and y =−−−0
= addF (0, y) if x = −−−0 and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= addF (x, 0) if x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and y =−−−0
= +∞+∞+∞ if x = +∞+∞+∞ and y ∈ F ∪ {+∞+∞+∞}
= +∞+∞+∞ if x ∈ F and y = +∞+∞+∞
=−∞−∞−∞ if x =−∞−∞−∞ and y ∈ F ∪ {−∞−∞−∞}
=−∞−∞−∞ if x ∈ F and y =−∞−∞−∞
= no result2 F (x, y) otherwise

add↑F : F × F → F ∪ {overflow}

add↑F (x, y) = resultF (x+ y, upF) if x, y ∈ F
= addF (x, y) otherwise

add↓F : F × F → F ∪ {overflow}

add↓F (x, y) = resultF (x+ y, downF) if x, y ∈ F
= addF (x, y) otherwise

negF : F → F ∪ {−−−0}
negF (x) = −x if x ∈ F and x 6= 0

=−−−0 if x = 0
= 0 if x = −−−0
=−∞−∞−∞ if x = +∞+∞+∞
= +∞+∞+∞ if x =−∞−∞−∞
= no resultF (x) otherwise

subF : F × F → F ∪ {overflow}
subF (x, y) = addF (x, negF (y))

sub↑F : F × F → F ∪ {overflow}

sub↑F (x, y) = add↑F (x, negF (y))

sub↓F : F × F → F ∪ {overflow}

sub↓F (x, y) = add↓F (x, negF (y))
NOTE 1 – negF (x) is the same as subF (−−−0, x).

absF : F → F

22 Specifications for integer and floating point datatypes and operations

Working draft ISO/IEC WD 10967-1.1:2008(E)

absF (x) = |x| if x ∈ F
= 0 if x = −−−0
= +∞+∞+∞ if x ∈ {−∞−∞−∞,+∞+∞+∞}
= no resultF (x) otherwise

signumF : F → F

signumF (x) = 1 if (x ∈ F and x > 0) or x = +∞+∞+∞
= −1 if (x ∈ F and x < 0) or x ∈ {−−−0,−∞−∞−∞}
= no resultF (x) otherwise

NOTE 2 – The first edition of this document specified the slightly different operation signF .

mulF : F × F → F ∪ {−−−0,underflow,overflow}
mulF (x, y) = resultF (x · y, nearestF)

if x, y ∈ F and x 6= 0 and y 6= 0
= 0 if x = 0 and y ∈ F and y > 0
=−−−0 if x = 0 and ((y ∈ F and y < 0) or y =−−−0)
=−−−0 if x = −−−0 and y ∈F and y > 0
= 0 if x = −−−0 and ((y ∈ F and y < 0) or y =−−−0)
= 0 if x ∈ F and x > 0 and y = 0
=−−−0 if x ∈ F and x < 0 and y = 0
=−−−0 if x ∈ F and x > 0 and y = −−−0
= 0 if x ∈ F and x < 0 and y = −−−0
= +∞+∞+∞ if x = +∞+∞+∞ and ((y ∈ F and y > 0) or y = +∞+∞+∞)
=−∞−∞−∞ if x = +∞+∞+∞ and ((y ∈ F and y < 0) or y =−∞−∞−∞)
=−∞−∞−∞ if x =−∞−∞−∞ and ((y ∈ F and y > 0) or y = +∞+∞+∞)
= +∞+∞+∞ if x =−∞−∞−∞ and ((y ∈ F and y < 0) or y =−∞−∞−∞)
= +∞+∞+∞ if x ∈ F and x > 0 and y = +∞+∞+∞
=−∞−∞−∞ if x ∈ F and x < 0 and y = +∞+∞+∞
=−∞−∞−∞ if x ∈ F and x > 0 and y = −∞−∞−∞
= +∞+∞+∞ if x ∈ F and x < 0 and y = −∞−∞−∞
= no result2 F (x, y) otherwise

mul↑F : F × F → F ∪ {−−−0,underflow,overflow}

mul↑F (x, y) = resultF (x · y, upF) if x, y ∈ F and x 6= 0 and y 6= 0
= mulF (x, y) otherwise

mul↓F : F × F → F ∪ {−−−0,underflow,overflow}

mul↓F (x, y) = resultF (x · y, downF) if x, y ∈ F and x 6= 0 and y 6= 0
= mulF (x, y) otherwise

The operations residueF and sqrtF , specified in clauses 5.2.5 and 5.2.6 of part 2, shall be
provided.

NOTE 3 – The residueF operation is also known as “IEEE remainder”.

5.2.6 Floating point operations 23

ISO/IEC WD 10967-1.1:2008(E) Working draft

divF : F × F → F ∪ {−−−0,underflow,overflow, infinitary, invalid}
divF (x, y) = resultF (x/y, nearestF)

if x, y ∈ F and x 6= 0 and y 6= 0
= 0 if x = 0 and y ∈ F and y > 0
= −−−0 if x = 0 and y ∈ F and y < 0
= −−−0 if x =−−−0 and y ∈ F and y > 0
= 0 if x =−−−0 and y ∈ F and y < 0
= infinitary(+∞+∞+∞) if x ∈ F and x > 0 and y = 0
= infinitary(−∞−∞−∞) if x ∈ F and x < 0 and y = 0
= infinitary(−∞−∞−∞) if x ∈ F and x > 0 and y =−−−0
= infinitary(+∞+∞+∞) if x ∈ F and x < 0 and y =−−−0
= 0 if x ∈ F and x > 0 and y = +∞+∞+∞
= −−−0 if x ∈ F and x > 0 and y =−∞−∞−∞
=−−−0 if ((x ∈ F and x < 0) or x =−−−0) and y = +∞+∞+∞
= 0 if ((x ∈ F and x < 0) or x =−−−0) and y =−∞−∞−∞
= +∞+∞+∞ if x = +∞+∞+∞ and y ∈ F and y > 0
=−∞−∞−∞ if x =−∞−∞−∞ and y ∈ F and y > 0
=−∞−∞−∞ if x = +∞+∞+∞ and ((y ∈ F and y < 0) or y =−−−0)
= +∞+∞+∞ if x =−∞−∞−∞ and ((y ∈ F and y < 0) or y =−−−0)
= no result2 F (x, y) otherwise

div↑F : F × F → F ∪ {−−−0,underflow,overflow, infinitary, invalid}

div↑F (x, y) = resultF (x/y, upF) if x, y ∈ F and x 6= 0 and y 6= 0
= divF (x, y) otherwise

div↓F : F × F → F ∪ {−−−0,underflow,overflow, infinitary, invalid}

div↓F (x, y) = resultF (x/y, downF) if x, y ∈ F and x 6= 0 and y 6= 0
= divF (x, y) otherwise

5.2.6.3 Value dissection

For each provided floating point type, the following operations shall be provided:

exponentF,I : F → I ∪ {infinitary}
exponentF,I(x) = blogrF

(|x|)c+ 1 if x ∈ F and x 6= 0
= infinitary(−∞−∞−∞) if x ∈ {−−−0, 0}
= +∞+∞+∞ if x ∈ {−∞−∞−∞,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

1 Since most integer datatypes cannot represent any infinitaty (or NaN) values, documented
“well out of range” finite integer values of the correct sign may here be used instead of the
infinities.

2 The related IEC 60559 operation logbF returns a floating point value, to guarantee the
representability of the infinitary (and NaN) return values.

24 Specifications for integer and floating point datatypes and operations

Working draft ISO/IEC WD 10967-1.1:2008(E)

fractionF : F → F

fractionF (x) = x/r
exponentF,Z(x)
F if x ∈ F and x 6= 0

= x if x ∈ {−∞−∞−∞,−−−0, 0,+∞+∞+∞}
= no resultF (x) otherwise

scaleF,I : F × I → F ∪ {underflow,overflow}
scaleF,I(x, n) = resultF (x · rn

F , nearestF)
if x ∈ F and n ∈ I

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no result2 F (x, convertI→F (n))

otherwise

succF : F → F ∪ {overflow}
succF (x) = resultF (min {z ∈ F ∗ | z > x}, nearestF)

if x ∈ F
= succF (0) if x = −−−0
= no resultF (x) otherwise

predF : F → F ∪ {overflow}
predF (x) = resultF (max {z ∈ F ∗ | z < x}, nearestF)

if x ∈ F
= predF (0) if x = −−−0
= no resultF (x) otherwise

ulpF : F → F

ulpF (x) = uF (x) if x ∈ F
= ulpF (0) if x = −−−0
= no resultF (x) otherwise

5.2.6.4 Value splitting

For each provided floating point type, the following operations shall be provided:

intpartF : F → F

intpartF (x) = signumF (x) · b|x|c if x ∈ F
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no resultF (x) otherwise

fractpartF : F → F

fractpartF (x) = x− intpartF (x) if x ∈ F
= x if x = −−−0
= no resultF (x) otherwise

5.2.6 Floating point operations 25

ISO/IEC WD 10967-1.1:2008(E) Working draft

truncF,I : F × I → F

truncF,I(x, n) = bx/reF (x)−n
F c · reF (x)−n

F if x ∈ F and x > 0 and n ∈ I
= −truncF (−x, n) if x ∈ F and x < 0 and n ∈ I
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no result2 F (x, n) otherwise

roundF,I : F × I → F ∪ {overflow}

roundF,I(x, n) = resultF (round(x/reF (x)−n
F) · reF (x)−n

F , nearestF)
if x ∈ F and n ∈ I

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no result2 F (x, n) otherwise

5.3 Operations for conversion between numeric datatypes

The operations specified in clause 5.4 of part 2 shall be provided for all provided conforming
datatypes as well as between any conforming datatype and string formats for numerical values
(regarded as integer, floating point and fixed point datatypes).

5.4 Numerals as operations in a programming language

The numerals specified in clause 5.5 of part 2 shall be supplied for all provided conforming
datatypes.

6 Notification

6.1 Model handling of notifications

Notification is the process by which a user or program is informed that an arithmetic operation,
on given arguments, has some problem associated with it. Specifically, a notification shall occur
when any arithmetic operation returns an exceptional value as defined in clause 5.

Logically, there is a set of exceptional values associated with each value (not just arithmetic
ones). A (strict) operation returns a computed result together with the union of the arguments’s
sets of exceptional values and the set of exceptional values produced by the operation itself.

What above is written as addI : I × I → I ∪ {overflow}, should really be written as addI :
(I×P(E))× (I×P(E))→ (I×P(E)), where E is the set of exception values, and P is powerset,
and for each case of addI(〈x, s1〉, 〈y, s2〉), return s1 ∪ s2 as the second component and the first
component is the computed value, except for the overflow case where the second component is
s1 ∪ s2 ∪ {overflow} and the first component is then the continuation value. Since being explicit
about this for every specification would clutter the specifications, the specifications in ISO/IEC
10967 are implicit about this handling of exception values.

Reproducing this nominal behaviour (a special case of recording in indicators, Clause 6.2.1)
may be prohibitively inefficient. Therefore the notification alternatives below relax this nominal
behaviour. The maximum extension of the notification handling in these alternatives is a runtime
thread (or similar construct), but may be more limited as specified in a binding standard.

26 Notification

Working draft ISO/IEC WD 10967-1.1:2008(E)

6.2 Notification alternatives

Three alternatives for notification are provided in ISO/IEC 10967-1. The requirements are:

a) The alternative in clause 6.2.1 shall be supplied, and should be the default way of handling
notifications.

b) The alternative in clause 6.2.2 should be supplied in conjunction with any language which
provides support for exception handling.

c) The alternative in clause 6.2.3 (a special case of the second alternative) may be supplied.
NOTE – This is different from the first edition of this document, in which all implementations
were required to supply the last alternative, but were given a choice between the first and the
second based on whether the language supported exception handling or not.

6.2.1 Recording in indicators

An implementation shall provide this alternative.

Notification consists of two elements: a prompt recording in the relevant indicators of the fact
that an arithmetic operation returned an exceptional value, and means for the program or system
to interrogate or modify the recording in those indicators at a subsequent time.

This notification alternative has indicators, which represent sets of exceptional values (which
need not be just arithmetic ones). But the indicators need not be directly associated with val-
ues, but instead with determinable sets of values. However, computations that occur in parallel
(logically or actually) must not interfere with each others’s indicators.

NOTES

1 The “set of values” may thus be “all the values computed by a thread”. Not just (e.g.)
“output values”, but all values computed by the thread. The “sets of values” may be
subsets of the values computed by a thread, by the rules of the programming language or
system.

2 When computations are joined, the common continuing computation must have the union
(in practice often: bitwise or) of the joined computations indicators. This should be auto-
matic, needing no extra code from the programmer.

3 Computations that are completely ignored, e.g. speculative threads that are not taken, or
timed out threads without output, will have their indicator recordings ignored too.

4 New threads (or smaller constructs) begin with cleared indicators. EDITOR’S NOTE –
make normative

5 Any kind of modes or similar (e.g. the value of big angle rF , specified in part 2) that affect
the computations, should be propagated to new threads in a binding defined manner.

The recording shall consist of at least four indicators, one for each of the exceptional values
that may be returned by an arithmetic operation as defined in clause 5: invalid, infinitary,
overflow, and underflow.

NOTES

6 Part 2 introduces one more notification type, absolute precision underflow, which must
have its own indicator.

7 IEC 60559 requires that inexactness is also recorded. inexact must have its own indicator.

Consider a set E including at least four elements corresponding to the four exceptional values
used in this document: {invalid, infinitary,overflow,underflow} ⊆ E. Let Ind be be a type

6.2 Notification alternatives 27

ISO/IEC WD 10967-1.1:2008(E) Working draft

whose values represent the subsets of E. An implementation shall provide an embedding of Ind
into an existing programming language type. In addition, a method shall be provided for denoting
each of the values of Ind (either as constants or via computation). An implementation is permitted
to expand the set E to include additional notification indicators beyond the four listed in this
document of ISO/IEC 10967.

The relevant indicators shall be set when any arithmetic operation returns exceptional values as
defined in clause 5. Once set, an indicator shall be cleared only by explicit action of the program.

NOTE 8 – The status flags required by IEC 60559 are an example of this form of notification,
provided that the status flags for different computations (microthreads, threads, programs,
scripts, similar) are kept separate, and joined when results of computations are joined.

When an arithmetic operation returns exceptional values as defined in clause 5, in addition
to recording the event, an implementation shall provide a continuation value for the result of
the failed arithmetic operation, and continue execution from that point. In many cases ISO/IEC
10967 specifies the continuation value. The continuation value shall be implementation specified
if ISO/IEC 10967 does not specify one.

NOTE 9 – The infinities and NaNs produced by an IEC 60559 system are examples of values
not in F which can be used as continuation values. If the iec 559F parameter is true, the
continuation values must be precisely those stipulated in IEC 60559.

The following four operations shall be provided for the current indicators as well as for the
indicators of accessible computations:

clear indicators: Ind →
set indicators: Ind →
test indicators: Ind → Boolean
current indicators: → Ind

For every value S in Ind, the above four operations shall behave as follows:

clear indicators(S) clear each of the indicators named in S

set indicators(S) set each of the indicators named in S

test indicators(S) return true if any of the indicators named in S is set

current indicators() return the names of all indicators that are currently set

Indicators whose names are not in S shall not be altered.
NOTES

10 The argument to test indicators tells which indicators to look at, it is not the indicator set
in the argument that is tested for non-emptyness.

11 No changes to the specifications of a language standard are required to implement this
alternative for notification. The recordings can be implemented in system software. The
operations for interrogating and manipulating the recording can be contained in a system
library, and invoked as library routine calls. These calls may take additional arguments in
order to refer to another accessible computation’s indicators.

The implementation shall not allow a program(??) to complete successfully with an indicator
that is set in the indicators of —???. Unsuccessful completion of a program shall be reported
to the user of that program in an unambiguous and “hard to ignore” manner. (See 6.2.3.) It
is permissible for a binding to except underflow (and inexact) from hindering the successful
completion of a program(??).

28 Notification

Working draft ISO/IEC WD 10967-1.1:2008(E)

6.2.2 Alteration of control flow

An implementation should provide this alternative for any language that provides a mechanism
for the handling of exceptions. It is allowed (with system support) even in the absence of such a
mechanism. It may be applied only to some notifications, while others are dealt with by recording
in indicators.

Notification consists of prompt alteration of the control flow of the program to execute user
provided exception handling code. The manner in which the exception handling code is specified
and the capabilities of such exception handling code (including whether it is possible to resume
the operation which caused the notification) is the province of the language standard, not this
arithmetic standard.

If no exception handling code is provided for a particular occurrence of the return of an excep-
tional value as defined in clause 5, that fact shall be reported to the user of that program in an
unambiguous and “hard to ignore” manner. (See 6.2.3.)

6.2.3 Termination with message

An implementation may provide this alternative, which serves as a back-up if the programmer
has not provided the necessary code for handling of alteration of control flow.

Notification consists of prompt delivery of a “hard-to-ignore” message, followed by termination
of execution of the program(??). Any such message should identify the cause of the notification
and the operation responsible.

6.3 Delays in notification

Notification may be momentarily delayed for performance reasons, but should take place as close
as practical to the attempt to perform the responsible operation. When notification is delayed, it
is permitted to merge notifications of different occurrences of the return of the same exceptional
value into a single notification. However, it is not permissible to generate duplicate or spurious
notifications.

In connection with notification, “prompt” means before the occurrence of a significant program
event. For the recording in indicators in 6.2.1, a significant program event is an attempt by the
program (or system) to access the indicators, or the termination of the program. For alteration of
control flow described in 6.2.2, the definition of a significant event is language dependent, is likely
to depend upon the scope or extent of the exception handling mechanisms, and must therefore be
provided by language standards or by language binding standards. For termination with message
described in 6.2.3, the definition of a significant event is again language dependent, but would
include producing output visible to humans or other programs.

NOTES

1 Roughly speaking, “prompt” should at least imply “in time to prevent an erroneous response
to the exception”.

2 The phrase “hard-to-ignore” is intended to discourage writing messages to log files (which
are rarely read), or setting program variables (which disappear when the program com-
pletes).

6.2.2 Alteration of control flow 29

ISO/IEC WD 10967-1.1:2008(E) Working draft

6.4 User selection of alternative for notification

A conforming implementation shall provide a means for a user or program to select among the
alternate notification mechanisms provided. The choice of an appropriate means, such as compiler
options, is left to the implementation.

The language or binding standard should specify the notification alternative to be used in the
absence of a user choice. The notification alternative used in the absence of a user choice shall be
documented.

7 Relationship with language standards

A computing system often provides arithmetic datatypes within the context of a standard pro-
gramming language. The requirements of this document shall be in addition to those imposed by
the relevant programming language standards.

This document does not define the syntax of arithmetic expressions. However, programmers
need to know how to reliably access the operations defined in this document.

NOTE 1 – Providing the information required in this clause is properly the responsibility of
programming language standards. An individual implementation would only need to provide
details if it could not cite an appropriate clause of the language or binding standard.

An implementation shall document the notation used to invoke each operation specified in
clause 5.

NOTE 2 – For example, integer equality (eqI(i, j)) might be invoked as

i = j in Pascal [27] and Ada [11]
i == j in C [17] and Fortran [22]
i .EQ. j in Fortran [22]
(= i j) in Common Lisp [42] and ISLisp [24]

An implementation shall document the semantics of arithmetic expressions in terms of compo-
sitions of the operations specified in clause 5.

NOTE 3 – For example, if x, y, and z are declared to be single precision (SP) reals, and
calculation is done in single precision, then the expression

x + y < z

might translate to

lssSP (addSP (x, y), z)

If the language in question did all computations in double precision, the above expression
might translate to

lssDP (addDP (convertSP→DP (x), convertSP→DP (y)), convertSP→DP (z))

Alternatively, if x was declared to be an integer, the above expression might translate to

lssSP (addSP (convertI→SP (x), y), z)

Compilers often “optimize” code as part of compilation. Thus, an arithmetic expression might
not be executed as written. An implementation shall document the possible transformations of
arithmetic expressions (or groups of expressions) that it permits. Typical transformations include

a) Insertion of operations, such as datatype conversions or changes in precision.

30 Relationship with language standards

Working draft ISO/IEC WD 10967-1.1:2008(E)

b) Reordering of operations, such as the application of associative or distributive laws.

c) Replacing operations (or entire subexpressions) with others, such as “2 ∗ x” → “x + x” or
“x/c” → “x ∗ (1/c)”.

d) Evaluating constant subexpressions.

e) Eliminating unneeded subexpressions.

Only transformations which alter the semantics of an expression (the values produced, and the
notifications generated) need be documented. Only the kinds of permitted transformations need
be documented. It is not necessary to describe the specific choice of transformations that will be
applied to a particular expression.

The textual scope of such transformations shall be documented, and any mechanisms that
provide programmer control over this process should be documented as well.

NOTE 4 – It is highly desirable that programming languages intended for numerical use
provide means for limiting the transformations applied to particular arithmetic expressions.
Control over changes of precision is particularly useful.

8 Documentation requirements

In order to conform to this document, an implementation shall include documentation providing
the following information to programmers.

NOTE – Much of the documentation required in this clause is properly the responsibility of
programming language or binding standards. An individual implementation would only need
to provide details if it could not cite an appropriate clause of the language or binding standard.

Some of the following items should not be overall standardized. See D.7 for a discussion of this
topic.

a) A list of the provided integer and floating point types that conform to this document.

b) For each conforming integer type, the values of the parameters: boundedI , minintI , and
maxintI . (See 5.1.)

c) For each floating point type, the values of the parameters: rF , pF , eminF , emaxF , denormF ,
and iec 559F . (See 5.2.)

d) For each unsigned integer type I, which (if any) of the operations negI , absI , and signI are
omitted for that type. (See 5.1.2.)

e) For each floating point type F , the full definition of resultF . (See 5.2.4, and 5.2.5.)

f) The notation for invoking each operation provided by this document. (See 5.1.2 and 5.2.6.)

g) The translation of arithmetic expressions into combinations of operations provided by this
document, including any use made of higher precision. (See clause 7.)

h) For each integer type, the method for a program to obtain the values of the parameters:
bounded I , minintI , and maxintI . (See 5.1.)

i) For each floating point type, the method for a program to obtain the values of the parameters:
rF , pF , eminF , emaxF , denormF , and iec 559F . (See 5.2.)

8. Documentation requirements 31

ISO/IEC WD 10967-1.1:2008(E) Working draft

j) For each floating point type, the method for a program to obtain the values of the derived
constants fmaxF , fminF , fminNF , epsilonF .

k) The methods used for notification, and the information made available about the notification.
(See clause 6.)

l) The means for selecting among the notification methods, and the notification method used
in the absence of a user selection. (See 6.4.)

m) When “recording in indicators” is the method of notification, the type used to represent Ind,
the method for denoting the values of Ind (the association of these values with the subsets
of E must be clear), and the notation for invoking each of the four “indicator” operations.
(See 6.2.1.)

n) For each floating point type where iec 559F is true, and for each “implementor choice”
permitted by IEC 60559, the exact choice made. (See 5.2.1.)

o) For each floating point type where iec 559F is true, and for each of the facilities required
by IEC 60559, the method available to the programmer to exercise that facility. (See 5.2.1
and annex B.)

,.,.,threads.,.,,.

32 Documentation requirements

Working draft ISO/IEC WD 10967-1.1:2008(E)

Annex A
(normative)

Partial conformity

The requirements of ISO/IEC 10967-1 have been carefully chosen to be as beneficial as possible,
yet be efficiently implemented on most existing or anticipated hardware architectures.

The bulk of ISO/IEC 10967-1 requirements are for documentation, or for parameters and
functions that can be efficiently realized in software. However, the accuracy and notification
requirements on the four basic floating point operations (addF , subF , mulF , and divF) do have
implications for the underlying hardware architecture.

A small number of computer systems will have difficulty with some of the ISO/IEC 10967-1
requirements for floating point. The requirements in question are:

a) The ability to record all notifications, particularly denormalisation loss.

b) Strict 0.5-ulp accuracy of addF , subF , mulF , and divF .

c) Round ties to even last digit.

d) A common rounding rule for addF , subF , mulF , and divF .

e) The ability to do exact comparisons without spurious notifications.

f) A sign symmetric value set (all values can be negated exactly).

As an example, the Cray family of supercomputers cannot satisfy the first five requirements
above without a significant loss in performance. Machines with two’s-complement floating point
formats (quite rare) have difficulty with the last requirement.

Language standards will want to adopt all the requirements of ISO/IEC 10967-1 to provide
programmers with the maximum benefit. However, if it is perceived that requiring full conformity
to ISO/IEC 10967-1 will exclude a significant portion of that language’s user community from any
benefit, then specifying partial ISO/IEC 10967-1 conformity, as permitted in clause 2 and further
specified in this annex, may be a reasonable alternative.

Such partial conformity would relax one or more of the requirements listed above, but would
retain the benefits of all other ISO/IEC 10967-1 requirements. All deviations from ISO/IEC
10967-1 conformity must be fully documented.

If a programming language (or binding) standard states that partial conformity is permitted,
programmers will need to detect what degree of conformity is available. It would be helpful for
the language standard to require parameters indicating whether or not conformity is complete,
and if not, which of the requirements above is violated.

A.1 Integer overflow notification relaxation

Some programming languages specify a “wrapping” interpretation of addition, subtraction, and
multiplication for bounded integer datatypes. These are in ISO/IEC 10967 modelled as different
operations from the addI , subI , and mulI operations specified in this part.

A. Partial conformity 33

ISO/IEC WD 10967-1.1:2008(E) Working draft

If a binding allows an implementation to interpret the ordinary (for that language) program-
ming language syntax for integer addition, subtraction, and multiplication as wrapping operations,
there shall be a Boolean parameter, available to programs:

moduloI – if true this indicates that the implementation uses the operations add wrapI ,
sub wrapI , and mul wrapI specified in part 2 instead of addI , subI , and mulI specified in this
part for the “ordinary” syntax for these operations.

NOTES

1 In the first edition of this part, this was modelled as a normative parameter and a change
of interpretation of the addI , subI , mulI , divf

I , and divt
I operations. In this edition the

parameter and the wrapping interpretation for the ordinary (in that programming lan-
guage) addition, subtraction, and multiplication operations are accepted as only partially
conforming.

2 The interpretation of integer division has been made stricter in this edition than in the first
edition, and is no longer dependent on the the moduloI parameter even if integer overflow
notification is otherwise relaxed.

3 add wrapI , sub wrapI , and mul wrapI can (and should) be provided as separate operations
also in fully conforming implementations.

4 addI , subI , and mulI can (and should) be provided as separate operations (though per-
haps will less appealing syntax) also in partially conforming implementations where integer
overflow notification is relaxed for the ordinary syntax operations.

A.2 Infinitary notification relaxation

With an infinitary notification (as opposed to overflow) a continuation value that is an infinity
is given as an exact value. It is therefore reasonable to have implementations or modes that
suppress infinitary notifications. If a binding allows infinitary notifications to go unrecorded,
there shall be a Boolean parameter, available to programs:

silent infinitaryF – true when infinitary notifications are suppressed
NOTE 1 – Infinitary notification should only be handled by recording of indicators, if not
suppressed, since other methods of notification are too disruptive.

A.3 Denormalisation loss notification relaxations

Some architectures may not be able to efficiently detect denormalisation loss, even if there are no
subnormal values. Further, many architecture detect underflow instead of detecting denormalisa-
tion loss.

If a binding allows denormalisation loss to go unrecorded, there shall be a Boolean parameter
available to programs:

silent denormalisation lossF – true when denormalisation notifications are suppressed.

Underflow is when the result has an absolute value less than fminNF . The “result” here may
be the result before rounding or the result after an idealised rounding with not only subnormal
values but also where values with smaller exponents (at least eminF − 1) are included. In some
cases underflow is not notified if the subnormal final result is exact, in particular an exact 0 or an
exact −−−0. If a binding allows detecting underflow instead of detecting denormalisation loss, there
shall be a Boolean parameter available to programs:

34 Partial conformity

Working draft ISO/IEC WD 10967-1.1:2008(E)

underflow notifiedF – true when underflow is notified. If underflow notifiedF is true then
silent denormalisation lossF shall be true unless underflow and denormalisation loss may both
be notified for the same operation.

A.4 Subnormal values relaxation

If the parameter denormF has a value of false, and thus there are no subnormal values in F
except 0, then the corresponding datatype is not fully conforming to ISO/IEC 10967-1. If a
binding allows a floating point datatype in an implementation not to have subnormal values apart
from 0 and −−−0, the parameter denormF shall be made available to programs.

NOTE 1 – If full conformity is required by the binding, the parameter denormF is always
true and need not be made available to programs.

The nearestF rounding then (exceptionally) shall return 0 for all values strictly between
−fminNF and fminNF , even though that is not round to nearest.

NOTES

2 The resultF helper function will then return 0 for 0, underflow(−−−0) for values strictly
between −fminNF and 0, and underflow(0) for values strictly between 0 and fminNF .

3 If underflow notifiedF is true, then underflow is notified instead of underflow.

A.5 Accuracy relaxation for add, subtract, multiply, and divide

Ideally, and conceptually, no information should be lost before the rounding step (in the computa-
tional model of ISO/IEC 10967-1). But some hardware implementations of arithmetic operations
compute an approximation that loses information prior to rounding (to nearest). In some cases,
it may even be so that x + y = u + v may not imply addF (x, y) = addF (u, v) (and similarly for
subtract).

If this relaxation is allowed, the rnd errorF parameter shall have a value is 6 1, and cannot
have a value that is less than 0.5.

NOTE 1 – The rnd errorF parameter also signifies the maximum rounding error for multi-
plication and division.

The add∗F , mul∗F , div∗F helper functions are introduced to model this pre-rounding approxima-
tion: add∗F : F × F → R, mul∗F : F × F → R, div∗F : F × F → R.

add∗F (x, y) returns a close approximation to x+ y, satisfying

|(x+ y)− nearestF (add∗F (x, y))| 6 rnd errorF · uF (x+ y)

mul∗F (x, y) returns a close approximation to x · y, satisfying

|(x · y)− nearestF (mul∗F (x, y))| 6 rnd errorF · uF (x · y)

div∗F (x, y) returns a close approximation to x/y, satisfying

|(x/y)− nearestF (div∗F (x, y))| 6 rnd errorF · uF (x/y)

Further requirements on the add∗F approximation helper function are:

A.4 Subnormal values relaxation 35

ISO/IEC WD 10967-1.1:2008(E) Working draft

add∗F (u, v) ∈ F only if add∗F (u, v) = u+ v
add∗F (−u,−v) = −add∗F (u, v) if u, v ∈ F
add∗F (u, v) = add∗F (v, u) if u, v ∈ F
add∗F (u, x) 6 add∗F (v, x) if u, v, x ∈ F and u < v
add∗F (u, v) = u+ v if u, v ∈ F and u+ v ∈ F ∗
add∗F (u, v) = 0 ⇔ u+ v = 0
add∗F (u · riF , v · riF) = add∗F (u, v) · riF if i ∈ Z and u, v, u · ri

F , v · riF ∈ FN

NOTES

2 The above requirements capture the following properties:

a) add∗F is sign symmetric.
b) add∗F is commutative.
c) add∗F is monotonic for the left operand (and, by commutativity, the right operand).
d) add∗F is exact when the ‘true result’ is in F ∗; and, by monotonicity, add∗F (u, v) is in

the same “basic interval” as u+ v. (A basic interval is the range between two adjacent
F ∗ values.) Thus, if max error addF is 1, the max error is actuallt strictly less than
1.

e) add∗F returns 0 exactly only when + returns 0 (and, with monotonicity, by implication
add∗F returns a correctly signed result, not avoiding underflow in and by itself.

f) add∗F does not depend on the exponents of its arguments (but may depend on the
difference of the exponents), for ‘normal’ arguments and results.

3 True addition (+) fulfills the requirements on add∗F .

Further requirements on the mul∗F approximation helper function are:

mul∗F (u, v) ∈ F only if mul∗F (u, v) = u ∗ v
mul∗F (−u, v) = −mul∗F (u, v) if u, v ∈ F
mul∗F (u, v) = mul∗F (v, u) if u, v ∈ F
mul∗F (u, x) 6 mul∗F (v, x) if u, v, x ∈ F and u < v and 0 < x
mul∗F (u, x) > mul∗F (v, x) if u, v, x ∈ F and u < v and x < 0
mul∗F (u, v) = u · v if u, v ∈ F and u · v ∈ F ∗
mul∗F (u, v) = 0 ⇔ u · v = 0
mul∗F (u · riF , v · r

j
F) = mul∗F (u, v) · ri+j

F if i, j ∈ Z and u, v, u · riF , v · r
j
F ∈ FN

NOTES

4 The above requirements capture the following properties:

a) mul∗F is sign symmetric.
b) mul∗F is commutative.
c) mul∗F is monotonic for the left operand (and, by commutativity, the right operand).
d) mul∗F is exact when the ‘true result’ is in F ∗; and, by monotonicity, mul∗F (u, v) is in

the same “basic interval” as u · v. (A basic interval is the range between two adjacent
F ∗ values.) Thus, if max error mulF is 1, the max error is actuallt strictly less than
1.

e) mul∗F returns 0 exactly only when · returns 0 (and, with monotonicity, by implication
mul∗F returns a correctly signed result, not avoiding underflow in and by itself.

f) mul∗F does not depend on the exponents of its arguments, not even the difference in
exponents, for ‘normal’ arguments and results.

5 True multiplication (·) fulfills the requirements on mul∗F .

Further requirements on the div∗F approximation helper function are:

36 Partial conformity

Working draft ISO/IEC WD 10967-1.1:2008(E)

div∗F (u, v) ∈ F only if div∗F (u, v) = u/v
div∗F (−u, v) = −div∗F (u, v) if u, v ∈ F and v 6= 0
div∗F (u,−v) = −div∗F (u, v) if u, v ∈ F and v 6= 0
div∗F (u, x) 6 div∗F (v, x) if u, v, x ∈ F and u < v and x > 0
div∗F (u, x) > div∗F (v, x) if u, v, x ∈ F and u < v and 0 < x
div∗F (x, u) > div∗F (x, v) if u, v, x ∈ F and (u < v < 0 or 0 < u < v) and x > 0
div∗F (x, u) 6 div∗F (x, v) if u, v, x ∈ F and (u < v < 0 or 0 < u < v) and 0 < x
div∗F (u, v) = u/v if u, v ∈ F and v 6= 0 and u/v ∈ F ∗
div∗F (u, v) = 0 ⇔ u/v = 0
div∗F (u · riF , v · r

j
F) = div∗F (u, v) · ri−j

F if i, j ∈ Z and u, v, u · riF , v · r
j
F ∈ FN

NOTES

6 The above requirements capture the following properties:

a) div∗F is sign symmetric.
b) div∗F is monotonic for the left and right operand.
c) div∗F is exact when the ‘true result’ is in F ∗; and, by monotonicity, div∗F (u, v) is in the

same “basic interval” as u/v. (A basic interval is the range between two adjacent F ∗

values.) Thus, if max error mulF is 1, the max error is actuallt strictly less than 1.
d) div∗F returns 0 exactly only when / returns 0 (and, with monotonicity, by implication
div∗F returns a correctly signed result, not avoiding underflow in and by itself.

e) div∗F does not depend on the exponents of its arguments, not even the difference in
exponents, for ‘normal’ arguments and results.

7 True division (/) fulfills the requirements on div∗F .

If this relaxation is permitted in a binding, add′F , sub′F , mul′F and div′F , (replacing addF , subF ,
mulF , and divF in the binding) shall be defined as

add′F (x, y) = resultF (add∗F (x, y), nearestF)
if x, y ∈ F

= addF (x, y) otherwise

sub′F (x, y) = add′F (x, negF (y))

mul′F (x, y) = resultF (mul∗F (x, y), nearestF)
if x, y ∈ F

= mulF (x, y) otherwise

div′F (x, y) = resultF (div∗F (x, y), nearestF)
if x, y ∈ F

= divF (x, y) otherwise

This allows addition (and subtraction and diminish) that does not round ties to even last digit
(when rnd errorF is 0.5), rounds towards zero or even rounds haphazardly (when rnd errorF is
1), as well as allows multiplication and division that does not round ties to even last digit (when
rnd errorF is 0.5), or rounds towards zero (when rnd errorF is 1).

If this relaxation is allowed, there shall be a parameter rnd styleF , available to programs,
having one of four constant values, is defined by

A.5 Accuracy relaxation for add, subtract, multiply, and divide 37

ISO/IEC WD 10967-1.1:2008(E) Working draft

rnd styleF = nearesttiestoeven if the relaxation is not engaged
= nearest if relaxation engaged and rnd errorF = 0.5
= truncate if rnd errorF = 1 and

|add∗F (x, y)| 6 |x+ y| and
|mul∗F (x, y)| 6 |x · y| and
|div∗F (x, y)| 6 |x/y|

= other otherwise

A.6 Comparison operations relaxation

comparison via subtractF – a Boolean parameter that is true when comparisons may overflow
and underflow like subtraction. A binding or implementation shall document the applicable spec-
ification of the comparisons.

A.7 Sign symmetric value set relaxation

negate may failF – a Boolean parameter that is true when the set of floating point values is not
sign symmetric, and thus negF may underflow or overflow. If this relaxation is allowed, a binding
or an implementation shall document the exact mathematical value set.

38 Partial conformity

Working draft ISO/IEC WD 10967-1.1:2008(E)

Annex B
(informative)

IEC 60559 bindings

When the parameter iec 559F is true for a floating point type F , all the facilities required by
IEC 60559 shall be provided for that type. Methods shall be provided for a program to access
each such facility. In addition, documentation shall be provided to describe these methods, and
all implementation choices.

This means that a complete programming language binding for LIA-1 should provide a binding
for all IEC 60559 facilities as well. A programming language binding for a standard such as
IEC 60559 must define syntax for all required facilities, and should define syntax for all optional
facilities as well. Defining syntax for optional facilities does not make those facilities required. All
it does is ensure that those implementations that choose to provide an optional facility will do so
using a standardized syntax.

The normative listing of all IEC 60559 facilities (and their definitions) is given in IEC 60559.
ISO/IEC 10967 does not alter or eliminate any of them. However, to assist the reader, the
following summary is offered.

B.1 Summary

A binding of IEC 60559 to a programming language should provide:

a) The name of the programming language type that corresponds to single format.

b) The name of the programming language type that corresponds to double format, if any.

c) The names of the programming language types that correspond to extended formats, if any.

For each IEC 60559 conforming type, the binding should provide:

a) A method for denoting positive infinity. (Negative infinity can be derived from positive
infinity by negation).

b) A method for denoting at least one quiet NaN (not-a-number).

c) A method for denoting at least one signalling NaN (not-a-number).

Note that the LIA-1 parameter values for IEC 60559 ‘single’ are:

rF = 2
pF = 24
eminF = −125
emaxF = 128
denormF = true
iec 559F = true

and for IEC 60559 ‘double’ are:

rF = 2
pF = 53
eminF = −1021

B. IEC 60559 bindings 39

ISO/IEC WD 10967-1.1:2008(E) Working draft

emaxF = 1024
denormF = true
iec 559F = true

it just specifies, directly or indirectly, the values):

For each IEC 60559 conforming datatype, the binding should provide the notation for invoking
each of the following operations:

a) addF , subF , mulF , and divF . (Also required by LIA-1.)

b) Remainder (residueF), square-root (sqrtF), and round-to-integral-value (roundingF). (Also
required by LIA-1, except for roundingF , but specified in LIA-2.)

c) The type conversions convertFa→Fb
, convertF→I , convertI→F . (Also required by LIA-1, but

are specified in LIA-2.)

d) Type conversions between the floating point values and decimal strings (both ways, required
by LIA-1, but are specified in LIA-2).

e) The comparisons eqF , neqF , lssF , leqF , gtrF , and geqF . (Also required by LIA-1.)

f) The comparison “unordered”. (Optional in IEC 60559.)

g) The other 19 comparison operations. (Optional in IEC 60559.)

h) The “recommended functions” copysign (can be expressed as mulF (absF (x), signumF (y))),
negate (negF), scaleb (scaleF,I), logb (exponentF,I), nextafter (LIA-1 instead specifies succF
and predF), finite, isnan (isnanF), <>, and class. (Each is optional in IEC 60559. Negate,
scaleb, logb, and nextafter are redundant with existing LIA-1 operations.)

The binding should provide the ability to read and write the following components of the
floating point environment (modes or flags):

a) The rounding mode.

b) The five exception flags: inexact, underflow, overflow, divide by zero (in LIA called infini-
tary), and invalid.

c) The disable/enable flags for each of the five exceptions. (Optional in IEC 60559.)

d) The handlers for each of the exceptions. (Optional in IEC 60559.)

The binding should provide Boolean parameters for each implementor choice allowed by IEC 60559:

a) Whether trapping is implemented.

b) Whether tinyness (underflow) is detected “before rounding” or “after rounding”.

c) Whether loss-of-accuracy is detected as a denormalization loss or as an inexact result.

Note that several of the above facilities are already required by LIA-1 even for implementations
that do not conform to IEC 60559.

B.2 Notification

One appropriate way to access the five IEC 60559 exception flags is to use the functions defined
in 6.2.1. This requires extending the set E with one new value: inexact. (Such an extension is
expressly permitted by 6.2.1.)

40 IEC 60559 bindings

Working draft ISO/IEC WD 10967-1.1:2008(E)

Designing a binding for the optional “trapping” facility should be done in harmony with the
exception handling features already present in the programming language. It is possible that
existing language features are sufficient to meet programmer’s needs.

B.3 Rounding

The two directed roundings of IEC 60559, round-toward-positive infinity and round-toward-
negative-infinity, do not satisfy the sign symmetry requirement of 5.2.4. However, the default
IEC 60559 rounding does satisfy LIA-1 requirements.

To use the directed roundings, a programmer would have to take explicit action to change the
current rounding mode. At that point, the program is operating under the IEC 60559 rules, not
the LIA-1 rules. Such non-conforming modes are expressly permitted by clause 2.

The directed roundings are useful for implementing interval arithmetic. However, at a higher
level it is better to use a special datatype for intervals, and arithmetic on intervals. (In case such
a datatype will be specified by LIA, in a new part, the resultF helper function is prepared for
directed roundings.)

B.3 Rounding 41

ISO/IEC WD 10967-1.1:2008(E) Working draft

42 IEC 60559 bindings

Working draft ISO/IEC WD 10967-1.1:2008(E)

Annex C
(informative)

Requirements beyond IEC 60559

Any computing system providing floating point datatypes conforming to the requirements of
IEC 60559 can economically let those datatypes conform to LIA-1 as well. This annex outlines
the LIA-1 requirements that go beyond the requirements of IEC 60559.

For each floating point type F , the following parameters or derived constants must be provided
to the program:

pF , rF , eminF , emaxF , denormF (if it is allowed to have the value false), iec 559F ,
fmaxF , fminF , fminNF , epsilonF , rnd errorF (if it is allowed to have a value other
than 0.5), and rnd styleF (if it is allowed to have a value other than nearesttiestoeven;
see annex A)

The following operations must be provided (typically in software):

negF , absF , signumF (specified in LIA-3), exponentF , fractionF , scaleF , succF ,
predF , ulpF , intpartF , fractpartF , truncF , and roundF

A method for notification must be provided that conforms to the applicable programming
language standard. (This is independent of LIA-1 per se, since any implementation of a standard
language must conform to that language’s standard.)

When the language (or binding) standard does not specify a notification method, 6.2.1 re-
quires that notification be done by setting “indicators” which reflect the status flags required by
IEC 60559. (See annex B as well.)

Subclause 6.2.3 specifies a way for the programmer to demand prompt program termination on
the occurrence of an LIA-1 notification. This is typically implemented using IEC 60559 trapping,
or (if trapping is unavailable) by compiler generated code.

NOTE – LIA-1 notifications correspond to the IEC 60559 exceptions overflow, underflow,
divide by zero, and invalid.

If any status flags are set at program termination, this fact must be reported to the user of the
program.

Thorough documentation must be provided as outlined in clause 8. Citing IEC 60559 will be
sufficient for several of the documentation requirements, including requirements (c) and (e). Note
that the implementor choices permitted by IEC 60559 must be documented.

C. Requirements beyond IEC 60559 43

ISO/IEC WD 10967-1.1:2008(E) Working draft

44 Requirements beyond IEC 60559

Working draft ISO/IEC WD 10967-1.1:2008(E)

Annex D
(informative)

Rationale

This annex explains and clarifies some of the ideas behind Information technology – Language
independent arithmetic – Part 1: Integer and floating point arithmetic (LIA-1). This allows the
standard itself to be more concise. Many of the major requirements are discussed in detail,
including the merits of possible alternatives. The clause numbering matches that of the standard,
although additional clauses have been added.

D.1 Scope

The scope of LIA-1 includes the traditional primitive arithmetic operations usually provided in
hardware. The standard also includes several other useful primitive operations which could be
provided in hardware or software. An important aspect of all of these primitive operations is that
they are to be considered atomic rather than noticeably implemented as a sequence of yet more
primitive operations. Hence, each primitive floating point operation has a half ulp error bound
when rounding to nearest, and is never interrupted by an intermediate notification. The latter is
true also for all integer operations.

LIA-1 provides a parameterised model for arithmetic. Such a model is needed to make concepts
such as “precision” or “exponent range” meaningful. However, there is no such thing as an “LIA-1
machine”. It makes no sense to write code intended to run on all machines describable with LIA-1
model – the model covers too wide a range for that. It does make sense to write code that uses
LIA-1 facilities to determine whether the platform it’s running on is suitable for its needs.

D.1.1 Inclusions

This standard is intended to define the meaning of an “integer datatype” and a “floating point
datatype”, but not to preclude other arithmetic or related datatypes. The specifications for integer
and floating point datatypes are given in sufficient detail to

a) support detailed and accurate numerical analysis of arithmetic algorithms,

b) enable a precise determination of conformity or non-conformity, and

c) prevent exceptions (like overflow) from going undetected.

D.1.2 Exclusions

There are many arithmetic systems, such as fixed point arithmetic, significance arithmetic, interval
arithmetic [68], rational arithmetic, level-index arithmetic, slash arithmetic, and so on, which differ
considerably from traditional integer and floating point arithmetic, as well as among themselves.
Some of these systems, like fixed point arithmetic, are in wide-spread use as datatypes in standard
languages; most are not. A form of floating point is defined by Kulish and Miranker [60, 61] which
is compatible with the floating point model in LIA-1. For reasons of simplicity and clarity, these

D. Rationale 45

ISO/IEC WD 10967-1.1:2008(E) Working draft

alternate arithmetic systems are not treated in LIA-1. They should be the subject of other parts
of ISO/IEC 10967 if and when they become candidates for standardization.

The portability goal of LIA-1 is for programs, rather than data. LIA-1 does not specify the
internal representation of data. However, portability of data is a subject of IEC 60559, which
specifies internal representations that can also be used for data exchange.

Mixed mode operations, and other issues of expression semantics, are not addressed directly
by LIA-1. However, suitable documentation is required (see clause 7).

D.1.3 Companion parts to this part

The following topics are the subject of a family of standard parts, of which LIA-1 is the first
member:

a) Specifications for the usual elementary functions (LIA-2).

b) Specifications for complex and imaginary datatypes and operations (LIA-3).

This list is incomplete, and further parts may be created.

Each of these new sets of specifications is necessary to provide a total numerical environment
for the support of portable robust numerical software. The properties of the primitive operations
is used in the specifications of elementary and complex functions and conversion routines which

a) are realistic from an implementation point of view,

b) have acceptable performance, and

c) have adequate accuracy to support numerical analysis.

For operations on complex number datatypes, accuracy specifications comparable to those in
LIA-1 are certainly feasible, but may have unacceptable performance penalties.

D.2 Conformity

A conforming system consists of an implementation (which obeys the requirements) together with
documentation which shows how the implementation conforms to the standard. This documenta-
tion is vital since it gives crucial characteristics of the system, such as the range for integers, the
range and precision for floating point, and the actions taken by the system on the occurrence of
notifications.

The binding of LIA-1 facilities to a particular programming language should be as natural
as possible. Existing language syntax and features should be used for operations, parameters,
notification, and so on. For example, if a language expresses addition by “x+y,” then LIA-1
addition operations addI and addF should be bound to the infix “+” operator.

Most current implementations of floating point can be expected to conform to the specifications
in this standard. In particular, implementations of IEC 60559 (IEEE 754 [37]) in default mode
will conform, provided that the user is made aware of any status flags that remain set upon exit
from a program.

The documentation required by LIA-1 will highlight the differences between “almost IEEE”
systems and fully IEEE conforming ones.

Note that a system can claim conformity for a single integer type, a single floating point type,
or a collection of arithmetic types.

46 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

An implementation is free to provide arithmetic datatypes (e.g. fixed point) or arithmetic op-
erations (e.g. exponentiation on integers) which may be required by a language standard but are
not specified by LIA-1. Similarly, an implementation may have modes of operation (e.g. notifica-
tions disabled) that do not conform to LIA-1. The implementation must not claim conformity to
LIA-1 for these arithmetic datatypes or modes of operation. Again, the documentation that dis-
tinguishes between conformity and non-conformity is critical. An example conformity statement
(for a Fortran implementation) is given in annex F.

D.2.1 Validation

This standard gives a very precise description of the properties of integer and floating point
datatypes. This will expedite the construction of conformity tests. It is important that objective
tests be available. Schryer [65] has shown that such testing is needed for floating point since two
thirds of units tested by him contained serious design flaws. Another test suite is available for
floating point [50], which includes enhancements based upon experience with Schryer’s work [65].

LIA-1 does not define any process for validating conformity.

Independent assurance of conformity to LIA-1 could be by spot checks on products with a
validation suite, as for language standards, or via vendors being registered under ISO/IEC 9001
Model for quality assurance in production and installation [33] enhanced with the requirement that
their products claiming conformity are tested with the validation suite and checked to conform as
part of the release process.

Alternatively, checking could be regarded as the responsibility of the vendor, who would then
document the evidence supporting any claim to conformity.

D.3 Normative references

The referenced IEC 60559 standard is identical to the IEEE 754 standard and the former IEC 559
standard.

D.4 Symbols and definitions

An arithmetic standard must be understood by numerous people with different backgrounds:
numerical analysts, compiler-writers, programmers, microcoders, and hardware designers. This
raises certain practical difficulties. If the standard were written entirely in a natural language,
it might contain ambiguities. If it were written entirely in mathematical terms, it might be
inaccessible to some readers. These problems were resolved by using mathematical notation for
LIA-1, and providing this rationale in English to explain the notation.

There are various notations for giving a formal definition of arithmetic. In [69] a formal
definition is given in terms of the Brown model [48]. Since the LIA-1 model differs from the
Brown model, the definition in [69] is not appropriate for LIA-1.

D.2.1 Validation 47

ISO/IEC WD 10967-1.1:2008(E) Working draft

D.4.1 Symbols

LIA-1 uses the conventional notation for sets and operations on sets. The set Z denotes the
set of mathematical integers. This set is infinite, unlike the finite subset which a machine can
conveniently handle. The set of real numbers is denoted by R, which is also infinite. Hence
numbers such as π, 1/3 and

√
2 are in R, but usually they cannot be represented exactly in a

computer.

D.4.2 Definitions of terms

A vital definition is that of “notification”. A notification is the report (to the program or user)
that results from an error or exception as defined in ISO/IEC TR 10176 [7].

The principle behind notification is that such events in the execution of a program should not
go unnoticed. The preferred action is to use ‘recording of indicators’. Another possibility is to
invoke a change in the flow control of a program (for example, an Ada “exception”), to allow the
user to take corrective action. Changes of control flow are, however, harder to handle and recover
from, especially if the notifications is not so serious and the computation may just continue. In
particular, for underflow it is usually ill-advised to make a change in control flow, likewise for
infinitary notifications when infinity values are guaranteed to be available in the datatype. The
practice in some older systems is that a notification consists of aborting execution with a suitable
error message. This is hardly ever the proper action to take, and can be highly dangerous.

The various forms of notification are given names, such as overflow, so that they can be
distinguished. However, bindings are not require to handle each named notification the same
way everywhere. For example, overflow may be split into tt integer-overflow and tt floating-
overflow, infinitary for integer results may result in an actual notification, while infinitary on
floating results are handled quietly, only returning the infinitary continuation value while setting
the indicator for infinitary.

Another important definition is that of a rounding function. A rounding function is a mapping
from the real numbers onto a subset of the real numbers. Typically, the subset X is an “approxi-
mation” to R, having unbounded range but limited precision. X is a discrete subset of R, which
allows precise identification of the elements of X which are closest to a given real number in R.
The rounding function rnd maps each real number u to an approximation of u that lies in X. If
a real number u is in X, then clearly u is the best approximation for itself, so rnd(u) = u. If
u is between two adjacent values x1 and x2 in X, then one of these adjacent values must be the
approximation for u:

x1 < u < x2 ⇒ (rnd(u) = x1 or rnd(u) = x2)

Finally, if rnd(u) is the approximation for u, and z is between u and rnd(u), then rnd(u) is the
approximation for z also.

u < z < rnd(u) ⇒ rnd(z) = rnd(u)
rnd(u) < z < u ⇒ rnd(z) = rnd(u)

The last three rules are special cases of the monotonicity requirement

x < y ⇒ rnd(x) 6 rnd(y)

which appears in the definition of a rounding function.

Note that the value of rnd(u) depends only on u and not on the arithmetic operation (or
operands) that gave rise to u.

48 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

The graph of a rounding function looks like a series of steps. As u increases, the value of rnd(u)
is constant for a while (equal to some value in X) and then jumps abruptly to the next higher
value in X.

Some examples may help clarify things. Consider a number of rounding functions from R to
Z. One possibility is to map each real number to the next lower integer:

rnd(u) = buc
This gives rnd(1) = 1, rnd(1.3) = 1, rnd(1.99 · · ·) = 1, and rnd(2) = 2. Another possibility
would be to map each real number to the next higher integer. A third example maps each real
number to the closest integer (with half-way cases rounding toward plus infinity):

rnd(u) = bu+ 0.5c
This gives rnd(1) = 1, rnd(1.49 · · ·) = 1, rnd(1.5) = 2, and rnd(2) = 2. Each of these examples
corresponds to rounding functions in actual use. For some floating point result examples, see
D.5.2.4.

Note, the value rnd(u) may not be representable in the target datatype. The absolute value
of the rounded result may be too large. The resultF function deals with this possibility. (See
D.5.2.5 for further discussion.)

There is a precise distinction between shall and should as used in this standard: shall implies
a requirement, while should implies a recommendation. One hopes that there is a good reason if
the recommendation is not followed.

Additional definitions specific to particular types appear in the relevant clauses.

D.5 Specifications for integer and floating point datatypes and operations

Each arithmetic datatype conforming to LIA-1 consists of a subset of the real numbers character-
ized by a small number of parameters. Additional values may be included in an LIA-1 conforming
datatype, especially infinities, negative zeroes, and NaNs. Two basic classes of types are specified:
integer and floating point. A typical system could support several of each.

In general, the parameters of all arithmetic types must be accessible to an executing program.
However, sometimes a language standard requires that a type parameter has a known value (for
example, that an integer type is bounded). In this case, the parameter must have the same
value in every implementation of that language and therefore need not be provided as a run-time
parameter.

The signature of each operation partially characterizes the possible input and output values.
All operations are defined for all possible combinations of input values. Exceptions (like dividing
3 by 0) are modelled by the return of non-numeric exceptional values (like invalid, infinitary,
etc.). The absence of an exceptional value in the result set of a signature does not indicate that
that exception cannot occur, but that it cannot occur for values in the input set of the signature.
Other exceptions, as well as other values, can be returned for inputs outside of the stated input
values, e.g. infinities. The operation specifications (5.1.2, 5.2.6) state precisely when notifications
must occur.

The philosophy of LIA-1 is that all operations either produce correct results or give a notifi-
cation. A notification must be based on the final result; there can be no spurious intermediate
notifications. Arithmetic on bounded, non-modulo, integers must be correct if the mathematical
result lies between minintI and maxintI and must produce a notification if the mathematically

D.5 Specifications for integer and floating point datatypes and operations 49

ISO/IEC WD 10967-1.1:2008(E) Working draft

well-defined result lies outside this interval (overflow) or if there is no mathematically well-defined
(and finite) result (infinitaryor invalid). Arithmetic on floating point values must give a cor-
rectly rounded approximation if the approximation lies between −fmaxI and fmaxI and must
produce a notification if the mathematically well-defined approximation lies outside this interval
(overflow) or if there is no mathematically well-defined (and finite) approximation (infinitaryor
invalid).

D.5.1 Integer datatypes and operations

Most traditional computer programming languages assume the existence of bounds on the range
of integers which can be data values. Some languages place no limit on the range of integers, or
even allow the boundedness of the integer type to be an implementation choice.

This standard uses the parameter bounded I to distinguish between implementations which
place no restriction on the range of integer data values (bounded I = false) and those that do
(bounded I = true). If the integer datatype (corresponding to) I is bounded, then two additional
parameters are required, minintI and maxintI . For unbounded integers, minintI and maxintI
are required to have infinitary values. Infinitary values are required for unbounded integer types,
and are allowed for bounded integer types.

For bounded integers, there are two approaches to out-of-range values: notification and “wrap-
ping”. In the latter case, all computation except comparisons is done modulo the cardinality of I
(typically 2n for some n), and no notification is required.

D.5.1.0.1 Unbounded integers

Unbounded integers were introduced because there are languages which provide integers with no
fixed upper limit. The value of the Boolean parameter bounded I must either be fixed in the
language definition or must be available at run-time. Some languages permit the existence of an
upper limit to be an implementation choice.

In an unbounded integer datatype implementation, every mathematical integer is potentially a
data object in that datatype. The actual values computable depend on resource limitations, not on
predefined bounds. Resource limitation problems are not modelled in LIA, but an implementation
will need to make use of some notification to report the error back to the program (or program
user). Note that also bounded integer datatypes may give rise to resource limitation errors, e.g.
if the (intermediary) computed result cannot be stored.

LIA-1 does not specify how the unbounded datatype is implemented. Implementations will use
a variable amount of storage for an integer, as needed. Indeed, if an implementation supplied a
fixed amount of storage for each integer, this would establish a de facto maxintI and minintI . It
is important to note that this standard is not dependent upon hardware support for unbounded
integers (which rarely, if ever, exists). In essence, LIA-1 requires a certain abstract functionality,
and this can be implemented in hardware, software, or more typically, a combination of the two.

Operations on unbounded integers will never overflow. However, the storage required for
unbounded integers can result in a program failing due to lack of memory. This is logically no
different from failure through other resource limits, such as time.

The implementation may be able to determine that it will not be able to continue processing in
the near future and may issue a warning. Some recovery may or may not be possible. It may be
impossible for the system to identify the specific location of the fault. However, the implementation

50 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

must not give false results without any indication of a problem. It may be impossible to give a
definite “practical” value below which integer computation is guaranteed to be safe, because the
largest representable integer at time t may depend on the machine state at that instant. Sustained
computations with very large integers may lead to resource exhaustion.

Natural numbers (upwardly unbounded non-negative integers) are not modelled by LIA-1.

The signatures of the integer operations include overflow as a possible result because they
refer to bounded integer operations as well.

D.5.1.0.2 Bounded non-modulo integers

For bounded non-modulo integers, it is necessary to define the range of representable values,
and to ensure that notification occurs on any operation which would give a mathematical result
outside that range. Different ranges result in different integer types. The values of the parameters
minintI and maxintI must be accessible to an executing program.

The allowed ranges for integers fall into three classes:

a) minintI = 0, corresponding to unsigned integers. The operation negI would always produce
overflow (except on 0), and may be omitted.

The operation absI is the identity mapping and may also be omitted. The operation divI

never produces overflow.

b) minintI = −maxintI , corresponding to one’s complement or sign-magnitude integers. None
of the operations negI , absI or divI produces overflow.

c) minintI = −(maxintI + 1), corresponding to two’s complement integers. The operations
negI and absI produce overflow only when applied to minintI . The operation divI produces
overflow when minintI is divided by −1, since

minintI/(−1) = −minintI = maxintI + 1 > maxintI .

The Pascal, Modula-2 and Ada programming languages support subranges of integers. Such
subranges typically do not satisfy the rules for maxintI and minintI . However, is not to say that
these languages have non-conforming integer datatypes. Each subrange type can be viewed as
a subset of an integer datatype that does conform to LIA-1. Integer operations are defined on
those integer datatypes, and the subrange constraints only affect the legality of assignment and
parameter passing.

D.5.1.0.3 Modulo integers

Modulo integers were introduced as a partially conforming case because there are languages that
mandate wrapping for some integer types (e.g., C’s unsigned int type), and make it optional for
others (e.g., C’s signed int type).

Modulo integer datatypes behave as above, but wrap rather than overflow when an operation
would otherwise return a value outside of the range of the datatype. However, in this edition, this
is modelled as separate operations from the addI etc. operations. A binding may however use
the same syntax for addI and add wrapI (etc. for other operations), and let the datatypes of the
arguments imply which LIA operation is invoked.

D.5.1 Integer datatypes and operations 51

ISO/IEC WD 10967-1.1:2008(E) Working draft

Bounded modulo integers (in the limited form defined here) are definitely useful in certain
applications. However, bounded integers are most commonly used as an efficient hardware ap-
proximation to true mathematical integers. In these latter cases, a wrapped result would be
severely inaccurate, and should result in a notification. Unwary use of modulo integers can easily
lead to undetected programming errors.

The developers of a programming language standard (or binding standard) should carefully
consider which (if any) of the integral programming language types are bound to modulo integers.
Since modulo integers are dangerous, programmers should always have the option of using non-
modulo (overflow checking) integers instead.

Some languages, like Ada, allow programmers to declare new modulo integer datatypes, usually
unsigned. Since the upper limit is then also programmer defined, the lower limit usually fixed at
zero, these datatypes are more flexible, and very useful.

D.5.1.0.4 Modulo integers versus overflow

wrapI (LIA-2) produces results in the range [minintI ,maxintI]. These results are positive for
unsigned integer types, but may be negative for signed types.

D.5.1.1 Integer result function

Integer result functions, resultI , takes as argument the exact mathematical result of an integer
operation, and checks that it is in the bounds of the integer datatype. If so, the value is returned.
If not, the exceptional value overflow is returned.

The resultI helper function is used in the specifications of the integer operations, and is used
to consistently and succinctly express the overflow notification cases. The continuation value on
overflow is binding or implementation defined.

D.5.1.2 Integer operations

D.5.1.2.1 Comparisons

The comparisons are always exact and never produce any notification.

D.5.1.2.2 Basic arithmetic

The ratio of two integers is not necessarily an integer. Thus, the result of an integer division may
require rounding. Two rounding rules are in common use: round toward minus infinity (quotI),
and round toward zero. The latter is not specified by LIA-1, due to proneness for erroneous use,
when the arguments are of different signs. For example,

quotI(−3, 2) = −2 round toward minus infinity, specified in LIA-2
divt

I(−3, 2) = −1 round toward zero, no longer specified by any part of LIA

quotI (called divf
I in the first edition of LIA-1) as well as ratioI and groupI all satisfy a broadly

useful translation invariant:

quotI(x+ i ∗ y, y) = quotI(x, y) + i if y 6= 0, and no overflow occurs

52 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

(and similarly for the ratioI and groupI). quotI is the form of integer division preferred by many
mathematicians. divt

I (no longer specified by LIA) is the form of division introduced by Fortran.

Integer division is frequently used for grouping. For example, if a series of indexed items are to
be partitioned into groups of n items, it is natural to put item i into group i/n. This works fine
if quotI is used for integer division. However if divt

I (no longer specified by LIA) is used, and i
can be negative, group 0 will get 2 ·n− 1 items rather than the desired n. This uneven behaviour
for negative i can cause subtle program errors, and is a strong reason for against the use of divt

I ,
and for the use of the other integer division operations.

modI (specified in LIA-2) gives the remainder after division. It is coupled to division by the
following identities:

x = quotI(x, y) ∗ y +modI(x, y) if y 6= 0, and no overflow occurs
y < modI(x, y) 6 0 if y < 0
0 6 modI(x, y) < y if y > 0

Thus, quotI and modI form a logical pair. So do ratioI and residueI , as well as groupI and
negated(!) padI . Note that computing modI(x, y) as

subI(x,mulI(quotI(x, y), y))

is not correct for asymmetric bounded integer types, because quotI(x, y) can overflow butmodI(x, y)
cannot.

D.5.2 Floating point datatypes and operations

Floating point values are traditionally represented as either zero or

X = ±g ∗ re
F = ±0.f1f2...fpF ∗ re

F

where 0.f1f2...fpF is the pF -digit fraction g (represented in base, or radix, rF) and e is the
exponent.

The exponent e is an integer in [eminF , emaxF]. The fraction digits are integers in {0, ..., rF −
1}. If the floating point number is normalized, f1 is not zero, and hence the minimum value of
the fraction g is 1/rF and the maximum value is 1− r−pF

F .

This description gives rise to five parameters that characterize the set of non-special values of
a floating point datatype:

radix rF : the “base” of the number system.

precision pF : the number of radix rF digits provided by the type.

eminF and emaxF : the smallest and largest exponent values. They define the range of the type.

denormF (a Boolean): true if the datatype includes subnormal values; false if not.

The fraction g can also be represented as i ∗ r−pF
F , where i is a pF digit integer in the interval

[rpF−1
F , rpF

F − 1]. Thus

X = ±g ∗ re
F = ±(i ∗ r−pF

F) ∗ re
F = ±i ∗ re−pF

F

This is the form of the floating point values used in defining the finite set FN . The exponent e is
often represented with a bias added to the true exponent.

denormF must be true for a fully conforming datatype. It is allowed to be false only for
partially conforming datatypes.

D.5.2 Floating point datatypes and operations 53

ISO/IEC WD 10967-1.1:2008(E) Working draft

The IEEE standards 754 [37] and 854 [38] present a slightly different model for the floating
point type. Normalized floating point numbers are represented as

±f0.f1...fpF−1 ∗ re
F

where f0.f1...fpF−1 is the pF -digit significand (represented in radix rF , where rF is 2 or 10),
f0 6= 0, and e is an integer exponent between eminF − 1 and emaxF − 1. The minimum value of
the significand is 1; the maximum value is rF − 1/rpF−1

F . The IEEE significand is equivalent to
g ∗ rF .

The fraction model and the significand model are equivalent in that they can generate precisely
the same sets of floating point values. Currently, all ISO/IEC JTC1/SC22 programming language
standards that present a model of floating point to the programmer use the fraction model rather
than the significand one. LIA-1 has chosen to conform to this trend.

D.5.2.0.1 Constraints on the floating point parameters

The constraints placed on the floating point parameters are intended to be close to the minimum
necessary to have the model provide meaningful information. We will explain why each of these
constraints is required, and then suggest some constraints which have proved to be characteristic
of useful floating point datatypes.

LIA-1 requires that rF > 2 and pF > 2 · max{1, dlogrF (2 · π)e} in order to ensure that a
meaningful set of values. At present, only 2, 8, 10, and 16 appear to be in use as values for rF .
The first edition of LIA-1 only required that pF > 2, but such a low bound gives trouble in the
specifications of some of the elementary function operations (LIA-2). Indeed, pF should be such
that pF > 2 + dlogrF (1000)e, so that the trigonometric operations can be meaningful for more
than just one cycle, but at 100 or so cycles. If the radix is 2, that means at least 12 binary digits
in the fraction part.

The requirement that eminF 6 2− pF ensures that epsilonF is representable in F .

The requirement that emaxF > pF ensures that 1/epsilonF is representable in F . It also
implies that all integers from 1 to rpF

F − 1 are exactly representable.

The parameters rF and pF logically must be less than rpF
F , so they are automatically in F .

The additional requirement that emaxF and −eminF are at most rpF
F −1 guarantees that emaxF

and eminF are in F as well.

A consequence of the above restrictions is that a language binding can choose to report rF , pF ,
eminF , and emaxF to the programmer either as integers or as floating point values without loss
of accuracy.

Constraints designed to provide:

a) adequate precision for scientific applications,

b) “balance” between the overflow and underflow thresholds, and

c) “balance” between the range and precision parameters

are specified in IEEE 854 [38] and also are applied to safe model numbers in Ada [11]. No such
constraints are included in LIA-1, since LIA-1 emphasizes descriptive, rather than prescriptive,
specifications for arithmetic datatypes. However, the following restrictions have some useful prop-
erties:

54 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

a) rF should be even

An even value of rF makes certain rounding rules easier to implement. In particular, round-
ing to nearest would pose a problem because with rF odd and d = brF /2c we would have
1
2 = .ddd · · · . Hence, for x1 < x < x1 + ulpF (x1) a reliable test for x relative to
x1 + 1

2ulpF (x1) could require retention of many guard digits.

b) rpF−1
F > 106

This gives a maximum relative error (epsilonF) of one in a million. This is easily accom-
plished by 24 binary or 6 hexadecimal digits.

c) eminF − 1 6 −k ∗ (pF − 1) with k > 2 and k as large an integer as practical

This guarantees that epsilonk
F is in F which makes it easier to simulate higher levels of

precision than would be offered directly by the values in the datatype.

d) emaxF > k ∗ (pF − 1)

This guarantees that epsilon−k
F is in F and is useful for the same reasons as given above.

e) −2 6 (eminF − 1) + emaxF 6 2

This guarantees that the geometric mean
√

fminNF ∗ fmaxF of fminNF and fmaxF lies
between 1/rF and rF .

All of these restrictions are satisfied by most (if not all) implementations. A few implemen-
tations present a floating point model with the radix point in the middle or at the low end of
the fraction. In this case, the exponent range given by the implementation must be adjusted to
yield the LIA-1 eminF and emaxF . In particular, even if the minimum and maximum exponent
given in the implementation’s own model were negatives of one another, the adjusted eminF and
emaxF become asymmetric.

D.5.2.0.2 Radix complement floating point

LIA-1 presents an abstract model for a floating point datatype, defined in terms of parameters.
An implementation is expected to be able to map its own floating point numbers to the elements
in this model, but LIA-1 places no restrictions on the actual internal representation of the floating
point values.

The floating point model presented in LIA-1 is sign-magnitude. A few implementations keep
their floating point fraction in a radix-complement format. Several different patterns for radix-
complement floating point have been used, but a common feature is the presence of one “extra”
negative floating point number, that has no positive counterpart: the most negative. Its value is
−fmaxF − ulpF (fmaxF). Some radix-complement implementations also omit the negative coun-
terpart of fminNF .

In order to accommodate radix-complement floating point, LIA-1 would have to

a) define additional derived constants which correspond to the negative counterparts of fminF

(the “least negative” floating point number) and fmaxF (the “most negative” floating point
number);

b) add overflow to the signature of negF (because negF evaluated on the most negative number
will now overflow);

D.5.2 Floating point datatypes and operations 55

ISO/IEC WD 10967-1.1:2008(E) Working draft

c) add overflow to the signature of absF (because absF will now overflow when evaluated on
the most negative number);

d) perhaps add underflow to the signature of negF , if −fminNF is omitted;

e) expand the definitions of subF and truncF to ensure that these operations behave correctly.

Because of this complexity, LIA-1 does not include radix-complement floating point.

Floating point implementations with sign-magnitude or (radix−1)-complement fractions can
map the floating point numbers directly to LIA-1 model without these adjustments.

D.5.2.1 Conformity to IEC 60559

IEC 60559 is the international version of IEEE 754.

Note that “methods shall be provided for a program to access each [IEC 60559] facility”. This
means that a complete LIA-1 binding will include a binding for IEC 60559 as well.

IEC 60559 contains an annex listing a number of recommended functions. While not required,
implementations of LIA-1 are encouraged to provide those functions.

D.5.2.1.1 Subnormal numbers

The IEEE standards 754 and 854 datatypes and some non-IEEE floating point datatypes include
subnormal numbers. Logically, also 0 and −−−0, are subnormal numbers, though not formally
included. LIA-1 models a subnormal floating point number as a real number of the form

X = ±i ∗ reminF−pF
F

where i is an integer in the interval [1, rpF−1
F − 1]. The corresponding fraction g lies in the

interval [r−pF
F , 1/rF − r−pF

F]; its most significant digit is zero. Subnormal numbers partially fill
the “underflow gaps” in fminNF that occur between ±reminF−1

F and 0. Taken together, and with
0, they comprise the set FD.

The values in FD are linearly distributed with the same spacing as the values in the neighbouring
ranges]−reminF

F ,−reminF−1
F] and [reminF−1

F , reminF
F [in FN . Thus they have a maximum absolute

representation error of reminF−pF
F . However, since subnormal numbers have less than pF digits

of precision, the relative representation error can vary widely. This relative error varies from
epsilonF = r1−pF

F at the high ends of FD to 1 at the low ends of FD. Near 0, in [−fminDF , fminDF],
the relative error may be unboundedly large.

Whenever an addition or subtraction produces a result in FD, that result is exact – the relative
error is zero. Even for an “effective subtraction” no accuracy is lost, because the decrease in the
number of significant digits is exactly the same as the number of digits cancelled in the subtraction.
For multiplication, division, scaling, and some conversions, significant digits (and hence accuracy)
may be lost if the result is in FD.

The entire set of floating point numbers F is either FN ∪ FD (if subnormal numbers are
provided), or FN ∪ {0} (if all available

non-special numbers, except 0, are normalized). For full conformity LIA-1 requires the use
of subnormal numbers. See Coonen [49] for a detailed discussion of the properties of subnormal
numbers.

56 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

D.5.2.1.2 Signed zero

The IEEE standards define both 0 and −−−0. Very few non-IEEE floating point datatypes provide
the user with two “different” zeros. Even for an IEEE datatype, the two zeroes can only be
distinguished with a few operations, not including comparisons, but e.g. use of the IEEE copysign
function, dividing by zero to obtain signed infinity, by (correctly) converting to a character string
numeral, or by using operations that have a branch cut along an axis, like arcF (LIA-2) or some
complex inverse trigonometric operation (LIA-3). Programs that require that 0 and−−−0 are distinct
might not be portable to systems without IEEE floating point datatypes.

D.5.2.1.3 Infinities and NaNs

The IEEE standards 754 [37] and 854 [38] provide special values to represent infinities and Not-
a-Numbers. Infinity represents a large value beyond measure, either as an exact quantity (from
dividing a finite number by zero) or as the result of untrapped overflow. A NaN represents an
indeterminate, and hence invalid, quantity (e.g. from dividing zero by zero).

Most non-IEEE floating point datatypes do not provide infinities or (quiet) NaNs. Thus,
programs that make use of infinity or quiet NaNs will not be portable to systems that do not
provide them.

Note also that LIA-1 requires the presence of both negative and positive infinity in unbounded
integer datatypes. Also quiet NaNs should be provided. Such requirements are not made for
bounded integer datatypes, since such datatypes are most often supported directly by hardware.

D.5.2.2 Range and granularity constants

The positive real numbers fmaxF , fminF , and fminNF are interesting boundaries in the set F .
fmaxF is the “overflow threshold”. It is the largest value in F (and thereby also FN). fminNF

is the value of smallest magnitude in F . fminNF is the “subnormal threshold” or the “underflow
threshold”. It is the smallest normalized value in F : the point where the number of signifi-
cant digits begins to decrease. Finally, fminDF is the smallest strictly positive subnormal value,
representable only if denormF is true.

This standard requires that the values of fmaxF , fminF , and fminNF be accessible to an ex-
ecuting program. All non-zero floating point values fall in the ranges [−fmaxF ,−fminF] and
[fminF , fmaxF], and values in the ranges [−fmaxF ,−fminNF] and [fminNF , fmaxF] can be repre-
sented with full precision.

The derived constant fminDF need not be given as a run-time parameter. For a datatype in
which subnormal numbers are provided (and enabled), the value of fminDF is fminF . If subnormal
numbers are not present, the constant fminDF is not representable, and fminF = fminNF .

The derived constant epsilonF must also be accessible to an executing program:

epsilonF = r1−pF
F

It is defined as ratio of the weight of the least significant digit of the fraction g, r−pF
F , to the

minimum value of g, 1/rF . So epsilonF can be described as the largest relative representation
error for the set of normalized values in FN .

An alternate definition of epsilonF currently in use is the smallest floating point number such
that the expression 1 + epsilonF yields a value greater than 1. This definition is flawed because it

D.5.2 Floating point datatypes and operations 57

ISO/IEC WD 10967-1.1:2008(E) Working draft

depends on the characteristics of the rounding function. For example, on an IEEE floating point
datatype with round-to-positive-infinity, epsilonF would be fminDF .

D.5.2.2.1 Relations among floating point datatypes

An implementation may provide more than one floating point datatype, and most current systems
do. It is usually possible to order those with a given radix as F1, F2, F3, · · · such that

pF1 < pF2 < pF3 · · ·
eminF1 > eminF2 > eminF3 · · ·
emaxF1 6 emaxF2 6 emaxF3 · · · .

A number of current systems do not increase the exponent range with precision. However, the
following constraints

2 · pFi 6 pFi+1

2 · (eminFi − 1) > (eminFi+1 − 1)
2 · emaxFi 6 emaxFi+1

for each pair Fi and Fi+1 would provide advantages to programmers of numerical software (for
floating point datatypes not at the widest level of range-precision):

a) The constraint on the increase in precision expedites the accurate calculation of residuals
in an iterative procedure. It also provides exact products for the calculation of an inner
product or a Euclidean norm.

b) The constraints on the increase in the exponent range makes it easy to avoid the occurrence
of an overflow or underflow in the intermediate steps of a calculation, for which the final
result is in range.

D.5.2.3 Approximate operations

Let’s apply a three stage model to multiplication (mulF (x, y)):

a) First, compute the perfect result, x ∗ y, as an element of R.

b) Second, modify this to form a rounded result, rndF (x ∗ y), as an element of F ∗.

c) Finally, decide whether to accept the rounded result or to cause a notification.

Putting this all together, we get the defining case for multiplication when both arguments are in
F :

mulF (x, y) = resultF (x · y, rndF) if x, y ∈ F
The resultF function is defined to compute rndF (x · y) internally, since the result depend on the
properties of the rounding function itself, not just the rounded result.

Note that in reality, step (a) only needs to compute enough of x ·y to be able to complete steps
(b) and (c), i.e., to produce a rounded result and to decide on overflow and denormalisation loss
(or underflow).

The helper functions rndF , resultF , are the same for all the operations of a given floating point
type. Similarly, the constant rnd errorF does not differ between operations.

58 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

The helper functions are not visible to the programmer, but they are included in the required
documentation of the type. This is because these functions form the most concise description of
the semantics of the approximate operations.

D.5.2.4 Rounding and rounding constants

Floating point operations are rarely exact. The true mathematical result seldom lies in F , so
the mathematical result must be rounded to a nearby value that does lie in F . For convenience,
this process is described in three steps: first the exact value is computed, then a determination is
made about overflow or denormalisation loss (or underflow), finally the exact value is rounded to
the appropriate precision and a continuation value is determined.

The round to nearest rule is specified by a rounding function nearestF , which maps values in
R onto values in F ∗. F ∗ is the set FN ∪ FD augmented with all values of the form ±i ∗ re−pF

F

where rpF−1
F 6 i 6 rpF

F − 1 (as in FN) but e > emaxF . The extra values in F ∗, i.e. FE , are
unbounded in range, but all have exactly pF digits of precision. These are “helper values,” and
are not representable in the type F .

The requirement of “sign symmetry”, nearestF (−x) = −nearestF (x), is needed to assure the
arithmetic operations addF , subF , mulF , and divF have the expected behaviour with respect to
sign, as described in D.5.2.8.

In addition to being a rounding function (as defined in 4.2), nearestF does not depend upon
the exponent of its input (except for subnormal values). This is captured by a “scaling rule”:

nearestF (x · rj
F) = nearestF (x) · rj

F

which holds as long as x and x · rj
F have magnitude greater than (or equal to) fminNF .

Subnormal values have a wider relative spacing than ‘normal’ values. Thus, the scaling rule
above does not hold for all x in the subnormal range. When the scaling rule fails, we say that
nearestF has a denormalization loss at x, and the relative error

|x−nearestF (x)
x |

is typically larger than for ‘normal’ values.

A constants are provided to give the programmer access to some information about the rounding
function in use. rnd errorF describes the maximum rounding error (in ulps). Floating point
datatypes that fully conform to LIA-1 have rnd errorF = 0.5. This is a value of the rounding error
that is actually allowed, that is, the actual rounding error for any inexact LIA-1 operation is in the
interval [0, 0.5] ulp. Partially conforming floating point datatypes can have an rnd errorF = 1.
This is a value of the (partially conforming) rounding error that is not actually allowed, that is,
the actual rounding error for any inexact LIA-1 operation is in the interval [0, 1[ulp.

What are the most common rounding rules for existing floating point datatypes and operations?

IEEE 754 [37] and 854 [38] define four rounding rules. In addition, a fifth rounding rule is in
common use. Hence, a useful list is as follows:

a) Round toward minus infinity

b) Round toward plus infinity

c) Round toward zero

D.5.2 Floating point datatypes and operations 59

ISO/IEC WD 10967-1.1:2008(E) Working draft

d) IEEE round to nearest: In the case of a value exactly half-way between two neighbouring
values in FN , select the “even” result. That is, for x in FN and u = r

eF (x)−pF

F

rnd(x+ 1
2u) = x+ u if x/u is odd

= x if x/u is even

This is the default rounding mode in the IEEE standards.

e) “Traditional” round to nearest: In the case of a half-way value, round away from zero.
That is, if x and u are as above, then

rnd(x+ 1
2u) = x+ u

The first two of these rounding rules do not have sign symmetry, but the last three do.

The first three rules give a one ulp error bound. The last two give a half ulp bound. Most
non-IEEE implementations provide either the third rule or the last rule.

D.5.2.5 Floating point result function

The rounding function nearestF produces unbounded values. A result function is then used
to check whether this result is within range, and to generate an exceptional value if required.
The result function resultF takes two arguments. The first one is a real value x (typically the
mathematically correct result) and the second one is a rounding function rnd to be applied to x.

If F does not include subnormal numbers, and rnd(x) is representable, then resultF returns
rnd(x). If rnd(x) is too large or too small to be represented, then resultF returns overflow or
underflow respectively.

The only difference when F does contain subnormal values occurs when rnd returns a subnor-
mal value. If there was a denormalization loss in computing the rounded value, then resultF must
return underflow. On the other hand, if there was no denormalization loss, then the implemen-
tation is free to return either underflow (causing a notification) or rnd(x). Note that IEEE 754
allows some implementation flexibility in precisely this case. See the discussion of “continuation
value” in 6.2.1.

resultF (x, rnd) takes rnd as its second argument (rather than taking rnd(x)) because one
of the final parts of the definition of resultF refers to denormalization loss. Denormalization
loss is a property of the function rnd rather than the individual value rnd(x). (In addition, the
continuation value upon overflow, depends on the rounding function.)

D.5.2.6 Floating point operations

This clause describes the floating point operations defined by the standard.

An implementation can easily provide any of these operations in software. See [70] for a sample
portable implementation in Pascal. However, portable versions of these operations will not be as
efficient as those which an implementation provides and “tunes” to the architecture.

60 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

D.5.2.6.1 Comparisons

The comparison operations are atomic operations which never produce a notification when the ar-
guments are in F , and then always return true or false in accordance with the exact mathematical
result.

D.5.2.6.2 Basic arithmetic

a) The operations addF , subF , mulF and divF carry out the usual basic arithmetic operations
of addition, subtraction, multiplication and division.

b) The operations negF and absF produce the negative and absolute value, respectively, of the
input argument. They never overflow or underflow.

c) The operation signumF returns a floating point 1 or −1, depending on whether its argument
is positive (including zero) or negative (including negative zero).

D.5.2.6.3 Value dissection

a) The operation exponentF gives the exponent of the floating point number in the model as
presented in LIA-1, as though the range of exponent values was unbounded. The value of
exponentF can also be thought of as the “order of magnitude” of its argument, i.e., if n is an
integer such that rn−1

F 6 x < rn
F , then exponentF (x) = n. exponentF (0) is negative infinity

(with a infinitary notification).

b) The operation fractionF scales its argument (by a power of rF) until it is in the range
±[1/rF , 1). Thus, for x 6= 0,

x = fractionF (x) ∗ rexponentF (x)
F

c) The operation scaleF scales a floating point number by an integer power of the radix.

d) The operation succF returns the closest element of F greater than the argument, the “suc-
cessor” of the argument.

e) The operation predF returns the closest element of F less than the argument, its “predeces-
sor”.

Together, the succF and predF operations correspond to the IEEE 754 recommended func-
tion nextafter. These operations are useful for generating adjacent floating point numbers,
e.g. in order to test an algorithm in the neighbourhood of a “sensitive” point.

f) The operation ulpF gives the value of one unit in the last place, i.e., its value is the weight of
the least significant digit of a non-zero argument. The operation is undefined if the argument
is zero.

Standardizing functions such as exponentF and ulpF helps shield programs from explicit de-
pendence on the underlying format.

Note that the helper function eF is not the same as the exponentF operation. They agree on
‘normal’ numbers in F , but differ on subnormal and zero ones. exponentF (x) is chosen to be the
exponent of x as though x were in normalized form and the range and precision were unbounded.
For subnormal numbers, eF (x) is equal to eminF .

D.5.2 Floating point datatypes and operations 61

ISO/IEC WD 10967-1.1:2008(E) Working draft

D.5.2.6.4 Value splitting

a) The operation truncF zeros out the low (pF − n) digits of the first argument. When n 6 0
then 0 is returned; and when n > pF the argument is returned.

b) The operation roundF rounds the first argument to n significant digits. That is, the nearest
n-digit floating point value is returned. Values exactly half-way between two adjacent n-
digit floating point numbers round away from zero. roundF differs from truncF by at most
1 in the n-th digit.

roundF is not intended to provide access to machine rounding.

c) The operation intpartF isolates the integer part of the argument, and returns this result in
floating point form.

d) The operation fractpartF returns the value of the argument minus its integer part (obtained
by intpartF).

D.5.2.7 Levels of predictability

This clause explains why the method used to specify floating point types was chosen. The main
question is, “How precise should the specifications be?” The possibilities range from completely
prescriptive (specifying every last detail) to loosely descriptive (giving a few axioms which essen-
tially every floating point system already satisfies).

IEEE 754 [37] takes the highly prescriptive approach, allowing relatively little latitude for
variation. It even stipulates much of the representation. The Brown model [48] comes close to
the other extreme, even permitting non-deterministic behaviour.

There are (at least) five interesting points on the range from a strong specification to a very
weak one. These are

a) Specify the set of representable values exactly; define the operations exactly; but leave the
representations unspecified.

b) Allow limited variation in the set of representable values, and limited variation in the oper-
ation semantics. The variation in the value set is provided by a small set of parameters.

c) Use parameters to define a “minimum” set of representable values, and an idealized set of
operations. This is called a model. Implementations may provide more values (extra preci-
sion), and different operation semantics, as long as the implemented values and operations
are sufficiently close to the model. The standard would have to define “sufficiently close”.

d) Allow any set of values and operation semantics as long as the operations are deterministic
and satisfy certain accuracy constraints. Accuracy constraints would typically be phrased
as maximum relative errors.

e) Allow non-deterministic operations.

The IEEE model is close to (a). The Brown model is close to (e). LIA-1 selects the second
approach because it permits conformity by most current systems, provides flexibility for high
performance designs, and discourages increase in variation among future systems.

Note that the Brown model allows “parameter penalties” (reducing pF or eminF or emaxF)
to compensate for inaccurate hardware. The LIA-1 model does not permit parameter penalties.

62 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

A major reason for rejecting a standard based upon the Brown model is that the relational
operations do not (necessarily) have the properties one expects. For instance, with the Brown
model, x < y and y < z does not imply that x < z.

D.5.2.8 Identities

By choosing a relatively strong specification of floating point, certain useful identities are guar-
anteed to hold. The following is a sample list of such identities. These identities can be derived
from the axioms defining the arithmetic operations.

In the following discussion, let u, v, x, and y be elements of F , and let j, k, and n be integers.

The seven operations addF , subF , mulF , divF , scaleF , convertF ′→F , and convertI→F compute
approximations to the ideal mathematical functions. All the other operations defined in LIA-1
produce exact results in the absence of notifications.

Since the seven approximate operations are all so similar, it is convenient to give a series of rules
that apply to all of the seven (with some qualifications). Let Φ be any of the given operations, and
let φ be the corresponding ideal mathematical function. In what follows, if φ is a single argument
function, ignore the second argument.

When φ(x, y) is defined for x, y ∈ F , and no notification occurs,

u 6 φ(x, y) 6 v ⇒ u 6 Φ(x, y) 6 v (I)

when u, v ∈ F .

When φ(x, y) is defined for x, y ∈ F , and no notification occurs,

φ(x, y) ∈ F ⇒ Φ(x, y) = φ(x, y) (II)

When φ(u, x) and φ(v, y) are defined for x, y, u, v ∈ F , and no notification occurs,

φ(u, x) 6 φ(v, y) ⇒ Φ(u, x) 6 Φ(v, y) (III)

When φ(x, y) is defined for x, y ∈ F , non-zero, and no notification occurs,

|Φ(x, y)− φ(x, y)| 6 uF (φ(x, y)) 6 uF (Φ(x, y)) (IV)

When φ(x, y) is defined for x, y ∈ F , is in one of the ranges [−fmaxF ,−fminNF] or [fminNF , fmaxF],
and no notification occurs,∣∣∣Φ(x,y)−φ(x,y)

φ(x,y)

∣∣∣ 6 ulpF (1) = epsilonF (V)

When φ(x, y) and φ(x · rj
F , y · rk

F) are defined for x, y ∈ F and j, k ∈ Z, are in one of the ranges
[−fmaxF ,−fminNF] or [fminNF , fmaxF] or is 0, and no notification occurs, for some n ∈ Z

φ(x · rj
F , y · rk

F) = φ(x, y) · rn
F ⇒ Φ(x · rj

F , y · rk
F) = Φ(x, y) · rn

F (VI)

Rules (I) through (VI) apply to the seven approximate operations addF , subF , mulF , divF ,
scaleF , convertF ′→F , and convertI→F .

Rules (I) through (VI) also apply to the “exact” operations, but they don’t say anything of
interest.

Here are some identities that apply to specific operations, when no notification occurs:

D.5.2 Floating point datatypes and operations 63

ISO/IEC WD 10967-1.1:2008(E) Working draft

addF (x, y) = addF (y, x)

mulF (x, y) = mulF (y, x)

subF (x, y) = negF (subF (y, x))

addF (negF (x), negF (y)) = negF (addF (x, y))

subF (negF (x), negF (y)) = negF (subF (x, y))

mulF (negFx), y) = mulF (x, negF (y)) = negF (mulF (x, y))

divF (negF (x), y) = divF (x, negF (y)) = negF (divF (x, y))

For x 6= 0,

x ∈ FN ⇒ exponentF (x) ∈ [eminF , emaxF]

x ∈ FD ⇒ exponentF (x) ∈ [eminF − pF + 1, eminF − 1]

r
exponentF (x)−1
F ∈ F

r
exponentF (x)−1
F 6 |x| < r

exponentF (x)
F

fractionF (x) ∈ [1/rF , 1[

scaleF (fractionF (x), exponentF (x)) = x

scaleF (x, n) is exact (= x · rn
F) if x · rn

F is in one of the ranges [−fmaxF ,−fminNF] or
[fminNF , fmaxF] or is 0, or if n > 0 and |x · rn

F | 6 fmaxF .

For x 6= 0 and y 6= 0,

x = ±i · ulpF (x) for some integer i which satisfies

rpF−1
F 6 i < rpF

F if x ∈ FN

1 6 i < rpF−1
F if x ∈ FD

exponentF (x) = exponentF (y) ⇒ ulpF (x) = ulpF (y)

x ∈ FN ⇒ ulpF (x) = epsilonF ∗ rexponentF (x)−1
F

Note that if denormF = true, ulpF is defined on all floating point values. If denormF = false
(not fully conforming to LIA-1), ulpF underflows on all values less than fminNF /epsilonF , i.e.,
on all values for which eF (x) < eminF + pF − 1.

For |x| > 1,

intpartF (x) = truncF (x, eF (x)) = truncF (x, exponentF (x))

For any x ∈ F , when no notification occurs,

succF (predF (x)) = x

64 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

predF (succF (x)) = x

succF (−x) = −predF (x)

predF (−x) = −succF (x)

For positive x ∈ F , when no notification occurs,

succF (x) = x+ ulpF (x)

predF (x) = x− ulpF (x) if x is not rn
F for any integer n > eminF

= x− ulpF (x)/rF if x is rn
F for some integer n > eminF

ulpF (x) · rpF−n
F = r

eF (x)−n
F for any integer n

For any x and any integer n > 0, when no notification occurs,

r
exponentF (x)−1
F 6 |truncF (x, n)| 6 |x|

roundF (x, n) = truncF (x, n), or
= truncF (x, n) + signumF (x) · ulpF (x) · rpF−n

F

D.5.2.9 Precision, accuracy, and error

LIA-1 uses the term precision to mean the number of radix rF digits in the fraction of a floating
point datatype. All floating point numbers of a given type are assumed to have the same precision.
A subnormal number has the same number of radix rF digits, but the presence of leading zeros
in its fraction means that fewer of these digits are significant.

In general, numbers of a given datatype will not have the same accuracy. Most will contain
combinations of errors which can arise from many sources:

a) The error introduced by a single atomic arithmetic operation;

b) The error introduced by approximations in mathematical constants, such as π, 1/3, or
√

2,
used as program constants;

c) The errors incurred in converting data between external format (decimal text) and internal
format;

d) The error introduced by use of a numerical library routine;

e) The errors arising from limited resolution in measurements;

f) Two types of modelling errors:

1) Approximations made in the formulation of a mathematical model for the application
at hand;

2) Conversion of the mathematical model into a computational model, including approx-
imations imposed by the discrete nature of numerical calculations.

g) The maximum possible accumulation of such errors in a calculation;

h) The true accumulation of such errors in a calculation;

i) The final difference between the computed result and the mathematically accurate result.

D.5.2 Floating point datatypes and operations 65

ISO/IEC WD 10967-1.1:2008(E) Working draft

The last item is the goal of error analysis. To obtain this final difference, it is necessary to
understand the other eight items, some of which are discussed below. Another part of this stan-
dard, Information technology – Language independent arithmetic – Part 2: Elementary numerical
functions, deals with items (c), and (d).

D.5.2.9.1 LIA-1 and error

LIA-1 interprets the error in a single atomic arithmetic operation to mean the error introduced
into the result by the operation, without regard to any error which may have been present in the
input operands.

The rounding function introduced in 5.2.4 produces the only source of error contributed by
arithmetic operations. If the results of an arithmetic operation are exactly representable, they
must be returned without error. Otherwise, LIA-1 requires that the error in the result of a
conforming operation be bounded in magnitude by one half ulp, and bounded in magnitude by
one ulp for partial conformity.

Rounding that results in a subnormal number may result in a loss of significant digits. A
subnormal result is always exact for an addF or subF operation. However, a subnormal result
for a mulF or divF operation usually is not exact, which introduces an error of at most one half
ulp. Because of the loss of significant digits, the relative error due to rounding exceeds that for
rounding a ‘normal’ result. Hence accuracy of a subnormal result for a mulF or divF operation is
usually lower than that for a ‘normal’ result.

Note that the error in the result of an operation on exact input operands becomes an “inherited”
error if and when this result appears as input to a subsequent operation. The interaction between
the intrinsic error in an operation and the inherited errors present in the input operands is discussed
below in D.5.2.9.3.

D.5.2.9.2 Empirical and modelling errors

Empirical errors arise from data taken from sensors of limited resolution, uncertainties in the
values of physical constants, and so on. Such errors can be incorporated as initial errors in the
relevant input parameters or constants.

Modelling errors arise from a sequence of approximations:

a) Formulation of the problem in terms of the laws and principles relevant to the application.
The underlying theory may be incompletely formulated or understood.

b) Formulation of a mathematical model for the underlying theory. At this stage approxima-
tions may enter from neglect of effects expected to be small.

c) Conversion of the mathematical model into a computer model by replacing infinite series
by a finite number of terms, transforming continuous into discrete processes (e.g. numerical
integration), and so on.

Estimates of the modelling errors can be incorporated as additions to the computational errors
discussed in the next section. The complete error model will determine whether the final accuracy
of the output of the program is adequate for the purposes at hand.

Finally, comparison of the output of the computer model with observations may shed insight
on the validity of the various approximations made.

66 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

D.5.2.9.3 Propagation of errors

Let each variable in a program be given by the sum of its true value (denoted with subscript t)
and its error (denoted with subscript e). That is, the program variable x

x = xt + xe

consists of the “true” value plus the accumulated “error”. Note that the values taken on by x are
“machine numbers” in the set F , while xt and xe are mathematical quantities in R.

The following example illustrates how to estimate the total error contributed by the combi-
nation of errors in the input operands and the intrinsic error in addition. First, the result of
an LIA-1 operation on approximate data can be described as the sum of the result of the true
operation on that data and the “rounding error”, where

rounding error = computed value− true value
Next, the true operation on approximate data is rewritten in terms of true operations on true
data and errors in the data. Finally, the magnitude of the error in the result can be estimated
from the errors in the data and the rounding error.

Consider the result, z, of LIA-1 addition operation on x and y:

z = addF (x, y) = (x+ y) + rounding error

where the true mathematical sum of x and y is

(x+ y) = xt + xe + yt + ye = (xt + yt) + (xe + ye)

By definition, the “true” part of z is

zt = xt + yt

so that

z = zt + (xe + ye) + rounding error

Hence

ze = (xe + ye) + rounding error

The rounding error is bounded in magnitude by 0.5 · ulpF (z). If bounds on xe and ye are also
known, then a bound on ze can be calculated for use in subsequent operations for which z is an
input operand.

Although it is a lengthy and tedious process, an analysis of an entire program can be carried
out from the first operation through the last. It is likely that the estimates for the final errors will
be unduly pessimistic because the signs of the various errors are usually unknown. Thus, at each
stage the worst case combination of signs and magnitudes in the errors must be assumed.

Under some circumstances it is possible to obtain a realistic estimate of the true accumula-
tion of error instead of the maximum possible accumulation, e.g. in sums of terms with known
characteristics.

D.5.2 Floating point datatypes and operations 67

ISO/IEC WD 10967-1.1:2008(E) Working draft

D.5.2.10 Extra precision

The use of a higher level of range and/or precision is a time-honoured way of eliminating overflow
and underflow problems and providing “guard digits” for the intermediate calculations of a prob-
lem. In fact, one of the reasons that programming languages have more than one floating point
type is to permit programmers to control the precision of calculations.

Clearly, programmers should be able to control the precision of calculations whenever the
accuracy of their algorithms require it. Conversely, programmers should not be bothered with
such details in those parts of their programs that are not precision sensitive.

Some programming language implementations calculate intermediate values inside expressions
to a higher precision than is called for by either the input variables or the result variable. This
“extended intermediate precision” strategy has the following advantages:

a) The result value may be closer to the mathematically correct result than if “normal” precision
had been used.

b) The programmer is not bothered with explicitly calling for higher precision calculations.

However, there are also some disadvantages:

a) Since the use of extended precision varies with implementation, programs become less
portable.

b) It is difficult to predict the results of calculations and comparisons, even when all floating
point parameters and rounding functions are known.

c) It is impossible to rely on techniques that depend on the number of digits in working preci-
sion.

d) Programmers lose the advantage of extra precision if they cannot reliably store parts of a
long, complicated expression in a temporary variable at the higher precision.

e) Programmers cannot exercise precise control when needed.

f) Programmers cannot trade off accuracy against performance.

Assuming that a programming language designer or implementor wants to provide extended
intermediate precision in a way consistent with the LIA-1, how can it be done? Implementations
must follow the following rules detailed in clause 8:

a) Each floating point type, even those that are only used in extended intermediate precision
calculations, must be documented.

b) The translation of expressions into LIA-1 operations must be documented. This includes
any implicit conversions to or from extended precision types occurring inside expressions.

This documentation allows programmers to predict what each implementation will do. To the
extent that a programming language standard constrains what implementations can do in this
area, the programmer will be able to make predictions across all implementations. In addition,
the implementation should also provide the user some explicit controls (perhaps with compiler
directives or other declarations) to prevent or enable this “silent” widening of precision.

D.5.3 Conversion operations

These are borrowed directly from LIA-2.

68 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

D.6 Notification

The essential goal of the notification process is that it should not be possible for a program(???)
to terminate with an unresolved arithmetic violation unless the user has been informed of that
fact, since the results of such a program may be unreliable.

D.6.1 Model handling of notifications

D.6.2 Notification alternatives

LIA-1 provides a choice of notification mechanisms to fit the requirements of various programming
languages. The first alternative (recording of indicators) provides a standard notification handling
mechanism for all programming languages. The second alternative (alteration of control flow)
essentially says “if a programming language already provides an exception handling mechanism for
some kinds of notification, it may be used for such notifications”. Language or binding standards
are expected to choose one of these two as their primary notification mechanism. The recording
of indicators mechanism must be provided, and should be the default handling.

The third alternative (termination of program(??) with message) is provided for use in two
situations: (a) when the programmer has not (yet) programmed any exception handling code for
the alteration of control flow alternative, and (b) when a user wants to be immediately informed
of any exception.

Implementations are encouraged to provide additional mechanisms which would be useful for
debugging. For example, pausing and dropping into a debugger, or continuing execution while
writing a log file.

In order to provide the full advantage of these notification capabilities, information describing
the nature of the reason for the notification should be complete and available as close in time to
the occurrence of the violation as possible.

D.6.2.1 Recording of indicators

This alternative gives a programmer the primitives needed to obtain exception handling capabil-
ities in cases where the programming language does not provide such a mechanism directly. An
implementation of this alternative for notification should not need extensions to most program-
ming languages. The status of the indicators is maintained by the system. The operations for
testing and manipulating the indicators can be implemented as a library of callable routines.

This alternative can be implemented on any system with an “interrupt” capability, and on
some without such a capability.

This alternative can be implemented on an IEEE system by making use of the required status
flags. The mapping between the IEEE status flags and the LIA-1 indicators is as follows:

IEEE flag LIA indicator
invalid invalid
overflow overflow
underflow underflow
division by zero infinitary
inexact (no counterpart in LIA)
(no counterpart) absolute precision underflow (LIA-2 and LIA-3)

D.6 Notification 69

ISO/IEC WD 10967-1.1:2008(E) Working draft

LIA-1 does not include notification for inexact because non-IEEE implementations are unlikely
to detect inexactness of floating point results. However, if ieeeF is true the notification inexact
must be provided. This one should be handled by recording of indicators by default, regardless of
how other notifications are handled.

For a zero divisor, IEEE specifies an invalid exception if the dividend is zero, and a division
by zero (infinitaryin LIA) otherwise. Other architectures are not necessarily capable of making
this distinction. In order to provide a reasonable mapping for an exception associated with a zero
divisor, a binding may map both notification types to the same actual notification.

Different notification types need not be handled the same. E.g. inexact and underflow should
be handled by recording of indicators, or even be ignored if a binding so specifies, regardless of
how other notifications are handled.

An implementation must check the recording before successfully terminating the program(??).
Merely setting a status flag is not regarded as adequate notification, since this action is too easily
ignored by the user and could thus damage the integrity of a program by leaving the user unaware
that an unresolved arithmetic notification occurred. Hence LIA-1 prohibits successful completion
of a program(??) if any status flag is set. Implementations can provide system software to test
all status flags at completion of a program(??), and if any flag is set, provide a message.

The mechanism of recording of indicators proposed here is general enough to be applied to a
broad range of phenomena by simply extending the value set E to include indicators for other types
of conditions. However, in order to maintain portability across implementations, such extensions
should be made in conformity with other standards, such as language standards.

Notification indicators may be a form of thread global variable, but can be more local (but
not more global). A single thread of computation must have its own set of these indicators, not
interfering with other threads. However, care should be taken in designing systems with multiple
threads or “interrupts” so that

a) logically asynchronous computations do not interfere with each other’s indicators, and

b) notifications do not get lost when threads are rejoined (unless the whole computation of the
thread is ignored).

Similarly, any kind of evaluation “modes”, like rounding mode, or notification handling “modes”
may be thread global modes, but can be more local (e.g. static per operation), but never more
global. So the mode settings and changes in different threads do not interfere. The modes may
be inherited from the logical parent of a thread, or be default if there is no logical parent to the
thread.

The details on how to do this is part of the design of the programming language, threads system,
or hardware, and is not within the scope of LIA-1. Still, these details should be documented in a
binding.

D.6.2.2 Alteration of control flow

This alternative requires the programmer to provide application specific code which decides
whether the computation should proceed, and if so how it should proceed. This alternative places
the responsibility for the decision to proceed with the programmer who is presumed to have the
best understanding of the needs of the application.

70 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

ADA and PL/I are examples of standard languages which include syntax which allows the user
to describe this type of alteration of control flow.

Note, however, that a programmer may not have provided code for all trouble-spots in the
program. This implies that program termination must be an available alternative.

Although this alternative is expressed in terms of control flow, clause 2 gives binding standards
the power to select the exception handling mechanisms most natural for the programming language
in question. For example, a functional programming language might extend each of its types with
special “error” values. In such a language, the natural notification mechanism would be to produce
error values rather than to alter control flow.

Designers of programming languages and binding standards should keep in mind the basic
principle that a program should not be allowed to take significant irreversible action (for example,
printing out apparently accurate results, or even terminating “normally”) based on erroneous
arithmetic computations.

D.6.2.3 Termination with message

This alternative results in the termination of the program following a notification. It is intended
mainly for use when a programmer has failed to exploit one of the other alternatives provided.

The message must be “hard to ignore”. It must be delivered in such a way that there is no
possibility that the user will be unaware that the program was terminated because of an unresolved
exception. For example, the message could be printed on the standard error output device, such
as the user’s terminal if the program is run in an interactive environment.

D.6.3 Delays in notification

Many modern floating point implementations are pipelined, or otherwise execute instructions
in parallel. This can lead to an apparent delay in reporting violations, since an overflow in a
multiply operation might be detected after a subsequent, but faster, add operation completes.
The provisions for delayed notification are designed to accommodate these implementations.

Parallel implementations may also not be able to distinguish a single overflow from two or more
“almost simultaneous” overflows. Hence, some merging of notifications is permitted.

Imprecise interrupts (where the offending instruction cannot be identified) can be accommo-
dated as notification delays. Such interrupts may also result in not being able to report the kind
of violation that occurred, or to report the order in which two or more violations occurred.

In general the longer the notification is delayed the greater the risk to the continued execution
of the program.

D.6.4 User selection of alternative for notification

On some machine architectures, the notification alternative selected may influence code generation.
In particular, the optimal code that can be generated for 6.2.2 may differ substantially from the
optimal code for 6.2.1. Because of this, it is unwise for a language or binding standard to require
the ability to switch between notification alternatives during execution. Compile time selection
should be sufficient.

D.6.3 Delays in notification 71

ISO/IEC WD 10967-1.1:2008(E) Working draft

An implementation can provide separate selection for each kind of notification (overflow,
underflow, etc).

If a system had a mode of operation in which exceptions were totally ignored, then for this
mode, the system would not conform to ISO/IEC 10967. However, modes of operation that
ignore exceptions may have some uses, particularly if they are otherwise LIA-1 conforming. For
example, a user may find it desirable to verify and debug a program’s behaviour in a fully LIA-1
conforming mode (exception checking on), and then run the resulting “trusted” program with
exception checking off. Another non-conforming mode could be one in which the final check on
the notification indicators was suppressed.

In any case, it is essential for an implementation to provide documentation on how to select
among the various LIA-1 conforming notification alternatives provided.

D.7 Relationship with language standards

Language standards vary in the degree to which the underlying datatypes are specified. For
example, Pascal [27] merely gives the largest integer value (maxintI), while Ada [11] gives a
large number of attributes of the underlying integer and floating point types. LIA-1 provides a
language independent framework for giving the same level of detail that Ada requires, specific to
a particular implementation.

LIA-1 gives the meaning of individual operations on numeric values of particular type. It does
not specify the semantics of expressions, since expressions are sequences of operations which could
be mapped into individual operations in more than one way. LIA-1 does require documentation
of the range of possible mappings.

The essential requirement is to document the semantics of expressions well enough so that a rea-
sonable error analysis can be done. There is no requirement to document the specific optimisation
technology in use.

An implementation might conform to the letter of LIA-1, but still violate its “spirit” – the
principles behind LIA-1 – by providing, for example, a sin function that returned values greater
than 1 or that was highly inaccurate for large input values. LIA-2 takes care of this particular
example. Beyond this, implementors are encouraged to provide numerical facilities that

a) are highly accurate,

b) obey useful identities like those in D.5.2.0.1 or D.5.2.8,

c) notify the user whenever the mathematically correct result would be out of range, not
accurately representable, or undefined,

d) are defined on as wide a range of input values as is consistent with the three items above.

LIA-1 does not cover programming language issues such as type errors or the effects of unini-
tialised variables. Implementors are encouraged to catch such errors – at compile time whenever
possible, at run time if necessary. Uncaught programming errors of this kind can produce the
very unpredictable and false results that this standard was designed to avoid.

A list of the information that every implementation of LIA-1 must document is given in clause
8. Some of this information, like the value of emaxF for a particular floating point type, will
frequently vary from implementation to implementation. Other information, like the syntax for
accessing the value of emaxF , should be the same for all implementations of a particular pro-
gramming language. See annex E for information on how this might be done.

72 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

To maximize the portability of programs, most of the information listed in clause 8 should be
standardized for a given language – either by inclusion in the language standard itself, or by a
language specific binding standard. On the other hand to allow freedom in the implementation,
we recommend that the following information not be standardized, but should be documented by
the implementation:

a) The values of maxintI and minintI should not be standardized.

However, it is reasonable to standardize whether a particular integer type is signed, and to
give a lower bound on the value of maxintI .

b) The values of rF , pF , eminF , emaxF , and iec 559F should not be standardized.

However, it is reasonable to give upper bounds on epsilonF (r1−pF
F), and bounds on the

values of eminF and emaxF . Certain languages provide decimal floating point types which
require rF = 10.

c) The semantics of rndF and resultF should not be further standardized.

That is, no further standardization beyond what is already required by LIA-1, since this
would limit the range of hardware platforms that could support efficient implementations of
the language.

d) The behaviour of nearestF on ties should be standardized.

e) The IEC 60559 implementor choices should not be limited (except by future revisions of
IEC 60559).

The allowed translations of expressions into combinations of LIA operations should allow rea-
sonable flexibility for compiler optimisation. The programming language standard must determine
what is reasonable. In particular, languages intended for the careful expression of numeric algo-
rithms are urged to provide ways for programmers to control order of evaluation and intermediate
precision within expressions. Note that programmers may wish to distinguish between such “con-
trolled” evaluation of some expressions and “don’t care” evaluation of others.

Developers of language standards or binding standards may find it convenient to reference LIA-
1. For example, the functions rndF , resultF , eF , and uF may prove useful in defining additional
arithmetic operations.

D.8 Documentation requirements

To make good use of an implementation of this standard, programmers need to know not only
that the implementation conforms, but how the implementation conforms. Clause 8 requires
implementations to document the binding between LIA-1 types and operations and the total
arithmetic environment provided by the implementation.

An example conformity statement (for a Fortran implementation) is given in annex F.

It is expected that an implementation will meet part of its documentation requirements by
incorporation of the relevant language standard. However, there will be aspects of the implemen-
tation that the language standard does not specify in the required detail, and the implementation
needs to document those details. For example, the language standard may specify a range of
allowed parameter values, but the implementation must document the value actually used. The
combination of the language standard and the implementation documentation together should
meet all the requirements in clause 8.

D.8 Documentation requirements 73

ISO/IEC WD 10967-1.1:2008(E) Working draft

Most of the documentation required can be provided easily. The only difficulties might be
in defining add∗F (for partially conforming implementations, see annex A), or in specifying the
translation of arithmetic expressions into combinations of LIA-1 operations.

Compilers often “optimise” code as part of the compilation process. Popular optimisations
include moving code to less frequently executed spots, eliminating common subexpressions, and
reduction in strength (replacing expensive operations with cheaper ones).

Compilers are always free to alter code in ways that preserve the semantics (the values computed
and the notifications generated). However, when a code transformation may change the semantics
of an expression, this must be documented by listing the alternative combinations of operations
that might be generated. (There is no need to include semantically equivalent alternatives in this
list.)

74 Rationale

Working draft ISO/IEC WD 10967-1.1:2008(E)

Annex E
(informative)

Example bindings for specific languages

This annex describes how a computing system can simultaneously conform to a language stan-
dard and to LIA-1. It contains suggestions for binding the “abstract” operations specified in
LIA-1 to concrete language syntax.

Portability of programs can be improved if two conforming LIA-1 systems using the same
language agree in the manner with which they adhere to LIA-1. For instance, LIA-1 requires
that the derived constant epsilonF be provided, but if one system provides it by means of the
identifier EPS and another by the identifier EPSILON, portability is impaired. Clearly, it would be
best if such names were defined in the relevant language standards or binding standards, but in
the meantime, suggestions are given here to aid portability.

The following clauses are suggestions rather than requirements because the areas covered are
the responsibility of the various language standards committees. Until binding standards are in
place, implementors can promote “de facto” portability by following these suggestions on their
own.

The languages covered in this annex are

Ada
C
C++
Fortran
Common Lisp

This list is not exhaustive. Other languages and other computing devices (like ‘scientific’ cal-
culators, ‘web script’ languages, and database ‘query languages’) are suitable for conformity to
LIA-1.

In this annex, the datatypes, parameters, constants, operations, and exception behaviour of
each language are examined to see how closely they fit the requirements of LIA-1. Where param-
eters, constants, or operations are not provided by the language, names and syntax are suggested.
(Already provided syntax is marked with a ?.) Substantial additional suggestions to language
developers are presented in D.7, but a few general suggestions are reiterated below.

This annex describes only the language-level support for LIA-1. An implementation that wishes
to conform must ensure that the underlying hardware and software is also configured to conform
to LIA-1 requirements.

A complete binding for LIA-1 will include a binding for IEC 60559. Such a joint LIA-1/IEC 60559
binding should be developed as a single binding standard. To avoid conflict with ongoing devel-
opment, only LIA-1 specific portions of such a binding are presented in this annex.

Most language standards permit an implementation to provide, by some means, the parameters,
constants and operations required by LIA-1 that are not already part of the language. The
method for accessing these additional constants and operations depends on the implementation
and language, and is not specified in LIA-1. It could include external subroutine libraries; new
intrinsic functions supported by the compiler; constants and functions provided as global “macros”;

E. Example bindings for specific languages 75

ISO/IEC WD 10967-1.1:2008(E) Working draft

and so on. The actual method of access through libraries, macros, etc. should of course be given
in a real binding.

A few parameters are completely determined by the language definition, e.g. whether the
integer type is bounded. Such parameters have the same value in every implementation of the
language, and therefore need not be provided as a run-time parameter.

During the development of standard language bindings, each language community should take
care to minimise the impact of any newly introduced names on existing programs. Techniques such
as “modules” or name prefixing may be suitable depending on the conventions of that language
community.

LIA-1 treats only single operations on operands of a single datatype, but nearly all computa-
tional languages permit expressions that contain multiple operations involving operands of mixed
types. The rules of the language specify how the operations and operands in an expression are
mapped into the primitive operations described by LIA-1. In principle, the mapping could be
completely specified in the language standard. However, the translator often has the freedom to
depart from this precise specification: to reorder computations, widen datatypes, short-circuit
evaluations, and perform other optimisations that yield “mathematically equivalent” results but
remove the computation even further from the image presented by the programmer.

We suggest that each language standard committee require implementations to provide a means
for the user to control, in a portable way, the order of evaluation of arithmetic expressions.

Some numerical analysts assert that user control of the precision of intermediate computations
is desirable. We suggest that language standard committee consider requirements which would
make such user control available in a portable way. (See D.5.2.10.)

Most language standards do not constrain the accuracy of floating point operations, or specify
the subsequent behaviour after a serious arithmetic violation occurs.

We suggest that each language standard committee require that the arithmetic operations
provided in the language satisfy LIA-1 requirements for accuracy and notification.

We also suggest that each language standard committee define a way of handling exceptions
within the language, e.g. to allow the user to control the form of notification, and possibly to “fix
up” the error and continue execution. The binding of the exception handling within the language
syntax must also be specified.

If a language or binding standard wishes to make the selection of the notification method
portable, but has no syntax for specifying such a selection, we suggest the use of one of the
commonly used methods for extending the language such as special comment statements in Fortran
or pragmas in C and Ada.

In the event that there is a conflict between the requirements of the language standard and
the requirements of LIA-1, the language binding standard should clearly identify the conflict and
state its resolution of the conflict.

E.1 Ada

The programming language Ada is defined by ISO/IEC 8652:1995, Information Technology –
Programming Languages – Ada [11].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this language binding.

76 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

The operations or parameters marked “†” are not part of the

language and must be provided by an implementation that wishes to conform to LIA-1. For
each of the marked items a suggested identifier is provided. The additional facilities can be
provided by means of an additional package, denoted by LIA.

The Ada datatype Boolean corresponds to the LIA-1 datatype Boolean.

Every implementation of Ada has at least one integer datatype. The notation INT is used to
stand for the name of any one of these datatypes in what follows.

The LIA-1 parameters for an integer datatype can be accessed by the following syntax:

maxintI INT’Last ?
minintI INT’First ?

The parameter boundedI is always true, and the parameter hasinf I is always false, and they
need therefore not be provided to programs. The parameter moduloI (see annex A) is always
false for non-modulo integer datatypes, and always true for modulo integer datatypes (declared
via the modulo keyword), and need not be provided for programs.

The LIA-1 integer operations are listed below, along with the syntax used to invoke them:

eqI(x, y) x = y ?
neqI(x, y) x /= y ?
lssI(x, y) x < y ?
leqI(x, y) x <= y ?
gtrI(x, y) x > y ?
geqI(x, y) x >= y ?

addI(x, y) x + y ?
negI(x) - x ?
subI(x, y) x - y ?
absI(x) abs x ?
signumI(x) Signum(x) †
mulI(x, y) x * y ?

quotI(x, y) Quotient(x, y) †
modI(x, y) x mod y ?
truncdivI(x, y) x / y (dangerous syntax) ? (bad sem., not LIA-1!)
truncremI(x, y) x rem y ? (bad sem., not LIA-1!)

where x and y are expressions of type INT .

Every implementation of Ada has at least one floating point datatype. The notation FLT are
used to stand for the name of any one of these datatypes in what follows.

The LIA-1 parameters for a floating point datatype can be accessed by the following syntax:

rF FLT’Machine Radix ?
pF FLT’Machine Mantissa ?
emaxF FLT’Machine Emax ?
eminF FLT’Machine Emin ?
denormF FLT’Denorm ?
hasnegzeroF FLT’Signed Zeroes ? (not LIA-1)
hasinf F FLT’Has Infinities † (not LIA-1)

E.1 Ada 77

ISO/IEC WD 10967-1.1:2008(E) Working draft

iec 559F FLT’IEC60559 †
The LIA-1 derived constants for a floating point datatype can be accessed by the following

syntax:

fmaxF FLT’Last ?
fminNF FLT’Fmin Norm †
fminF FLT’Fmin †
epsilonF FLT’Epsilon †
rnd errorF FLT’Rnd Error † (partial conf.)
rnd styleF FLT’Rnd Style † (partial conf.)

The value returned by FLT’Rnd Style are from the enumeration type Rnd Styles. Each
enumeration literal corresponds as follows to an LIA-1 rounding style value:

nearesttiestoeven NearestTiesToEven †
nearest Nearest †
truncate Truncate †
other Other †

The LIA-1 floating point operations are listed below, along with the syntax used to invoke
them:

eqF (x, y) x = y ?
neqF (x, y) x /= y ?
lssF (x, y) x < y ?
leqF (x, y) x <= y ?
gtrF (x, y) x > y ?
geqF (x, y) x >= y ?
isnegzeroF (x) isNegZero(x) †
istinyF (x) isTiny(x) †
isnanF (x) isNaN(x) †
isnanF (x) x /= x ?
issignanF (x) isSigNaN(x) †

addF (x, y) x + y ?
negF (x) - x ?
subF (x, y) x - y ?
absF (x) abs x ?
signumF (x) Signum(x) †
mulF (x, y) x * y ?
sqrtF (x) Sqrt(x) ?
residueF (x, y) FLT’Remainder(x, y) ?
divF (x, y) x / y ?

exponentF,I(x) FLT’Exponent(x) ? (dev.: 0 if x = 0)
fractionF (x) FLT’Fraction(x) ?
scaleF,I(x, n) FLT’Scaling(x, n) ?
succF (x) FLT’Adjacent(x, FLT’Last) ?(dev. at fmaxF)
predF (x) FLT’Adjacent(x, -FLT’Last) ?(dev. at −fmaxF)
ulpF (x) FLT’Unit Last Place(x) †

78 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

intpartF (x) FLT’Truncation(x) ?
fractpartF (x) x - FLT’Truncation(x) ?
truncF,I(x, n) FLT’Leading Part(x, n) ?(invalid for n 6 0)
roundF,I(x, n) FLT’Round Places(x, n) †

where x and y are expressions of type FLT and n is an expression of type INT .

Arithmetic value conversions in Ada are always explicit and usually use the destination datatype
name as the name of the conversion function, except when converting to/from string formats.

convertI→I′(x) INT2(x) ?
convertI′′→I(s) Get(s, n, w); ?
convertI′′→I(f) Get(f?, n, w?); ?
convertI→I′′(x) Put(s, x, base?); ?
convertI→I′′(x) Put(h?, x, w?, base?); ?

floorF→I(y) INT(FLT’Floor(y)) ?
roundingF→I(y) INT(FLT’Unbiased Rounding(y)) ?
ceilingF→I(y) INT(FLT’Ceiling(y)) ?

convertI→F (x) FLT(x) ?

convertF→F ′(y) FLT2(y) ?
convertF ′′→F (s) Get(s, n, w?); ?
convertF ′′→F (f) Get(f?, n, w?); ?
convertF→F ′′(y) Put(s, y, Aft=>a?, Exp=>e?); ?
convertF→F ′′(y) Put(h?, y, Fore=>i?, Aft=>a?, Exp=>e?);?

convertD→F (z) FLT(z) ?
convertD′→F (s) Get(s, n, w?); ?
convertD′→F (f) Get(f?, n, w?); ?

convertF→D(y) FXD(y) ?
convertF→D′(y) Put(s, y, Aft=>a?, Exp=>0); ?
convertF→D′(y) Put(h?, y, Fore=>i?, Aft=>a?, Exp=>0);?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to
I ′. FLT2 is the floating point datatype that corresponds to F ′. A ? above indicates that the
parameter is optional. f is an opened input file (default is the default input file). h is an opened
output file (default is the default output file). s is of type String or Wide String. For Get of a
floating point or fixed point numeral, the base is indicated in the numeral (default 10). For Put
of a floating point or fixed point numeral, only base 10 is required to be supported. For details
on Get and Put, see clause A.10.8 Input-Output for Integer Types, A.10.9 Input-Output for Real
Types, and A.11 Wide Text Input-Output, of ISO/IEC 8652:1995. base, n, w, i, a, and e are
expressions for non-negative integers. e is greater than 0. base is greater than 1.

Ada provides non-negative numerals for all its integer and floating point types. The default base
is 10, but all bases from 2 to 16 can be used. There is no differentiation between the numerals
for different floating point types, nor between numerals for different integer types, but integer
numerals (without a point) cannot be used for floating point types, and ‘real’ numerals (with a

E.1 Ada 79

ISO/IEC WD 10967-1.1:2008(E) Working draft

point) cannot be used for integer types. Integer numerals can have an exponent part though.
The details are not repeated in this example binding, see ISO/IEC 8652:1995, clause 2.4 Numeric
Literals, clause 3.5.4 Integer Types, and clause 3.5.6 Real Types.

The Ada standard does not specify any numerals for infinities and NaNs. The following syntax
is suggested:

+∞+∞+∞ FLT’Infinity †
qNaN FLT’NaN †
sNaN FLT’NaNSignalling †

as well as string formats for reading and writing these values as character strings.

Ada has a notion of ‘exception’ that implies a non-returnable, but catchable, change of control
flow. Ada uses its exception mechanism as its default means of notification. underflow does
not cause any notification in Ada, and the continuation value to the underflow is used directly,
since an Ada exception is inappropriate for an underflow notification. On underflow the con-
tinuation value (specified in LIA) is used directly without recording the underflow itself. Ada
uses the exception Constraint Error for infinitary and overflow notifications, and the excep-
tions Numerics.Argument Error, IO Exceptions.Data Error, and IO Exceptions.End Error
for invalid notifications.

Since Ada exceptions are non-returnable changes of control flow, no continuation value is
provided for these notifications.

An implementation that wishes to follow LIA must provide recording of indicators as an al-
ternative means of handling numeric notifications. Recording of indicators is the LIA preferred
means of handling numeric notifications. In this suggested binding non-negative integer values, in
the datatype Natural, are used to represent values in Ind.

overflow 1 †
underflow 2 †
invalid 4 †
infinitary 8 †
absolute precision underflow 16 † (LIA-2, -3)
inexact 32 † (IEC 60559)

clear indicators(S) Clear Indicators(S) †
set indicators(S) Set Indicators(S) †
test indicators(S) Test Indicators(S) †
current indicators() Current Indicators() †

where S is an expression compatible with the datatype Natural.

E.2 C

The programming language C is defined by ISO/IEC 9899:1999, Information technology – Pro-
gramming languages – C [17].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested

80 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

identifier is provided. An implementation that wishes to conform to LIA-1 must supply declara-
tions of these items in a header <lia1.h>. Integer valued parameters and derived constants can
be used in preprocessor expressions.

The LIA-1 datatype Boolean is implemented as the C datatype bool or in the C datatype
int (1 = true and 0 = false).

C defines numerous integer datatypes. They may be aliases of each other in an implementation
defined way. The description here is not complete. See the C99 standard. Some of the integer
datatypes have a predetermined bit width, and the signed ones use 2’s complement for represen-
tation of negative values: intn t and uintn t, where n is the bit width expressed as a decimal
numeral. Some bit widths are required. There are also minimum width, fastest minimum width,
and special purpose integer datatypes (like size t). Also provided are the more well-known inte-
ger datatypes char, short int, int, long int, long long int (new in C99), unsigned char,
unsigned short int, unsigned int, unsigned long int, and unsigned long long int (new
in C99). Finally there are the integer datatypes intmax t and uintmax t (both new in C99) that
are the largest provided signed and unsigned integer datatypes. intmax t and uintmax t may
even be unbounded with a negative integer infinity as INTMAX MIN and a positive integer infinity
as INTMAX MAX and UINTMAX MAX. INT is used below to designate one of the integer datatypes.

NOTES

1 The conformity of short and char (signed or unsigned) is not relevant since values of these
types are promoted to int (signed or unsigned) before computations are done.

2 unsigned int, unsigned long int, and unsigned long long int can conform if oper-
ations that properly notify overflow are provided. The operations named +, (binary) -,
and * are in the case of the unsigned integer types bound to add wrapI , sub wrapI , and
mul wrapI (specified in LIA-2). For (unary) -, and integer / similar wrapping operations
for negation and integer division are accessed. The latter operations are not specified by
LIA.

The LIA-1 parameters for an integer datatype can be accessed by the following syntax:

maxintI T MAX ?
minintI T MIN ?(for signed ints)
moduloI T MODULO †(for signed ints)

where T is INT for int, LONG for long int, LLONG for long long int, UINT for unsigned int,
ULONG for unsigned long int, and ULLONG for unsigned long long int.

The parameter bounded I is always true, and is not provided. The parameter minintI is always
0 for the unsigned types, and is not provided for those types.

The LIA-1 integer operations are either operators, or macros declared in the header <stdlib.h>.
The integer operations are listed below, along with the syntax used to invoke them:

eqI(x, y) x == y ?
neqI(x, y) x != y ?
lssI(x, y) x < y ?
leqI(x, y) x <= y ?
gtrI(x, y) x > y ?
geqI(x, y) x >= y ?

addI(x, y) x + y (?) (if moduloI = false)
add′I(x, y) x + y ? (if moduloI = true)
negI(x) - x ?

E.2 C 81

ISO/IEC WD 10967-1.1:2008(E) Working draft

subI(x, y) x - y (?) (if moduloI = false)
sub′I(x, y) x - y ? (if moduloI = true)
absI(x) tabs(x) ? (for signed ints)
signumI(x) tsgn(x) † (for signed ints)
mulI(x, y) x * y (?) (if moduloI = false)
mul′I(x, y) x * y ? (if moduloI = true)

quotI(x, y) tquot(x, y) †
modI(x, y) tmod(x, y) †
truncdivI(x, y) x / y (dangerous syntax) ? (bad sem., not LIA-1!)
truncremI(x, y) x % y ? (bad sem., not LIA-1!)

where x and y are expressions of type int, long int, or long long int as appropriate, t is
the empty string for int, l for long int, ll for long long int, u for unsigned int, ul for
unsigned long int, and ull for unsigned long long int.

Note that C requires a “modulo” interpretation for the ordinary addition, subtraction, and
multiplication operations for unsigned integer datatypes in C (i.e. moduloI = true for un-
signed integer datatypes), and is thus only partially conforming to LIA-1 for the unsigned integer
datatypes. For signed integer datatypes, the value of moduloI is implementation defined.

An implementation that wishes to conform to LIA-1 must provide all the LIA-1 integer oper-
ations for all the integer datatypes for which LIA-1 conformity is claimed.

C names three floating point datatypes: float, double, and long double. FLT is used below
to designate one of the floating point datatypes.

The LIA-1 parameters for a floating point datatype can be accessed by the following syntax:

rF FLT RADIX ?
pF T MANT DIG ?
emaxF T MAX EXP ?
eminF T MIN EXP ?
denormF T DENORM †
iec 559F T IEC 60559 †

where T is FLT for float, DBL for double, and LDBL for long double. Note that FLT RADIX gives
the radix for all of float, double, and long double.

The C language standard presumes that all floating point precisions use the same radix and
rounding style, so that only one identifier for each is provided in the language.

The LIA-1 derived constants for the floating point datatype can be accessed by the following
syntax:

fmaxF T MAX ?
fminNF T MIN ?
fminF T TRUE MIN †
epsilonF T EPSILON ?
rnd errorF T RND ERR † (partial conf.)
rnd styleF FLT ROUNDS ? (partial conf.)

where T is FLT for float, DBL for double, and LDBL for long double. Note that FLT ROUNDS
gives the rounding style for all of float, double, and long double.

82 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

The C standard specifies that the values of the parameter FLT ROUNDS are from int with the
following meaning in terms of the LIA-1 rounding styles.

nearesttiestoeven FLT ROUNDS = 2 †
nearest FLT ROUNDS = 1
truncate FLT ROUNDS = 0
other FLT ROUNDS 6= 0 or 1 or 2
NOTE 3 – The definition of FLT ROUNDS has been extended to cover the rounding style used
in all LIA-1 operations, not just addition.

The LIA-1 floating point operations are bound either to operators, or to macros declared in the
header <math.h>. The operations are listed below, along with the syntax used to invoke them:

eqF (x, y) x == y ?
neqF (x, y) x != y ?
lssF (x, y) x < y ?
leqF (x, y) x <= y ?
gtrF (x, y) x > y ?
geqF (x, y) x >= y ?

isnegzeroF (x) isNegZero(x) †
istinyF (x) isTiny(x) †
istinyF (x) -T MIN < x && x < T MIN ?
isnanF (x) isNaN(x) †
isnanF (x) x != x ?
issignanF (x) isSigNaN(x) †

addF (x, y) x + y ?
negF (x) - x ?
subF (x, y) x - y ?
absF (x) fabst(x) ?
signumF (x) signbit(x) ?
mulF (x, y) x * y ?
sqrtF (x) sqrtt(x) or sqrt(x) ?
residueF (x, y) remaindert(x, y) or remainder(x, y) ?
divF (x, y) x / y ?

exponentF,I(x) (int)(logbt(x)) + 1 ?, (or (long))
fractionF (x) fractt(x) †
scaleF,I(x, n) scalbnt(x, n) ?
scaleF,I(x,m) scalblnt(x, m) ?
succF (x) succt(x) †
predF (x) predt(x) †
ulpF (x) ulpt(x) †

intpartF (x) intpartt(x) †
fractpartF (x) frcpartt(x) †
truncF,I(x, n) trunct(x, n) †
roundF,I(x, n) roundt(x, n) †

E.2 C 83

ISO/IEC WD 10967-1.1:2008(E) Working draft

where x and y are expressions of type float, double, or long double, n is of type int, and m
is of type long int, t is f for float, the empty string for double, and l for long double.

An implementation that wishes to conform to LIA-1 must provide the LIA-1 floating point
operations for all the floating point datatypes for which LIA-1 conformity is claimed.

Arithmetic value conversions in C can be explicit or implicit. The explicit arithmetic value
conversions are usually expressed as ‘casts’, except when converting to/from string formats. The
rules for when implicit conversions are applied is not repeated here, but work as if a cast had been
applied.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C99 standard for a full description. In the format strings % is used to
indicate the start of a format pattern. After the %, optionally a string field width (w below) may
be given as a positive decimal integer numeral.

For the floating and fixed point format patterns, there may then optionally be a ‘.’ followed
by a positive integer numeral (d below) indicating the number of fractional digits in the string.
The C operations below use HYPHEN-MINUS rather than MINUS (which would have been
typographically better), and only digits that are in ASCII, independently of so-called locale. For
generating or parsing other kinds of digits, say Arabic digits or Thai digits, another API must
be used, that is not standardised in C. For the floating and fixed point formats, +∞+∞+∞ may be
represented as either inf or infinity, −∞−∞−∞ may be represented as either -inf or -infinity, and
a NaN may be represented as NaN; all independently of so-called locale. For language dependent
representations of these values another API must be used, that is not standardised in C.

For the integer formats then follows an internal type indicator, of which some are new to C99.
Not all C99 integer types have internal type indicators. However, for t below, hh indicates char, h
indicates short int, the empty string indicates int, l (the letter l) indicates long int, ll (the
letters ll) indicates long long int, and j indicates intmax t or uintmax t. (For system purposes
there are also special type names like size t, and z indicates size t and t indicates ptrdiff t
as type format letters.) Finally, there is a radix (for the string side) and signedness (both sides)
format letter (r below): d for signed decimal; o, u, x, X for octal, decimal, hexadecimal with small
letters, and hexadecimal with capital letters, all unsigned. E.g., %jd indicates decimal numeral
string for intmax t, %2hhx indicates hexadecimal numeral string for unsigned char, with a two
character field width, and %lu indicates decimal numeral string for unsigned long int.

For the floating point formats instead follows another internal type indicator. Not all C99
floating point types have standard internal type indicators for the format strings. However, for u
below the empty string indicates double and L indicates long double. Finally, there is a radix
(for the string side) format letter: e or E for decimal, a or A for hexadecimal. E.g., %15.8LA
indicates hexadecimal floating point numeral string for long double, with capital letters for the
letter components, a field width of 15 characters, and 8 hexadecimal fractional digits.

For the fixed point formats also follows the internal type indicator as for the floating point
formats. But for the final part of the pattern, there is another radix (for the string side) format
letter (p below), only two are standardised, both for the decimal radix: f or F. E.g., %Lf indicates
decimal fixed point numeral string for long double, with a small letter for the letter component.
(There is also a combined floating/fixed point string format: g.)

convertI→I′(x) (INT2)x ?
convertI′′→I(s) sscanf(s, "%wtr", &i) ?

84 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

convertI′′→I(f) fscanf(f, "%wtr", &i) ?
convertI→I′′(x) sprintf(s, "%wtr", x) ?
convertI→I′′(x) fprintf(h, "%wtr", x) ?

floorF→I(y) (INT)floort(y) ?
floorF→I(y) (INT)nearbyintt(y) (when in round towards −∞−∞−∞ mode) ?(C99)
roundingF→I(y) (INT)nearbyintt(y) (when in round to nearest mode) ?(C99)
ceilingF→I(y) (INT)nearbyintt(y) (when in round towards +∞+∞+∞ mode) ?(C99)
ceilingF→I(y) (INT)ceilt(y) ?

convertI→F (x) (FLT)x ?

convertF→F ′(y) (FLT2)y ?
convertF ′′→F (s) sscanf(s, "%w.duv", &r) ?
convertF ′′→F (f) fscanf(f, "%w.duv", &r) ?
convertF→F ′′(y) sprintf(s, "%w.duv", y) ?
convertF→F ′′(y) fprintf(h, "%w.duv", y) ?

convertD′→F (s) sscanf(s, "%wup", &g) ?
convertD′→F (f) fscanf(f, "%wup", &g) ?
convertF→D′(y) sprintf(s, "%w.dup", y) ?
convertF→D′(y) fprintf(h, "%w.dup", y) ?

where s is an expression of type char*, f is an expression of type FILE*, i is an lvalue expression
of type int, g is an lvalue expression of type double, x is an expression of type INT, y is an
expression of type FLT, INT2 is the integer datatype that corresponds to I ′, and FLT2 is the
floating point datatype that corresponds to F ′.

C provides non-negative numerals for all its integer and floating point types. The default base
is 10, but base 8 (for integers) and 16 (both integer and float) can be used too. Numerals for
different integer types are distinguished by suffixes. Numerals for different floating point types
are distinguished by suffix: f for float, no suffix for double, l for long double. Numerals for
floating point types must have a ‘.’ or an exponent in them. The details are not repeated in
this example binding, see ISO/IEC 9899:1999, clause 6.4.4.1 Integer constants, and clause 6.4.4.2
Floating constants.

C specifies numerals (as macros) for infinities and NaNs for float:

+∞+∞+∞ INFINITY ?
qNaN NAN ?
sNaN NANSIGNALLING †

as well as string formats for reading and writing these values as character strings.

C has two ways of handling arithmetic errors. One, for backwards compatibility, is by assigning
to errno. The other is by recording of indicators, the method preferred by LIA, which can be
used for floating point errors. For C, the absolute precision underflow notification is ignored.
The behaviour when integer operations initiate a notification is, however, not defined by C.

An implementation that wishes to conform to LIA-1 must provide recording of indicators as
one method of notification. (See 6.2.1.) The datatype Ind is identified with the datatype int.
The values representing individual indicators should be distinct non-negative powers of two and
can be accessed by the following syntax:

E.2 C 85

ISO/IEC WD 10967-1.1:2008(E) Working draft

overflow FE OVERFLOW (?)
underflow FE UNDERFLOW (?)
invalid FE INVALID (?)
infinitary FE DIVBYZERO (?)
absolute precision underflow FE ARGUMENT TOO IMPRECISE †, LIA-2, -3
inexact FE INEXACT (?), IEC 60559

The empty set can be denoted by 0. Other indicator subsets can be named by combining individual
indicators using bit-or. For example, the indicator subset

{overflow, underflow, infinitary}
would be denoted by the expression

FE OVERFLOW | FE UNDERFLOW | FE DIVBYZERO

The indicator interrogation and manipulation operations are listed below, along with the syntax
used to invoke them:

clear indicators feclearexcept(i) ?
set indicators feraiseexcept(i) ?
test indicators fetestexcept(i) ?
current indicators fetestexcept(FE ALL EXCEPT) ?

where i is an expression of type int representing an indicator subset.

E.3 C++

The programming language C++ is defined by ISO/IEC 14882:1998, Programming languages –
C++ [18].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
identifier is provided. Integer valued parameters and derived constants can be used in preprocessor
expressions.

This example binding recommends that all identifiers suggested here be defined in the name-
space std::math.

The LIA-1 datatype Boolean is implemented in the C++ datatype bool.

Every implementation of C++ has integral datatypes int, long int, unsigned int, and
unsigned long int. INT is used below to designate one of the integer datatypes.

NOTES

1 The conformity of short and char (signed or unsigned) is not relevant since values of these
types are promoted to int (signed or unsigned) before computations are done.

2 unsigned int, unsigned long int, and unsigned long long int can conform if oper-
ations that properly notify overflow are provided. The operations named +, (binary) -,
and * are in the case of the unsigned integer types bound to add wrapI , sub wrapI , and
mul wrapI (specified in LIA-2). For (unary) -, and integer / similar wrapping operations
for negation and integer division are accessed. The latter operations are not specified by
LIA.

The LIA-1 parameters for an integer datatype can be accessed by the following syntax:

86 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

maxintI numeric limits<INT>::max() ?
minintI numeric limits<INT>::min() ?
hasinf I numeric limits<INT>::has infinity ?
signed I numeric limits<INT>::is signed ? (not LIA-1)
bounded I numeric limits<INT>::is bounded ?
moduloI numeric limits<INT>::is modulo ? (partial conf.)

The parameter minintI is always 0 for the unsigned types. The parameter moduloI is always
true for the unsigned types. The LIA-1 integer operations are either operators, or declared in
the header <stdlib.h>. The integer operations are listed below, along with the syntax used to
invoke them:

eqI(x, y) x == y ?
neqI(x, y) x != y ?
lssI(x, y) x < y ?
leqI(x, y) x <= y ?
gtrI(x, y) x > y ?
geqI(x, y) x >= y ?

addI(x, y) x + y (?) (if moduloI = false)
add′I(x, y) x + y ?(if moduloI = true)
negI(x) - x ?
subI(x, y) x - y (?) (if moduloI = false)
sub′I(x, y) x - y ?(if moduloI = true)
absI(x) abs(x) ?
signumI(x) sgn(x) †
mulI(x, y) x * y (?) (if moduloI = false)
mul′I(x, y) x * y ?(if moduloI = true)

quotI(x, y) quot(x, y) †
modI(x, y) mod(x, y) †
loosedivI(x, y) x / y (dangerous syntax) ? (bad sem., not LIA-1!)
looseremI(x, y) x % y ? (bad sem., not LIA-1!)

where x and y are expressions of type int or long int as appropriate.

C++ has three floating point datatypes: float, double, and long double. FLT is used below
to designate one of the floating point datatypes.

The LIA-1 parameters for a floating point datatype can be accessed by the following syntax:

rF numeric limits<FLT>::radix ?
pF numeric limits<FLT>::digits ?
emaxF numeric limits<FLT>::max exponent ?
eminF numeric limits<FLT>::min exponent ?
denormF numeric limits<FLT>::has denorm ?
hasinf F numeric limits<FLT>::has infinity ? (not LIA-1)
hasqnanF numeric limits<FLT>::has quiet nan ? (not LIA-1)
hassnanF numeric limits<FLT>::has signalling nan? (not LIA-1)
iec 559F numeric limits<FLT>::is iec559 ?
trapsF numeric limits<FLT>::traps ? (not LIA-1)
tinyness beforeF numeric limits<FLT>::tinyness before ? (LIA-1 extra)

E.3 C++ 87

ISO/IEC WD 10967-1.1:2008(E) Working draft

The C++ language standard presumes that all floating point precisions use the same radix and
rounding style, so that only one identifier for each is provided in the language.

The LIA-1 derived constants for the floating point datatype can be accessed by the following
syntax:

fmaxF numeric limits<FLT>::max() ?
fminNF numeric limits<FLT>::min() ?
fminF numeric limits<FLT>::denorm min ?
epsilonF numeric limits<FLT>::epsilon() ?
rnd errorF numeric limits<FLT>::round error() ? (partial conf.)
rnd styleF numeric limits<FLT>::round style ? (partial conf.)
approx p 10F numeric limits<FLT>::digits10 ? (not LIA-1)
approx emax 10F numeric limits<FLT>::max exponent10 ? (not LIA-1)
approx emin 10F numeric limits<FLT>::min exponent10 ? (not LIA-1)

The C++ standard specifies that the values of the parameter round style are from float round style.

The LIA-1 floating point operations are either operators, or declared in the header <math.h>.
The operations are listed below, along with the syntax used to invoke them:

eqF (x, y) x == y ?
neqF (x, y) x != y ?
lssF (x, y) x < y ?
leqF (x, y) x <= y ?
gtrF (x, y) x > y ?
geqF (x, y) x >= y ?

isnegzeroF (x) isNegZero(x) †
istinyF (x) isTiny(x) †
istinyF (x) -numeric limits<FLT>::min() < x &&

x < numeric limits<FLT>::min()) ?
isnanF (x) isNaN(x) †
isnanF (x) x != x ?
issignanF (x) isSigNaN(x) †

addF (x, y) x + y ?
negF (x) - x ?
subF (x, y) x - y ?
absF (x) abs(x) ?
signumF (x) sgn(x) †
mulF (x, y) x * y ?
sqrtF (x) sqrt(x) ?
residueF (x, y) remainder(x, y) (?)
divF (x, y) x / y ?

exponentF,I(x) expon(x) †
fractionF (x) fract(x) †
scaleF,I(x, n) scale(x, n) †
succF (x) succ(x) †
predF (x) pred(x) †

88 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

ulpF (x) ulp(x) †

intpartF (x) intpart(x) †
fractpartF (x) frcpart(x) †
truncF,I(x, n) trunc(x, n) †
roundF,I(x, n) round(x, n) †

where x and y are expressions of type float, double, or long double, and n is of type int.

An implementation that wishes to conform to LIA-1 must provide all of the LIA-1 operations
in all floating point precisions supported.

Arithmetic value conversions in C++ can be explicit or implicit. The rules for when implicit
conversions are applied are not repeated here. C++ also deals with stream input/output in other
ways, see clause 22.2.2 of ISO/IEC 14882:1998, ‘Locale and facets’. The explicit arithmetic value
conversions are usually expressed as ‘casts’, except when converting to/from string formats.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C++ standard for a full description.

In the format strings % is used to indicate the start of a format pattern. After the %, optionally
a string field width (w below) may be given as a positive decimal integer numeral. For the floating
and fixed point format patterns, there may then optionally be a ‘.’ followed by a positive integer
numeral (d below) indicating the number of fractional digits in the string. The C++ operations
below use HYPHEN-MINUS rather than MINUS (which would have been typographically better),
and only digits that are in ASCII, independently of so-called locale. For generating or parsing
other kinds of digits, say Arabic digits or Thai digits, another API must be used, that is not
standardised in C++. For the floating and fixed point formats, +∞+∞+∞ may be represented as either
inf or infinity, −∞−∞−∞ may be represented as either -inf or -infinity, and a NaN may be
represented as NaN; all independently of so-called locale. For language dependent representations
of these values another API must be used, that is not standardised in C.

For the integer formats then follows an internal type indicator. For t below, the empty string
indicates int, l (the letter l) indicates long int. Finally, there is a radix (for the string side)
and signedness (both sides) format letter (r below): d for signed decimal; o, u, x, X for octal,
decimal, hexadecimal with small letters, and hexadecimal with capital letters, all unsigned. E.g.,
%d indicates decimal numeral string for int and %lu indicates decimal numeral string for unsigned
long int.

For the floating point formats instead follows another internal type indicator. For u below the
empty string indicates double and L indicates long double. Finally, there is a radix (for the
string side) format letter: e or E for decimal. E.g., %15.8LE indicates hexadecimal floating point
numeral string for long double, with a capital letter for the letter component, a field width of
15 characters, and 8 hexadecimal fractional digits.

For the fixed point formats also follows the internal type indicator as for the floating point
formats. But for the final part of the pattern, there is another radix (for the string side) format
letter (p below), only two are standardised, both for the decimal radix: f or F. E.g., %Lf indicates
decimal fixed point numeral string for long double, with a small letter for the letter component.
(There is also a combined floating/fixed point string format: g.)

convertI→I′(x) static cast<INT2>(x) ?
convertI′′→I(s) sscanf(s, "%wtr", &i) ?

E.3 C++ 89

ISO/IEC WD 10967-1.1:2008(E) Working draft

convertI′′→I(f) fscanf(f, "%wtr", &i) ?
convertI→I′′(x) sprintf(s, "%wtr", x) ?
convertI→I′′(x) fprintf(h, "%wtr", x) ?

floorF→I(y) static cast<INT>(floor(y)) ?
roundingF→I(y) static cast<INT>(round(y)) †
ceilingF→I(y) static cast<INT>(ceil(y)) ?

convertI→F (x) static cast<FLT>(x) ?

convertF→F ′(y) (FLT2)y ?
convertF ′′→F (s) sscanf(s, "%w.duv", &r) ?
convertF ′′→F (f) fscanf(f, "%w.duv", &r) ?
convertF→F ′′(y) sprintf(s, "%w.duv", y) ?
convertF→F ′′(y) fprintf(h, "%w.duv", y) ?

convertD′→F (s) sscanf(s, "%wup", &g) ?
convertD′→F (f) fscanf(f, "%wup", &g) ?

convertF→D′(y) sprintf(s, "%w.dup", y) ?
convertF→D′(y) fprintf(h, "%w.dup", y) ?

where s is an expression of type char*, f is an expression of type FILE*, i is an lvalue expression
of type int, g is an lvalue expression of type double, x is an expression of type INT, y is an
expression of type FLT, INT2 is the integer datatype that corresponds to I ′, and FLT2 is the
floating point datatype that corresponds to F ′.

C++ provides non-negative numerals for all its integer and floating point types in base 10.
Numerals for different integer types are distinguished by suffixes. Numerals for different floating
point types are distinguished by suffix: f for float, no suffix for double, l for long double.
Numerals for floating point types must have a ‘.’ or an exponent in them. The details are not
repeated in this example binding, see ISO/IEC 14882:1998, clause 2.9.1 Integer literals, and clause
2.9.4 Floating literals.

C++ specifies numerals for infinities and NaNs:

+∞+∞+∞ numeric limits<FLT>::infinity() ?
qNaN numeric limits<FLT>::quiet NaN() ?
sNaN numeric limits<FLT>::signaling NaN() ?

as well as string formats for reading and writing these values as character strings.

C++ has completely undefined behaviour on arithmetic notification. An implementation that
wishes to conform to LIA-1 must provide recording of indicators as one method of notification.
(See 6.2.1.) The datatype Ind is identified with the datatype int. The values representing
individual indicators should be distinct non-negative powers of two and can be accessed by the
following syntax:

overflow FE OVERFLOW †
underflow FE UNDERFLOW †
invalid FE INVALID †
infinitary FE DIVBYZERO †
absolute precision underflow FE ARGUMENT TOO IMPRECISE †, LIA-2, -3

90 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

inexact FE INEXACT †, IEC 60559

The empty set can be denoted by 0. Other indicator subsets can be named by combining individual
indicators using bit-or. For example, the indicator subset

{overflow, underflow, infinitary}
would be denoted by the expression

FE OVERFLOW | FE UNDERFLOW | FE DIVBYZERO

The indicator interrogation and manipulation operations are listed below, along with the syntax
used to invoke them:

clear indicators feclearexcept(i) †
set indicators feraiseexcept(i) †
test indicators fetestexcept(i) †
current indicators fetestexcept(FE ALL EXCEPT) †

where i is an expression of type int representing an indicator subset.

E.4 Fortran

The programming language Fortran is defined by ISO/IEC 1539-1:1997, Information technology
– Programming languages – Fortran – Part 1: Base language [22]. It is complemented with
ISO/IEC TR 15580:1998, Information technology – Programming languages – Fortran – Floating-
point exception handling [23].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
identifier is provided.

The Fortran datatype LOGICAL corresponds to LIA-1 datatype Boolean.

Every implementation of Fortran has one integer datatype, denoted as INTEGER. An implemen-
tation is permitted to offer additional INTEGER types with a different range, parameterized with
the kind parameter.

The LIA-1 parameters for an INTEGER datatype can be accessed by the following syntax:

maxintI HUGE(x) ?
minintI MININT(x) †

where x is an expression of type INTEGER, and the result returned is appropriate for the KIND type
of x.

The parameter bounded I is always true, and need not be provided. The parameter hasinf I is
always false, and need not be provided.

The LIA-1 integer operations are listed below, along with the syntax used to invoke them:

eqI(x, y) x .EQ. y or x == y ?
neqI(x, y) x .NE. y or x /= y ?
lssI(x, y) x .LT. y or x < y ?
leqI(x, y) x .LE. y or x <= y ?
gtrI(x, y) x .GT. y or x > y ?

E.4 Fortran 91

ISO/IEC WD 10967-1.1:2008(E) Working draft

geqI(x, y) x .GE. y or x >= y ?

addI(x, y) x + y ?
negI(x) - x ?
subI(x, y) x - y ?
absI(x) ABS(x) ?
signumI(x) SIGN(1, x) ?
mulI(signumI(x), absI(y)) SIGN(y, x) ?
mulI(x, y) x * y ?

quotI(x, y) QUOTIENT(x, y) †
modI(x, y) MODULO(x, y) ?
truncdivI(x, y) x / y (dangerous syntax) ? (bad sem., not LIA-1!)
truncremI(x, y) MOD(x, y) (dangerous syntax) ? (bad sem., not LIA-1!)

where x and y are expressions involving integers of the same KIND.

Every implementation of Fortran has two floating point datatypes, denoted as REAL (single
precision) and DOUBLE PRECISION. An implementation is permitted to offer additional REAL types
with different precision or range, parameterized with the kind parameter.

The LIA-1 parameters for a REAL datatype can be accessed by the following syntax:

rF RADIX(x) ?
pF DIGITS(x) ?
emaxF MAXEXPONENT(x) ?
eminF MINEXPONENT(x) ?
denormF IEEE SUPPORT DENORMAL(x) (?)
hasinf F IEEE SUPPORT INF(x) (?) (not LIA-1)
hasqnanF IEEE SUPPORT NAN(x) (?) (not LIA-1)
iec 559F IEEE SUPPORT STANDARD(x) (?)

where x is an expression of the appropriate KIND REAL datatype.

The LIA-1 derived constants for REAL datatypes can be accessed by the following syntax:

fmaxF HUGE(x) ?
fminNF TINY(x) ?
fminF TINIEST(x) †
epsilonF EPSILON(x) ?
rnd errorF RND ERROR(x) † (partial conf.)
rnd styleF RND STYLE † (partial conf.)

where x is an expression of type KIND REAL.

The allowed values of the parameter RND STYLE are from the datatype INTEGER and can be
accessed by the following syntax:

nearesttiestoeven RND NEAREST... †
nearest RND NEAREST †
truncate RND TRUNCATE †
other RND OTHER †

The LIA-1 floating point operations are listed below, along with the syntax used to invoke
them:

92 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

eqF (x, y) x .EQ. y or x == y ?
neqF (x, y) x .NE. y or x /= y ?
lssF (x, y) x .LT. y or x < y ?
leqF (x, y) x .LE. y or x <= y ?
gtrF (x, y) x .GT. y or x > y ?
geqF (x, y) x .GE. y or x >= y ?
unorderedF (x, y) IEEE UNORDERED(x, y) (?), IEC 60559
isnegzeroF (x) x == 0.0 .AND. IEEE IS NEGATIVE(x) (?)
istinyF (x) -TINY < x .AND. x < TINY ?
isnanF (x) IEEE IS NAN(x) (?)
issignanF (x) isSigNaN(x) †

addF (x, y) x + y ?
negF (x) - x ?
subF (x, y) x - y ?
absF (x) ABS(x) ?
signumI(x) SIGN(1.0, x) ?
mulI(signumI(x), absI(y)) SIGN(y, x) ?
mulF (x, y) x * y ?
sqrtF (x) SQRT(x) ?
residueF (x, y) RESIDUE(x, y) †
divF (x, y) x / y ?

exponentF,I(x) EXPONENT(x) ? (dev.: 0 if x = 0)
exponentF,I(x) FLOOR(IEEE LOGB(x)) + 1 (?)
fractionF (x) FRACTION(x) ?
scaleF,I(x, n) SCALE(x, n) ?
scaleF,I(x, n) IEEE SCALB(x, n) (?)
succF (x) NEAREST(x, 1.0) ?
succF (x) IEEE NEXT AFTER(x, HUGE(x)) (?) (dev. at fmaxF)
predF (x) NEAREST(x,−1.0) ?
succF (x) IEEE NEXT AFTER(x, -HUGE(x)) (?) (dev. at −fmaxF)
ulpF (x) SPACING(x) ?

intpartF (x) AINT(x) ?
fractpartF (x) x - AINT(x) ?
truncF,I(x, n) TRUNC(x, n) †
roundF,I(x, n) ROUND(x, n) †

where x and y are reals of the same kind, and n is of integer type.

An implementation that wishes to conform to LIA-1 for all its integer and floating point
datatypes must provideLIA-1 operations and parameters for any additional INTEGER or REAL
types provided.

Arithmetic value conversions in Fortran are always explicit, and the conversion function is
named like the target type, except when converting to/from string formats.

convertI→I′(x) INT(x, kindi2) ?

lbl a FORMAT (Bn) ?(binary)

E.4 Fortran 93

ISO/IEC WD 10967-1.1:2008(E) Working draft

convertI′′→I(f) READ (UNIT=#f,FMT=lbl a) r ?
convertI→I′′(x) WRITE (UNIT=#h, FMT=lbl a) x ?

lbl b FORMAT (On) ?(octal)
convertI′′→I(f) READ (UNIT=#f,FMT=lbl b) r ?
convertI→I′′(x) WRITE (UNIT=#h, FMT=lbl b) x ?

lbl c FORMAT (In) ?(decimal)
convertI′′→I(f) READ (UNIT=#f,FMT=lbl c) r ?
convertI→I′′(x) WRITE (UNIT=#h, FMT=lbl c) x ?

lbl d FORMAT (Zn) ?(hexadecimal)
convertI′′→I(f) READ (UNIT=#f,FMT=lbl d) r ?
convertI→I′′(x) WRITE (UNIT=#h, FMT=lbl d) x ?

floorF→I(y) FLOOR(y, kindi?) ?
roundingF→I(y) ROUND(y, kindi?) †
ceilingF→I(y) CEILING(y, kindi?) ?

convertI→F (x) REAL(x, kind) or sometimes DBLE(x) ?

convertF→F ′(y) REAL(y, kind2) or sometimes DBLE(y) ?

lbl e FORMAT (Fw.d) ?
lbl f FORMAT (Dw.d) ?
lbl g FORMAT (Ew.d) ?
lbl h FORMAT (Ew.dEe) ?
lbl i FORMAT (ENw.d) ?
lbl j FORMAT (ENw.dEe) ?
lbl k FORMAT (ESw.d) ?
lbl l FORMAT (ESw.dEe) ?

convertF ′′→F (f) READ (UNIT=#f, FMT=lbl x) t ?
convertF→F ′′(y) WRITE (UNIT=#h, FMT=lbl x) y ?

convertD′→F (f) READ (UNIT=#f, FMT=lbl x) t ?

where x is an expression of type INTEGER(kindi), y is an expression of type REAL(kind), f is
an input file with unit number #f , and h is an output file with unit number #h. w, d, and e are
literal digit (0-9) sequences, giving total, decimals, and exponent widths. lbl x is one of lbl e to
lbl l; all of the lbl s are labels for formats.

Fortran provides base 10 non-negative numerals for all of its integer and floating point types.
Numerals for floating point types must have a ‘.’ in them. The details are not repeated in this
example binding, see ISO/IEC 1539-1:1997, clause 4.3.1.1 Integer type, and clause 4.3.1.2 Real
type.

Fortran does not specify numerals for infinities and NaNs. Suggestion:

+∞+∞+∞ INFINITY †
qNaN NAN †
sNaN NANSIGNALLING †

as well as string formats for reading and writing these values as character strings.

94 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

Fortran implementations can provide recording of indicators for floating point arithmetic no-
tifications, the LIA preferred method. See ISO/IEC TR 15580:1998, Information technology –
Programming languages – Fortran – Floating-point exception handling [23]. absolute precision
underflow notifications are however ignored.

An implementation that wishes to conform to LIA-1 must provide recording of indicators as
one method of notification. (See 6.2.1.) The datatype Ind is identified with the datatype INTEGER.
The values representing individual indicators are distinct non-negative powers of two and can be
accessed by the following syntax:

overflow IEEE OVERFLOW (?)
underflow IEEE UNDERFLOW (?)
invalid IEEE INVALID (?)
infinitary IEEE DIVIDE BY ZERO (?)
inexact IEEE INEXACT (?), IEC 60559
absolute precision underflowABS PRECISION UNDERFLOW †, LIA-2, -3

... The indicator interrogation and manipulation operations are listed below, along with the syntax
used to invoke them:

set indicators(i) IEEE SET FLAG(i, .TRUE.) (?), only one flag
clear indicators(i) IEEE SET FLAG(i, .FALSE.) (?), only one flag
test indicators(i) CALL IEEE GET STATUS(STATUS VALUE)

.,., (?)
current indicators() CALL IEEE GET STATUS(STATUS VALUE) (?)

where i is an expression of type IEEE STATUS TYPE representing an indicator.

E.5 Common Lisp

The programming language Common Lisp is defined by ANSI X3.226-1994, Information Technol-
ogy – Programming Language – Common Lisp [42].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
identifier is provided.

Common Lisp does not have a single datatype that corresponds to the LIA-1 datatype Boolean.
Rather, NIL corresponds to false and T corresponds to true.

Every implementation of Common Lisp has one unbounded integer datatype. Any mathemat-
ical integer is assumed to have a representation as a Common Lisp data object, subject only to
total memory limitations. Thus, the parameters bounded I and moduloI are always false, and the
parameters bounded I , moduloI , maxintI , and minintI need not be provided.

The LIA-1 integer operations are listed below, along with the syntax used to invoke them:

eqI(x, y) (= x y) ?
neqI(x, y) (/= x y) ?
lssI(x, y) (< x y) ?
leqI(x, y) (<= x y) ?
gtrI(x, y) (> x y) ?

E.5 Common Lisp 95

ISO/IEC WD 10967-1.1:2008(E) Working draft

geqI(x, y) (>= x y) ?

addI(x, y) (+ x y) ?
negI(x) (- x) ?
subI(x, y) (- x y) ?
absI(x) (abs x) ?
signumI(x) (sign x) †
mulI(x, y) (* x y) ?

(the floor, ceiling, round, and truncate can also accept floating point arguments)
(multiple-value-bind (flr md) (floor x y)) ?

quotI(x, y) flr or (floor x y) ?
modI(x, y) md or (mod x y) ?

(multiple-value-bind (rnd rm) (round x y)) ?
ratioI(x, y) rnd or (round x y) ?
residueI(x, y) rm

(multiple-value-bind (ceil pd) (ceiling x y)) ?
groupI(x, y) ceil or (ceiling x y) ?
padI(x, y) (- pd)

(multiple-value-bind (trunc rest) (ceiling x y)) ?
truncdivI(x, y) trunc or (truncate x y) ? (bad sem., not LIA-1!)
truncremI(x, y) rest or (rem x y) ? (bad sem., not LIA-1!)

where x and y are expressions of type integer.

Common Lisp has four floating point types: short-float, single-float, double-float, and
long-float. Not all of these floating point types must be distinct.

The LIA-1 parameters for the floating point types can be accessed by the following constants
and inquiry functions.

rF (float-radix x) ?
pF (float-digits x) ?
emaxF maxexp-T ?
eminF minexp-T ?
denormF denorm-T †
iec 559F iec-559-T †

where x is of type short-float, single-float, double-float or long-float, and T is the string
short-float, single-float, double-float, or long-float as approriate.

The LIA-1 derived constants for the floating point datatype can be accessed by the following
syntax:

fmaxF most-positive-T ?
fminNF least-positive-normalized-T ?
fminF least-positive-T ?
epsilonF T-epsilon ?
rnd errorF T-rounding-error † (partial conf.)
rnd styleF rounding-style † (partial conf.)
NOTE – LIA-1 requires sign symmetry in the range of floating point numbers. Thus the
Common Lisp constants of the form *-negative-* are not needed since they are simply the
negatives of their *-positive-* counterparts.

96 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

The value of the parameter rounding-style is an object of type rounding-styles. The values
of rounding-styles have the following names corresponding to LIA-1 rnd styleF values:

nearesttiestoeven nearesttiestoeven †
nearest nearest †
truncate truncate †
other other †

The LIA-1 floating point operations are listed below, along with the syntax used to invoke
them:

eqF (x, y) (= x y) ?
neqF (x, y) (/= x y) ?
lssF (x, y) (< x y) ?
leqF (x, y) (<= x y) ?
gtrF (x, y) (> x y) ?
geqF (x, y) (>= x y) ?
isnegzeroF (x) (isNegativeZero x) †
istinyF (x) (isTiny x) †
isnanF (x) (isNaN x) †
isnanF (x) (/= x x) ?
issignanF (x) (isSigNaN x) †

addF (x, y) (+ x y) ?
negF (x) (- x) ?
subF (x, y) (- x y) ?
absF (x) (abs x) ?
signumF (x) (sign x) †
mulF (x, y) (* x y) ?
sqrtF (x, y) (sqrt x) ?

(multiple-value-bind (rnd rm) (round x y)) ?
residueF (x, y) rm
divF (x, y) (/ x y) ?

exponentF,I(x) (float-exponent x) †
fractionF (x) (decode-float x) ?
scaleF,I(x, n) (scale-float x n) ?
succF (x) (succ x) †
predF (x) (pred x) †
ulpF (x) (ulp x) †

(multiple-value-bind (int fract) (ftruncate x))?
intpartF (x) int ?
fractpartF (x) fract ?
truncF,I(x, n) (truncate-float x n) †
roundF,I(x, n) (round-float x n) †

where x and y are data objects of the same floating point type, and n is of integer type.

Arithmetic value conversions in Common Lisp can be explicit or implicit. The rules for when
implicit conversions are done is implementation defined.

E.5 Common Lisp 97

ISO/IEC WD 10967-1.1:2008(E) Working draft

convertI→I′′(x) (format nil "~wB" x) ?(binary)
convertI→I′′(x) (format nil "~wO" x) ?(octal)
convertI→I′′(x) (format nil "~wD" x) ?(decimal)
convertI→I′′(x) (format nil "~wX" x) ?(hexadecimal)
convertI→I′′(x) (format nil "~r, wR" x) ?(radix r)
convertI→I′′(x) (format nil "~@R" x) ?(roman numeral)

floorF→I(y) (floor y) ?
roundingF→I(y) (round y) ?
ceilingF→I(y) (ceiling y) ?

convertI→F (x) (float x kind) ?

convertF→F ′(y) (float y kind2) ?
convertF→F ′′(y) (format nil "~wF" y) ?
convertF→F ′′(y) (format nil "~w, e, k, cE" y) ?
convertF→F ′′(y) (format nil "~w, e, k, cG" y) ?

convertF→D′(y) (format nil "~r, w,0,#F" y) ?

where x is an expression of type INT, y is an expression of type FLT. Conversion from string to
numeric value is in Common Lisp done via a general read procedure, which reads Common Lisp
‘S-expressions’.

Common Lisp provides non-negative numerals for all its integer and floating point datatypes
in base 10.

There is no differentiation between the numerals for different floating point datatypes, nor
between numerals for different integer datatypes, and integer numerals can be used for floating
point values.

Common Lisp does not specify numerals for infinities and NaNs. Suggestion:

+∞+∞+∞ infinity-FLT †
qNaN nan-FLT †
sNaN signan-FLT †

as well as string formats for reading and writing these values as character strings.

Common Lisp has a notion of ‘exception’.

However, Common Lisp has no notion of compile time type checking, and an operation can
return differently typed values for different arguments. When justifiable, Common Lisp arithmetic
operations return a rational or a complex floating point value rather than giving a notification,
even if the argument(s) to the operation were not complex. For instance, (sqrt -1) (quietly)
returns a representation of 0 + i.

The notification method required by Common Lisp is alteration of control flow as described
in 6.2.2. Notification is accomplished by signaling a condition of the appropriate type. LIA-1
exceptional values are represented by the following Common Lisp condition types:

overflow floating-point-overflow ?
underflow floating-point-underflow ?
invalid arithmetic-error ?
infinitary division-by-zero ?

98 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

absolute precision underflowabs-precision-underflow †, LIA-2, -3
inexact inexact †, IEC 60559

An implementation that wishes to conform to LIA-1 must signal the appropriate condition type
whenever an LIA-1 exceptional value would be returned, and must provide a default handler for
use in the event that the programmer has not supplied a condition handler.,.,.,.,

E.5 Common Lisp 99

ISO/IEC WD 10967-1.1:2008(E) Working draft

100 Example bindings for specific languages

Working draft ISO/IEC WD 10967-1.1:2008(E)

Annex F
(informative)

Example of a conformity statement

This annex presents an example of a conformity statement for a hypothetical implementation
of Fortran. The underlying hardware is assumed to provide 32-bit two’s complement integers, and
32- and 64-bit floating point numbers. The hardware floating point conforms to the IEEE 754
(IEC 60559) standard.

The sample conformity statement follows.

This implementation of Fortran conforms to the following standards:

ISO/IEC 1539:1991, Information technology – Programming languages – FORTRAN

ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic (also
known as IEC 60559:1989, Binary floating-point arithmetic for microprocessor
systems)

ISO/IEC 10967-1:1994, Language independent arithmetic – Part: 1 Integer and floating
point arithmetic (LIA-1)

It also conforms to the suggested Fortran binding standard in E.4 of LIA-1.

Only implementation dependent information is directly provided here. The information in the
suggested language binding standard for Fortran (see E.4) is provided by reference. Together,
these two items satisfy the LIA-1 documentation requirement.

F.1 Types

There is one integer type, called integer. There are two floating point types, called real and
double.

F.2 Integer parameters

The following table gives the parameters for integer, the names of the intrinsic inquiry functions
with which they can be accessed at run-time, and their values.

Parameters for integer
parameter inquiry function value
maxintI HUGE(x) 231 − 1
mininti MININT(x) −231

hasinfI (none) false

where x is an expression of type integer.

F. Example of a conformity statement 101

ISO/IEC WD 10967-1.1:2008(E) Working draft

F.3 Floating point parameters

The following table gives the parameters for real and double, the names of the intrinsic inquiry
functions with which they can be accessed at run-time, and their values.

Parameters for Floating Point
parameters inquiry function REAL DOUBLE

rF RADIX(x) 2 2
pF DIGITS(x) 24 53

emaxF MAXEXPONENT(x) 128 1024
eminF MINEXPONENT(x) −125 −1021
denorm DENORM(x) true true
iec 559 IEC 559(x) true true

where x is an expression of the appropriate floating point type.

The third table gives the derived constants, the names of the intrinsic inquiry functions with
which they can be accessed at run-time, and the (approximate) values for real and double. The
inquiry functions return exact values for the derived constants.

Derived constants
constants inquiry function REAL DOUBLE

fmaxF HUGE(x) 3.402823466 e+38 1.7976931349 e+308
fminNF TINY(x) 1.175494351 e−38 2.2250738585 e−308
fminF TINIEST(x) 1.401298464 e−45 4.9406564584 e−324
epsilonF EPSILON(x) 1.192092896 e−07 2.2204460493 e−016
rnd errorF RND ERROR(x) 0.5 0.5

where x is an expression of type real or double.

F.4 Definitions

In this implementation of Fortran, the programmer selects among the rounding functions by using
a compiler directive, a comment line of the form

!LIA$ directive

The relevant directives (and the rounding functions they select) are

!LIA$ SELECT ROUND TO NEAREST (default)
!LIA$ SELECT ROUND TO PLUS INFINITY (does not conform to LIA-1)
!LIA$ SELECT ROUND TO MINUS INFINITY (does not conform to LIA-1)
!LIA$ SELECT ROUND TO ZERO (does not conform to LIA-1)

These compiler directives affect all floating point operations that occur (textually) between the
directive itself and the end of the smallest enclosing block or scoping unit, unless superseded by
a subsequent directive.

The above directives select the rounding function for both real and double. In the absence of
an applicable directive, the default is round to nearest. The round to nearest style rounds halfway
cases such that the last bit of the fraction is 0.

102 Example of a conformity statement

Working draft ISO/IEC WD 10967-1.1:2008(E)

The choice between nearestF (x) and underflow(nearestF (x)) for the subnormal range is made
in accordance with clause 7.4 of the IEEE 754 standard. In IEEE terms, this implementation
chooses to detect tinyness after rounding, and loss of accuracy as an inexact result.

F.5 Expressions

Expressions that contain more than one LIA-1 arithmetic operation or that contain operands of
mixed precisions or types are evaluated strictly according to the rules of Fortran (see clause 7.1.7
of the Fortran standard).

F.6 Notification

Notifications are raised under all circumstances specified by the LIA-1. The programmer selects
the method of notification by using a compiler directive. The relevant directives are:

!LIA$ NOTIFICATION=RECORDING (default)
!LIA$ NOTIFICATION=TERMINATE

If an exception occurs when termination is the notification method, execution of the program
will be stopped and a termination message written on the standard error output.

If an exception occurs when recording of indicators is the selected method of notification, the
value specified by IEEE 754 is used as the value of the operation and execution continues. If
any indicator remains set when execution of the program is complete, an abbreviated termination
message will be written on the standard error output.

A full termination message provides the following information:

a) name of the exceptional value (infinitary, overflow, underflow, or invalid),

b) kind of operation whose execution caused the notification,

c) values of the arguments to that operation, and

d) point in the program where the failing operation was invoked (i.e. the name of the source
file and the line number within the source file).

An abbreviated termination message only gives the names of the indicators that remain set.

F.5 Expressions 103

ISO/IEC WD 10967-1.1:2008(E) Working draft

104 Example of a conformity statement

Working draft ISO/IEC WD 10967-1.1:2008(E)

Annex G
(informative)

Example programs

This annex presents a few examples of how various LIA-1 features might be used. The program
fragments given here are all written in Fortran, C, or Ada, and assume the bindings suggested in
E.4, E.2, and E.1, respectively.

G.1 Verifying platform acceptability

A numeric program may not be able to function if the floating point type available has insufficient
accuracy or range. Other programs may have other constraints.

Whenever the characteristics of the arithmetic are crucial to a program, that program should
check those characteristics early on.

Assume that an algorithm needs a representation precision of at least 1 part in a million. Such
an algorithm should be protected (in Fortran) by

if (1/EPSILON(x) < 1.0e6) then
print 3, ’This platform has insufficient precision.’
stop

end if

A range test might look like

if ((HUGE(x) < 1.0e30) .or. (TINY(x) > 1.0e-10)) ...

A check for 1
2 -ulp rounding would be

if (RND ERROR(x) /= 0.5) ...

A program that only ran on IEC 559 platforms would test

if (.not. IEC 559(x)) ...

G.2 Selecting alternate code

Sometimes the ability to control rounding behavior is very useful. This ability is provided by IEC
60559 platforms. An example (in C) is

if (FLT IEC 559) {
fesetround(FE UPWARD);
... calculate using round toward plus infinity ...

fesetround(FE DOWNWARD);
... calculate using round toward minus infinity ...

fesetround(FE NEAREST);
... combine the results ...

}
else {

... perform more costly (or less accurate) calculations ...

}

G. Example programs 105

ISO/IEC WD 10967-1.1:2008(E) Working draft

G.3 Terminating a loop

Here’s an example of an iterative approximation algorithm. We choose to terminate the iteration
when two successive approximations are within N ulps of one another. In Ada, this is

Approx, Prev Approx: Float;
N: constant Float := 6.0; -- max ulp difference for loop termination

Prev Approx := First Guess(input);
Approx := Next Guess(input, Prev Approx);
while abs(Approx - Prev Approx) > N * LIA1.Unit Last Place(Approx) loop

Prev Approx := Approx;
Approx := Next Guess(input, Prev Approx);

end loop;

This example ignores exceptions and the possibility of non-convergence.

G.4 Estimating error

The following is a Fortran algorithm for dot product that makes an estimate of its own accuracy.
Again, we ignore exceptions to keep the example simple.

real A(100), B(100), dot, dotmax
integer I, loss
...
dot = 0.0
dotmax = 0.0
do I = 1, 100

dot = dot + A(I) * B(I)
dotmax = max (abs(dot), dotmax)

end do

loss = expon(dotmax) - expon(dot)
if (loss > digits(dot)/2) then

print 3, ’Half the precision may be lost.’
end if

G.5 Saving exception state

Sometimes a section of code needs to manipulate the notification indicators without losing no-
tifications pertinent to the surrounding program. The following code (in C) saves and restores
indicator settings around such a section of code.

#define ALL INDICATORS (~0) /* all ones */
int saved flags;

saved flags = save indicators();
clear indicators(ALL INDICATORS);
... run desired code ...

... examine indicators and take appropriate action ...

106 Example programs

Working draft ISO/IEC WD 10967-1.1:2008(E)

... clear any indicators that were compensated for ...

set indicators(saved flags); /* merge-in previous state */

The net effect of this is that the nested code sets only those indicators that denote exceptions
that could not be compensated for. Previously set indicators stay set.

G.6 Fast versus accurate

Consider a problem which has two solutions. The first solution is a fast algorithm that works
most of the time. However, it occasionally gives incorrect answers because of internal floating
point overflows. The second is completely reliable, but is known to be a lot slower.

The following Fortran code tries the fast solution first, and, if that fails (detected via indicator
recorded notification(s)), uses the slow but reliable one.

saved flags = ...save indicators()
call ...clear indicators(ALL INDICATORS)
result = FAST SOLUTION(input)

if (..test indicators(FLT OVERFLOW)) then
call ...clear indicators(ALL INDICATORS)
result = RELIABLE SOLUTION(input)

end if
call ...set indicators(saved flags)

Demmel and Li discuss a number of similar algorithms in [51].

G.7 High-precision multiply

In general, the exact product of two p-digit numbers requires about 2 · p digits to represent.
Various algorithms are designed to use such an exact product represented as the sum of two
p-digit numbers. That is, given X and Y , we must compute U and V such that

U + V = X * Y

using only p-digit operations.

Sorenson and Tang [62] present an algorithm to compute U and V . They assume that X and
Y are of moderate size, so that no exceptions will occur. The Sorensen and Tang algorithm starts
out (in C) as

X1 = (double) (float) X ;
X2 = X - X1;

Y1 = (double) (float) Y;
Y2 = Y - Y1;

A1 = X1*Y1;
A2 = X1*Y2;
A3 = X2*Y1;
A4 = X2*Y2;

G.6 Fast versus accurate 107

ISO/IEC WD 10967-1.1:2008(E) Working draft

where all values and operations are in double precision. The conversion to single precision and
back to double is intended to chop X and Y roughly in half. Unfortunately, this doesn’t always
work accurately, and as a result the calculation of one or more of the As is inexact.

Using LIA-1’s roundF operation, we can make all these calculations exact. This is done by
replacing the first four lines with

X1 = round (X, DBL MANT DIG/2);
X2 = X - X1;

Y1 = round (Y, DBL MANT DIG/2);
Y2 = Y - Y1;

LIA-2 specifies the operations add lowF , sub lowF , mul lowF , and other operations to support
higher precision calculations, or higher precision datatypes.

108 Example programs

Working draft ISO/IEC WD 10967-1.1:2008(E)

Annex H
(informative)

Bibliography

This annex gives references to publications relevant to LIA-1.

International standards documents

[1] ISO/IEC Directives, Part 3: Rules for the structure and drafting of International Standards,
1997.

[2] IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems. (Also:
ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.)

[3] ISO/IEC 10967-3, Information technology – Language independent arithmetic – Part 3: Com-
plex integer and floating point arithmetic and complex elementary numerical functions, (LIA-
3).

[4] ISO 6093:1985, Information processing – Representation of numerical values in character
strings for information interchange.

[5] ISO/IEC 10646-1:2000, Information technology – Universal multi-octet character set (UCS)
– Part 1: Architecture and Basic Multilingual plane, second edition.

[6] ISO/IEC 10646-2:2001, Information technology – Universal multi-octet character set (UCS)
– Part 2: Supplementary planes.

[7] ISO/IEC TR 10176:1998, Information technology – Guidelines for the preparation of pro-
gramming language standards.

[8] ISO/IEC TR 10182:1993, Information technology – Programming languages, their environ-
ments and system software interfaces – Guidelines for language bindings.

[9] ISO/IEC 13886:1996, Information technology – Language-Independent Procedure Calling,
(LIPC).

[10] ISO/IEC 11404:1996, Information technology – Programming languages, their environments
and system software interfaces – Language-independent datatypes, (LID).

[11] ISO/IEC 8652:1995, Information technology – Programming languages – Ada.

[12] ISO/IEC 13813:1998, Information technology – Programming languages – Generic packages
of real and complex type declarations and basic operations for Ada (including vector and
matrix types).

[13] ISO/IEC 13814:1998, Information technology – Programming languages – Generic package
of complex elementary functions for Ada.

[14] ISO 8485:1989, Programming languages – APL.

[15] ISO/IEC 13751:2001, Information technology – Programming languages, their environments
and system software interfaces – Programming language extended APL.

H. Bibliography 109

ISO/IEC WD 10967-1.1:2008(E) Working draft

[16] ISO/IEC 10279:1991, Information technology – Programming languages – Full BASIC. (Es-
sentially an endorsement of ANSI X3.113-1987 (R1998) [40].)

[17] ISO/IEC 9899:1999, Programming languages – C.

[18] ISO/IEC 14882:1998, Programming languages – C++.

[19] ISO 1989:1985, Programming languages – COBOL. (Endorsement of ANSI X3.23-1985
(R1991) [41].) Currently (2001) under revision.

[20] ISO/IEC 16262:1998, Information technology - ECMAScript language specification.

[21] ISO/IEC 15145:1997, Information technology – Programming languages – FORTH. (Also:
ANSI X3.215-1994.)

[22] ISO/IEC 1539-1:1997, Information technology – Programming languages – Fortran - Part 1:
Base language.

[23] ISO/IEC TR 15580:1998, Information technology – Programming languages – Fortran –
Floating-point exception handling.

[24] ISO/IEC 13816:1997, Information technology – Programming languages, their environments
and system software interfaces – Programming language ISLISP.

[25] ISO/IEC 10514-1:1996, Information technology – Programming languages – Part 1: Modula-
2, Base Language.

[26] ISO/IEC 10514-2:1998, Information technology – Programming languages – Part 2: Generics
Modula-2.

[27] ISO 7185:1990, Information technology – Programming languages – Pascal.

[28] ISO/IEC 10206:1991, Information technology – Programming languages – Extended Pascal.

[29] ISO 6160:1979, Programming languages – PL/I. (Endorsement of ANSI X3.53-1976 (R1998)
[43].)

[30] ISO/IEC 6522:1992, Information technology – Programming languages – PL/I general-
purpose subset. (Also: ANSI X3.74-1987 (R1998).)

[31] ISO/IEC 13211-1:1995, Information technology – Programming languages – Prolog – Part 1:
General core.

[32] ISO/IEC 8824-1:1998, Information technology – Abstract Syntax Notation One (ASN.1) –
Part 1: Specification of basic notation.

[33] ISO 9001:1994, Quality systems – Model for quality assurance in design, development, pro-
duction, installation and servicing.

[34] ISO/IEC 9126:1991, Information technology – Software product evaluation – Quality charac-
teristics and guidelines for their use.

[35] ISO/IEC 12119:1994, Information technology – Software packages – Quality requirements and
testing.

[36] ISO/IEC 14598-1:1999, Information technology – Software product evaluation – Part 1: Gen-
eral overview.

110 Bibliography

Working draft ISO/IEC WD 10967-1.1:2008(E)

Nationaland other standards documents

[37] ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

[38] ANSI/IEEE Standard 854-1987, IEEE Standard for Radix-Independent Floating-Point Arith-
metic.

[39] The Unicode Standard, version 3.0, 2000. Note that version 3.0 the encoded character reper-
toire is exactly the same as for ISO/IEC 10646-1:2000.

[40] ANSI X3.113-1987 (R1998), Information technology – Programming languages – Full BASIC.

[41] ANSI X3.23-1985 (R1991), Programming languages – COBOL.

[42] ANSI X3.226-1994, Information Technology – Programming Language – Common Lisp.

[43] ANSI X3.53-1976 (R1998), Programming languages – PL/I.

[44] ANSI/IEEE 1178-1990, IEEE Standard for the Scheme Programming Language.

[45] ANSI/NCITS 319-1998, Information Technology – Programming Languages – Smalltalk.

Books, articles, and other documents

[46] J. S. Squire (ed.), Ada Letters, vol. XI, No. 7, ACM Press (1991).

[47] M. Abramowitz and I. Stegun (eds), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Tenth Printing, 1972, Superintendent of Documents, U.S.
Government Printing Office, Washington, D.C. 20402.

[48] W. S. Brown, A Simple but Realistic Model of Floating-Point Computation, ACM Transac-
tions on Mathematical Software, Vol. 7, 1981, pp.445-480

[49] J. T. Coonen, An Implementation Guide to a Proposed Standard for Floating-Point Arith-
metic, Computer, January 1980

[50] J. Du Croz and M. Pont, The Development of a Floating-Point Validation Package, NAG
Newsletter, No. 3, 1984.

[51] J. W. Demmel and X. Li, Faster Numerical Algorithms via Exception Handling, 11th Inter-
national Symposium on Computer Arithmetic, Winsor, Ontario, June 29 - July 2, 1993.

[52] D. Goldberg, What Every Computer Scientist Should Know about Floating-Point Arithmetic.
ACM Computing Surveys, Vol. 23, No. 1, March 1991.

[53] J. R. Hauser, Handling Floating-Point Exceptions in Numeric Programs. ACM Transactions
on Programming Languages and Systems, Vol. 18, No. 2, March 1986, Pages 139-174.

[54] J. E. Holm, Floating Point Arithmetic and Program Correctness Proofs, Cornell University
TR 80-436, 1980.

[55] C. B. Jones, Systematic Software Development Using VDM, Prentice-Hall, 1986.

[56] W. Kahan and J. Palmer, On a Proposed Floating-Point Standard, SIGNUM Newsletter,
October 1979, pp.13-21.

H. Bibliography 111

ISO/IEC WD 10967-1.1:2008(E) Working draft

[57] W. Kahan, Branch Cuts for Complex Elementary Functions, or Much Ado about Nothing’s
Sign Bit, Chapter 7 in The State of the Art in Numerical Analysis ed. by M. Powell and A.
Iserles (1987) Oxford.

[58] W. Kahan, Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point
Arithmetic, Panel Discussion of Floating-Point Past, Present and Future, May 23, 1995, in
a series of San Francisco Bay Area Computer Historical Perspectives, sponsored by SUN
Microsystems Inc.

[59] D. E. Knuth, Semi-Numerical Algorithms, Addison-Wesley, 1969, section 4.4

[60] U. Kulisch and W. L. Miranker, Computer Arithmetic in Theory and Practice, Academic
Press, 1981.

[61] U. Kulisch and W. L. Miranker (eds), A New Approach to Scientific Computation, Academic
Press, 1983.

[62] D. C. Sorenson and P. T. P. Tang, On the Orthogonality of Eigenvectors Computed by Divide-
and-Conquer Techniques, SIAM Journal of Numerical Analysis, Vol. 28, No. 6, p. 1760,
algorithm 5.3.

[63] Floating-Point C Extensions in Technical Report Numerical C Extensions Committee X3J11,
April 1995, SC22/WG14 N403, X3J11/95-004.

[64] D. M. Gay, Correctly Rounded Binary-Decimal and Decimal-Binary Conversions, AT&T Bell
Laboratories, Numerical Analysis Manuscript 90-10, November 1990.

[65] N. L. Schryer, A Test of a Computer’s Floating-Point Unit, Computer Science Technical
Report No. 89, AT&T Bell Laboratories, Murray Hill, NJ, 1981.

[66] G. Bohlender, W. Walter, P Kornerup, D. W. Matula, Semantics for Exact Floating Point
Operations, IEEE Arithmetic 10, 1992.

[67] W. Walter et al., Proposal for Accurate Floating-Point Vector Arithmetic, Mathematics and
Computers in Simulation, vol. 35, no. 4, pp. 375-382, IMACS, 1993.

[68] B. A Wichmann, Floating-Point Interval Arithmetic for Validation, NPL Report DITC 76/86,
1986.

[69] B. A. Wichmann, Towards a Formal Definition of Floating Point, Computer Journal, Vol. 32,
October 1989, pp.432-436.

[70] B. A. Wichmann, Getting the Correct Answers, NPL Report DITC 167/90, June 1990.

[71] J. Gosling, B. Joy, G. Steele, The Java Language Specification.

[72] S. Peyton Jones et al., Report on the programming language Haskell 98, February 1999.

[73] S. Peyton Jones et al., Standard libraries for the Haskell 98 programming language, February
1999.

[74] R. Milner, M. Tofte, R. Harper, and D. MacQueen, The Definition of Standard ML (Revised),
The MIT Press, 1997, ISBN: 0-262-63181-4.

112 Bibliography

	Preamble
	Copyright notice
	Table of contents
	Foreword
	Introduction
	The aims
	The content
	Relationship to hardware
	The benefits

	Clauses
	1 Scope
	1.1 Inclusions
	1.2 Exclusions

	2 Conformity
	3 Normative references
	4 Symbols and definitions
	4.1 Symbols
	4.1.1 Sets and intervals
	4.1.2 Operators and relations
	4.1.3 Exceptional values
	4.1.4 Datatypes
	4.1.5 Special values
	4.1.6 Operation specification framework

	4.2 Definitions of terms

	5 Specifications for integer and floating point datatypes and operations
	5.1 Integer datatypes and operations
	5.1.1 Integer result function
	5.1.2 Integer operations
	5.1.2.1 Comparisons
	5.1.2.2 Basic arithmetic

	5.2 Floating point datatypes and operations
	5.2.1 Conformity to IEC 60559
	5.2.2 Range and granularity constants
	5.2.3 Approximate operations
	5.2.4 Rounding and rounding constants
	5.2.5 Floating point result function
	5.2.6 Floating point operations
	5.2.6.1 Comparisons
	5.2.6.2 Basic arithmetic
	5.2.6.3 Value dissection
	5.2.6.4 Value splitting

	5.3 Operations for conversion between numeric datatypes
	5.4 Numerals as operations in a programming language

	6 Notification
	6.1 Model handling of notifications
	6.2 Notification alternatives
	6.2.1 Recording in indicators
	6.2.2 Alteration of control flow
	6.2.3 Termination with message

	6.3 Delays in notification
	6.4 User selection of alternative for notification

	7 Relationship with language standards
	8 Documentation requirements

	Annexes
	Annex A (normative) Partial conformity
	A.1 Integer overflow notification relaxation
	A.2 Infinitary notification relaxation
	A.3 Denormalisation loss notification relaxations
	A.4 Subnormal values relaxation
	A.5 Accuracy relaxation for add, subtract, multiply, and divide
	A.6 Comparison operations relaxation
	A.7 Sign symmetric value set relaxation

	Annex B (informative) IEC 60559 bindings
	B.1 Summary
	B.2 Notification
	B.3 Rounding

	Annex C (informative) Requirements beyond IEC 60559
	Annex D (informative) Rationale
	D.1 Scope
	D.1.1 Inclusions
	D.1.2 Exclusions
	D.1.3 Companion parts to this part

	D.2 Conformity
	D.2.1 Validation

	D.3 Normative references
	D.4 Symbols and definitions
	D.4.1 Symbols
	D.4.2 Definitions of terms

	D.5 Specifications for integer and floating point datatypes and operations
	D.5.1 Integer datatypes and operations
	More on integer datatypes
	D.5.1.0.1 Unbounded integers
	D.5.1.0.2 Bounded non-modulo integers
	D.5.1.0.3 Modulo integers
	D.5.1.0.4 Modulo integers versus overflow

	D.5.1.1 Integer result function
	D.5.1.2 Integer operations
	D.5.1.2.1 Comparisons
	D.5.1.2.2 Basic arithmetic

	D.5.2 Floating point datatypes and operations
	More on floating point datatypes
	D.5.2.0.1 Constraints on the floating point parameters
	D.5.2.0.2 Radix complement floating point

	D.5.2.1 Conformity to IEC 60559
	D.5.2.1.1 Subnormal numbers
	D.5.2.1.2 Signed zero
	D.5.2.1.3 Infinities and NaNs

	D.5.2.2 Range and granularity constants
	D.5.2.2.1 Relations among floating point datatypes

	D.5.2.3 Approximate operations
	D.5.2.4 Rounding and rounding constants
	D.5.2.5 Floating point result function
	D.5.2.6 Floating point operations
	D.5.2.6.1 Comparisons
	D.5.2.6.2 Basic arithmetic
	D.5.2.6.3 Value dissection
	D.5.2.6.4 Value splitting

	D.5.2.7 Levels of predictability
	D.5.2.8 Identities
	D.5.2.9 Precision, accuracy, and error
	D.5.2.9.1 LIA-1 and error
	D.5.2.9.2 Empirical and modelling errors
	D.5.2.9.3 Propagation of errors

	D.5.2.10 Extra precision

	D.5.3 Conversion operations

	D.6 Notification
	D.6.1 Model handling of notifications
	D.6.2 Notification alternatives
	D.6.2.1 Recording of indicators
	D.6.2.2 Alteration of control flow
	D.6.2.3 Termination with message

	D.6.3 Delays in notification
	D.6.4 User selection of alternative for notification

	D.7 Relationship with language standards
	D.8 Documentation requirements

	Annex E (informative) Example bindings for specific languages
	E.1 Ada
	E.2 C
	E.3 C++
	E.4 Fortran
	E.5 Common Lisp

	Annex F (informative) Example of a conformity statement
	F.1 Types
	F.2 Integer parameters
	F.3 Floating point parameters
	F.4 Definitions
	F.5 Expressions
	F.6 Notification

	Annex G (informative) Example programs
	G.1 Verifying platform acceptability
	G.2 Selecting alternate code
	G.3 Terminating a loop
	G.4 Estimating error
	G.5 Saving exception state
	G.6 Fast versus accurate
	G.7 High-precision multiply

	Annex H (informative) Bibliography

