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0. Introduction

The purpose of this draft International Standard is to provide a common model for language
standards for the concept of procedure calling. The Language-Independent Procedure Calling
standard is an enabling standard to aid in the development of language-independent tools and
services, common procedure libraries and mixed language programming. In mixed language
applications, called procedures would run on language processors operating in server mode, and
the procedures would be called from language processors operating in client mode. Note that
the languages need not be different, and if the processors are the same the model collapses into
conventional single processor programming.

Most programming languages include the concepts of procedures and their invocation. The
main variance between the methods used in various programming languages lies in the ways
parameters are passed between the client and called procedures. Procedure calling is a simple
concept at the functional level, but the interaction of procedure calling with datatyping and
program structure along with the many variations on procedure calling and restrictions on
calling that are applied by various programming languages transforms the seemingly simple
concept of procedure calling into a more complex feature of programming languages.

The need for a standard model for procedure calling is evident from the multitude of variants of
procedure calling in the standardized languages. The existence of the Language-Independent
Procedure Calling standard does not require that all programming languages should adopt this
model as their sole means of procedure calling. The nominal requirement is for programming
languages to provide a mapping to the LIPC from their native procedure calling mechanism, and
to be able to accept calls from other programming languages who have defined a mapping to this
draft International Standard.

The Language-Independent Procedure Calling standard is a specification of a common model for
procedure calling. This international standard is not intended to be a specification of how an
implementation of the LIPC is to be provided. Also, it is important to note that this interna-
tional standard does not address the question of how the procedure call initiated by the client
mode processor is communicated to the server mode processor, or how the results are returned.
The model defined in the LIPC is intended for use by languages so that they may provide
standard mappings from their native procedure model. The LIPC will rely on the Language-
Independent Datatypes standard for the definition of datatypes that are to be supported in the
model for procedure calls provided by the LIPC.

1. Scope

This draft International Standard specifies a model for procedure calls, and a reference syntax for
mapping to and from the model. This syntax is referred to as the Interface Definition Notation.
The model defined in this draft International Standard will include such features as procedure
invocation, parameter passing, completion status, and environmental issues relating to non-local
references and state.

The model for procedure calls that is specified in the LIPC is intended to be used by the Remote
Procedure Call standard as the base model for remote calls with extensions being applied by
RPC where they are necessary to support RPC specific features of procedure calling. The Inter-
face Definition Notation contained in the LIPC is intended to be shared between the LIPC and
the RPC standards with the RPC standard applying appropriate extensions to support
remoteness.
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This standard does not specify:

e the method by which the procedure call initiated by the client mode processor is communi-
cated to the server mode language processor;

 the minimum requirements of a data processing system that is capable of supporting an
implementation of a language processor to support LIPC;

e the mechanism by which programs written to support LIPC are transformed for use by a
data processing system;

¢ the representation of an argument.

2. References _
ISO CD 11404: Language-Independent Datatypes, Working Draft #6.1
ISO CD 11578-1.2: OSI RPC Specification - Part 1: Model
ISO CD 11578-2.2: OSI RPC Specification - Part 2: Interface Definition Notation
ISO 8824-1SO 8825: Abstract Syntax Notation - One

3. Definitions

For the purposes of this draft International Standard, the following definitions apply.

3.1 actual parameter: A value that replaces a formal parameter during a particular procedure call.
3.2 argument: A value communicated between a caller and called procedure via a procedure call.
3.3 Association: Any mapping from a set of symbols to values.

3.4 ASN.1: Abstract Syntax Notation - One

3.5 box: A model of a variable or container that holds a value of a particular type.

3.6 called procedure: The procedure which is invoked by a procedure call.

3.7 caller: A sequence of instructions which invokes another procedure.

3.8 client interface binding: The possession by the caller of an interface reference.

3.9 configuration: Host and target computers, any operating system(s) and software used to
operate a processor.

3.10 execution sequence: A series of global states s,, s,, ... where each state beyond the first is
derived from the preceding one by a single create operation or a single write operation.

3.11 formal parameter: Identification of a parameter in the definition of a procedure.
3.12 global state: The set of all existing boxes and their currently assigned values.

3.13 implementation defined: Possibly differing between processors, but defined for any particular
processor.

2 LIPC WD#6.0 - SC22/WG11 N344
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3.14 implementation dependent: Possibly differing between processors, and not necessarily defined
for any particular processor.

3.15 input parameter: A formal parameter with an attribute indicating that the corresponding
actual parameter is to be made available to the called procedure on entry from the client proce-
dure.

3.16 input/output parameter: A formal parameter with an attribute indicating that the corre-
sponding actual parameters are made available to the called procedure on entry from the client
procedure and to the caller on return from the server procedure.

3.17 interface type: A collection of procedure types, and a mapping of a set of names to this
collection of types.

3.18 invocation context: For a particular procedure call, the instance of the objects referenced by
the procedure, where the lifetime of the objects is bounded by the lifetime of the call.

3.19 interface closure: A collection of procedure closures, and a mapping of a set of names to this
collection of closures.

3.20 interface execution context: The union of the procedure execution contexts for a given inter-
face closure.

3.21 interface reference: An identifier that denotes a particular interface instance,
3.22 interface type: A collection of named procedure types.

3.23 interface type identifier: An identifier that denotes an interface type.

3.24 IDN: Interface Definition Notation

3.25 LID: Language-Independent Datatypes

3.26 marshalling: A process of collecting actual parameters, possibly converting them , and
assembling them for transfer.

3.27 output parameter: A formal parameter with an attribute indicating that the corresponding
actual parameter is to be made available to the caller on return from the server procedure.

3.28 procedure call: The act of invoking a procedure.

3.29 procedure closure: A pair < image, association> where the association defines the mapping
for the image’s global symbols and no others. Procedure closures are the values of procedure
type referred to in the LID.

3.30 procedure execution context: For a particular procedure, an instance of the objects satisfying
the external references necessary to allow the procedure to operate, where these objects have a
lifetime longer than a single call of that procedure.

3.31 procedure image: A representation of a value of a particular procedure type, which embodies
a particular sequence of instructions to be performed when the procedure is called.
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3.32 procedure invocation: The object which represents the triple: procedure image, execution
context, and invocation context.

3.33 procedure name: The name of a procedure within an interface type definition.
3.34 procedure return: The act of return from the called procedure with a specific termination.

3.35 procedure type: The family of datatypes each of whose members is a collection of operations
on values of other datatypes. Note, this is a different definition from procedure value.

3.36 procedure value: A closed sequence of instructions that is entered from, and returns control
to, an external source. Within the text of this draft International Standard, the use of the term
procedure refers to procedure value.

3.37 processor: A compiler or interpreter working in combination with a configuration.
3.38 RPC: Remote Procedure Call

3.39 symbol: A reference in a program text to a value or a box holding a value.

3.40 termination: One of several predefined responses to a procedure call.

3.41 unmarshalling: The process of disassembling the transferred parameters, possibly converting
them, for use by the called procedure on invocation or by the caller upon procedure return.

3.42 value: The set Value contains all the values that might arise in a program execution.

4. Definitional conventions

4.1 Formal Syntax

This draft International Standard defines a formal representation for datatype declaration and
identification. The following notation, derived from Backus-Naur form, is used in defining that
formal representation. "~ In this clause, the word mark is used to refer to the characters used to

define the formal mechanism, while the word character is used to refer to the characters used in
forming procedure and datatype declarations and identifications.

A terminal symbol is a sequence of characters delimited by two occurrences of the quotation-
mark ("), the first of which precedes the first character in the terminal symbol, and the second of
which follows the last character in the terminal symbol. A terminal symbol represents the occur-
rence of a sequence of characters.

A non-terminal symbol is a sequence of marks, each of which is either a letter or the hyphen
mark (-), terminated by the first mark which is neither a letter nor a hyphen. A non-terminal
symbol represents any sequence of terminal symbols which satisfies the production for that non-
terminal symbol. For each non-terminal symbol there is exactly one IDN production. Non-
terminal symbols are highlighted within the text of this draft International Standard by italics.

A repeated sequence is a sequence of terminal and/or non-terminal symbols enclosed between an
open-brace mark ({) and a close-brace mark (}). The sequence of symbols so enclosed is per-

mitted to occur any number of times at the place where the repeated sequence occurs, but is not
required to occur at all.

4 LIPC WD#6.0 - SC22/WGI11 N344
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An optional sequence is a sequence of terminal and/or non-terminal symbols enclosed between
and open-bracket ([) and a close-bracket (]). The sequence of symbols so enclosed is permitted
to occur once at the place where the optional sequence occurs, but is not required to occur at
all. '

An alternative sequence is a sequence of terminal and/or non-terminal symbols preceded by the
vertical stroke mark (|) and followed by either a vertical stroke mark or a full-stop mark (.). The
sequence of symbols so delimited is permitted to occur instead of the sequence of symbols pre-
ceding the first vertical stroke.

A production defines the valid sequences of symbols which a non-terminal symbol represents. A
simple production has the form:

non-terminal-symbol = valid-sequence.

where valid-sequence is any sequence of terminal symbols, non-terminal symbols, optional
sequences, repeated sequences and alternative sequences. The equal-sign mark (=) separates the
non-terminal symbol being defined from the valid-sequence which represents its definition. The
full-stop mark terminates the valid-sequence.

4.2 Whitespace

A sequence of one or more space characters, except within a character-literal or string-literal,
shall be considered whitespace. Any use of this draft International Standard may define any
other characters or sequences of characters to be whitespace, such as horizontal and vertical
tabulators, end of line and page indicators, etc.

A comment is any sequence of characters beginning with the sequence “/*” and terminating with
the first occurrence thereafter of the sequence “*/”. Every character of a comment shall be con-
sidered whitespace.

Any two objects which occur consecutively may be separated by whitespace, without affect on
the interpretation of the syntactic construction. Whitespace shall not appear within lexical
objects.

5. Compliance

An information processing entity may comply with this draft International Standard by mapping
the native calling mechanism of the entity to the model of procedures that is defined in the
LIPC.

Note: The general term “information processing entity” is used in this clause to include anything
which processes information and contains the concept of procedure calling. Information processing
entities for which compliance with this draft International Standard may be approprate include
other standards (e.g., standards for programming languages or language related facilities), specifica-
tions, and common procedure libraries.

5.1 Modes of conformance

A information processing entity claiming conformance to this draft International Standard shall
conform in either or both of the following ways:

1. It shall allow programs written in its language to call procedures written in another language
and supported by another processor, using the model of procedure calls as provided by

5
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clauses 5.1.1, 6, 7, 8, 9, 10. In this case it is said to conform in (and be capable of operating
in) client mode.

2. It shall allow programs written in another language to call procedures in its language (i.e. it
will accept and execute procedure calls generated by another processor which is executing a
program in that other language and which is operating in client mode, and return control to
that client processor upon completion), using the model of procedure calls as provided by
clauses 5.1.2, 6, 7, 8, 9, 10. In this case it is said to conform in (and be capable of operating
in) server mode.

Note: It is also possible in principle for a client processor to use the model for procedure calls
defined in this draft International Standard to call procedures in the same language; running on a
server processor in the same language, and if the processor conforms in both client and server mode,
it is even possible for it to serve itself using this model.

5.1.1 Client mode conformance

In order to conform in client mode, a language processor shall define a mapping from its own
language procedure calling mechanism to the common language-independent procedure calling
mechanism (LIPC) defined in this draft International Standard.

Note: If a program using the LIPC facility is to be portable between processors which conform in
client mode, the program and processors will also need to conform to the relevant language standard
and the relevant standards binding for that language to the LIPC and LID standards.

5.1.2 Server mode conformance

In order to conform in server mode, a language processor shall define a mapping from the model
of procedure calls defined in the LIPC to its own procedure call model.

Note: If a procedure is to be portable between processors which conform in server mode and the
procedure is still to be called by client processors and programs, the procedure, and the processors,
will also need to conform to the relevant language standard and the relevant standards binding for
that language to the LIPC and LID standards.

6. Model

This clause provides a model of procedures, variables, name bindings, execution environments,
and invocation. A series of new datatypes are introduced. Some of these directly correspond to
programming concepts (like variables), and some are used merely to support further definitions.

6.1 Value

The set Value contains all the values that might arise in a program execution. Value contains all
the values definable using the datatypes, type generators, and definitional mechanisms of LID.
Value will also contain boxes, procedure closures, and other kinds of values as described below.

6.2 Box

A box is a model of a variable or container that holds a value of a particular type. Boxes exist
and are manipulated at runtime. They many be named by identifiers in some program text, but
they are distinct from any such syntactic notion. Boxes do not imply any particular implementa-
tion mechanism such as storage. There are three operations defined on boxes:

6 LIPC WD#6.0 - SC22/WG11 N344
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create: --> Value
write: Box x Value -->
read: Box --> Value

Create finds a new box, never before used. Write associates a new value with a given box. Read
returns the last value written to a given box. If read is applied to a box that has never been
written, the value returned is not stipulated.

Note: The type Box is different from any datatype introduced in LID.

Boxes imply the existence of a global state, which is the set of all existing boxes and their cur-
rently assigned values.

All three Box operations take the current global state as an implicit input value Create and read
produce a new current state as an implicit output value.

Note: The global state exists as a modelling concept only. No individual program, running on a
particular machine, can access all parts of the global state. It is a characteristic of distributed systems
that each part of the system can only access a few “local” boxes, and must ask other “remote” parts
of the system to read or write “remote” boxes.

Boxes also imply a notion of time, modelled as a point in an execution sequence. An execution
sequence is a series of global states s, Sy, ... Where each state beyond the first is derived from the
preceding one by a single create operation or a single write operation. All boxes are members of
the set Value.

6.3 Symbol

A symbol is a reference in a program text to a value (or a box holding a value). These are the
values that the program can directly manipulate during execution. A particular program’s
symbols fall into three disjoint categories:

* Global symbols are used to refer to values (including boxes) that exist prior to invocation.

* Local symbols are used to refer to boxes that are created at invocation (the local “stack
frame” variables).

* Argument symbols are used to refer to values (including boxes) that are the arguments of a
particular invocation.

6.4 Procedure image

A procedure image is the embodiment of a sequence of program instructions. Inherent in a
procedure image is the list of global, local, and argument symbols used within the image and the
procedure type which it embodies. (The term “procedure type” is defined in LID.) There are
four operations defined on procedure images: ‘

gsyms: Image --> Sequence(Symbol)
Isyms: Image --> Sequence(Symbo1l)
asyms: Image --> Sequence(SymboT)

spec: Image --> Procedure_Type
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Gsyms returns the global symbols of the image. Lsyms, asyms, and spec return (respectively) the
local symbols, argument symbols, and the procedure type.

Procedure images are tfpica.lly constructed as part of compilation, according to the rules of the
particular programming language involved.

6.5 Association

An association is any mapping from a set of symbols to values.
A: Symbol --> Value

Associations are typically partial, being defined only on the symbols used by a particular proce-
dure image. Let X be a symbol, y a value, and A and B be associations.

[x -> y] denotes an association that maps x to y
A+B denotes an association that satisfies

(A+B)(x) = B(x) if B is defined on X

A(x) otherwise

non

dom (A) denotes the set of symbols x for which A(x) is defined
rng (A) denotes the set of values { A(x) | x is in dom(A) }

6.6 Procedure closure

A procedure closure is a pair < image,association> where the association defines the mapping
for the image’s global symbols and no others. In particular, the local and argument symbols
have no mappings. Procedure closures are the values of procedure type referred to in the LID.

A procedure closure, some of whose global symbols are not mapped, is said to be a partial pro-
cedure closure.

Note: An example of a partial proce'du:e closure is the value of a procedure A nested within a pro-
cedure B before procedure B is activated. This is partial because references from A to B’s local
variables cannot be mapped until the activation of B.

Procedure closures are typically constructed as part of compilation, or during execution,
according to the rules of the particular programming language involved. All procedure closures
are members of type Value.

6.7 Basic procedure invocation

A basic procedure invocation is an invocation that does not involve translating arguments and
return values. Basic invocation is described by the following operation:

invoke: Procedure_Closure x Sequence(Value) --> Status X Sequence(Value)

where Status is the set of termination identifiers (see LID). The first sequence of values repres-
ents the input arguments to the invocation. The second sequence of values represents the values

returned by the invocation. The status represents the termination condition, including the
“normal” termination.

8 LIPC WD#6.0 - SC22/WG11 N344



SC22/WGI11 N344
Applying invoke to the procedure closure < [,A> and input values <V),..V,> results in the
following actions:
Let <A;,...A> = asyms(I)
<Lyy...ly> = 1syms(I)
For i =1 tom, do

LB; = create()

Let Q = A+ [A -> V] + ...+ [A ->V]
+[L ->LB] + ... + [Ly -> LB,]

Then

"Run the image I in the context of association Q"

Running an image in a context is a primitive notion defined by the programming language
processor (or standard) for the language in which I is written. When, and if, this process com-
pletes, the result will be

1. a number of changes to the boxes which comprise the global state, and

2. a value in Status x Sequence(Value).

The association Q is lost at this point. The boxes created in forming Q are no longer accessible
unless the programming language permits them to be ‘returned” in some fashion. (See the
section on Associates below.)

6.8 Extending LID

The datatypes in LID are all “static” types. No notion of time or state is needed to understand
them. However, the datatype Box introduces both the notion of time and state. In this
“dynamic” world model, the LID concepts need to be extended. We need to address “values that
change”, and procedures that change them.

Consider a simple aggregate like a record. Various programming languages can handle static
record values, records that can be changed element by element, and records that can be changed
as a whole. Defining separate LID-style types for all combinations of various aggregates with
various levels of mutability would cause a combinatorial explosion of types.

Thus, the LID aggregates should not be changed, but mutability should be added as an
orthogonal concept. The Box datatype is exactly what is needed. New datatypes can be defined
by combining boxes and other LID types.

The concept of procedure closure, introduced above, is the appropriate extension of the LID
concept of procedure value to the dynamic world model.

6.9 Instances of values

In a static world, there is no need for a distinction between various instances of a value. Two
instances cannot be distinguished unless

1. one instance can be changed without effecting the other (impossible in a static model),
or
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2. the instances are at a different location (and location is not a property of LID values).

The first notion of “instance” can be modelled by putting values in boxes. The second notion
can be handled as well by extending boxes to have locations. The LIPC does not attempt to

model location. However, adding location to boxes is recognized as a compatible extension of
the LIPC model. '

6.10 Pointers

A box value x has an “identity”, x, which can be passed to procedures, and assigned to variables.
It also has a value, distinct from the identity x, which can be changed using write, and accessed
using read.

The LID Pointer datatype is operationally quite similar to the Box datatype. The only dis-
tinction is that the value pointed to by an LID pointer cannot be altered. Thus, an LID pointer
is an immutable Box, and Box is the appropriate semantics for Pointer in a dynamic model.

For simplicity, LIPC identifies Box as the underlying semantics of Pointer. The type Pointer(T)
denotes any box that is constrained by usage to only hold values of type T.

6.11 Interface closure

An interface closure is a collection of named procedure closures. More precisely, it is an associ-
ation that maps a set of symbols (names) to procedure closures.

For example, if Sue, Mary, and Sam are procedure names (symbols), and X, Y, and Z are proce-
dure closures, then

I = [Sue --> X] + [Mary --> Y] + [Sam --> 7]

is an interface closure. Recall that dom(I) = {Sue, Mary, Sam}. Thus, dom(I) is the set of

procedure names in the interface closure I. The procedure closure in [ named by Mary is
denoted I(Mary).

6.12 Interface type

An interface type is a collection of named procedure types. More precisely, it is an association
that maps a set of symbols (names) to procedure types.

For example, if Sue, Mary, and Sam are procedure names, X, Y, and Z are procedure closures,
and XT, YT, and ZT are the corresponding procedure types, then

IT = [Sue --> XT] + [Mary --> YT] + [Sam --> ZT]

is the interface type corresponding to the interface closure I introduced in the preceding section.

6.13 Specifications

The LIPC defines spec on procedure images to return the procedure type of the image. Thus,
spec: Image --> Procedure_Type

spec can be gerieralized to procedure closures by

10 LIPC WD#6.0 - SC22/WG11 N344
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spec: Procedure_Closure --> Procedure_Type
spec (<image,assoc>) = spec (image)

and spec can be further generalized to interface closures by

spec: Interface_Closure --> Interface_Type

For I = [name, --> P,] + ... + [name, --> P_],

spec (I) = [name, --> spec(P,)] + ... + [name, --> spec(P,)]
6.14 Type correctness

It is not meaningful to apply the invoke operation to any procedure closure C and any sequence
of input values <V,,...V_>. Invocation is meaningful only if its arguments are type correct.

Let spec(C) be

PROCEDURE ( a,: ATy, ... ay: AT, )
RETURNS ( ry: RT), ... ro: RT, )
SIGNALS ( E;, ... E )

where a, through a,, are the IN and INOUT arguments (in order), and r; through r_ are the
OUT and INOUT arguments (in order) plus the explicit “returns” result (if present).

Invocation of C on <V,,..V,> is type correct if

n = an (the number of arguments is correct)

For i =1 to n, :
Vi is a value of type AT, (the types of the arguments are correct)

If invocation of C on <V,,..V_> terminates, it produces a result of the form

< status, <W,...W,> >

If C is written in a programming language that preserves type correctness, then the following
information is known about the above result.

status = "normal" or status = E, for some i in 1..en
If status = "normal",
m = rn, and
W; is a value of type RT; (for all j in 1..m)
If status = E, and E; is declared to have structure
Tid Flis woe Tt FTo
then
m = fn, and

W; is a value of type FT; (for all j in 1..m)

11
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6.15 Associates

A value X is an associate of another value y if x can be “extracted” in some fashion from y. This
section defines a number of associate functions which can be used to talk about the “accessi-
bility” of values.

The first such function is Immediate Associates:
IAssoc: Value --> Set(Value)
If x is a value of some non-aggregate type defined in LID, then IAssoc(x) is then empty set. Ifx

is a value of some aggregate type defined in LID, then IAssoc(x) is the set of all elements of the
aggregate.

If X is a box which currently holds a value v,
IAssoc(x) = {v}.

If x is a procedure closure,
IAssoc(x) = {}.

The second associates function is Transitive Associates:

Assoc: Value --> Value

For any value x, Assoc(x) is the smallest set satisfying
X is in Assoc(x)
If y is in Assoc(x), then all elements of IAssoc(y) are in Assoc(X).
Intuitively, Assoc(x) consists of all values that can be extracted from x by applying various

extraction operations on aggregates and read on boxes. Since read depends on the current state,
[Assoc and Assoc depend on the current state as well.

When a procedure closure <I,A> is invoked on inputs <V,,...V,>, it has immediate and direct
access to all the values in
rng(A) union {V,,...V.}
and (with some computation) direct access to all the values in
Z = Assoc ( rng(A) union {V,,...V.} )
The invocation of <I,A> on <V,,..V,> can potentially write any box in Z. It can also return
any value in Z, and build new aggregates out of such values.
Note: It can also create new boxes.

The set Z does not include values that can only be accessed by invoking other procedure clo-
sures.

Note: For example, “own variables” of other procedures are not included in Z.

To include such indirectly accessible values, define an Generalized Immediate Associates func-
tion:

GIAssoc: Value --> Value

12 LIPC WD#6.0 - SC22/WG11 N344
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If x is a procedure closure < LA>,
GIAssoc(x) = rng(A).

If x is any other value,
GIAssoc(x) = IAssoc(x).

Generalized Transitive Associates is defined as:
GAssoc: Value --> Value

For any value x, GAssoc(x) is the smallest set satisfying
X is in GAssoc(x)

If'y is in GAssoc(x), then all elements of GIAssoc(y) are in GAssoc(x).

Intuitively, GAssoc(x) consists of all values that can be extracted from x by applying various
extraction operations on aggregates, read on boxes, AND procedure invocation,

When a procedure closure < I,A>' is invoked on inputs < Vi, Vo> let
GZ = GAssoc ( rng(A) union {(Visseo¥o} )

With the help of other procedure closures, this invocation can potentially write any box in GZ,
It can also return any value in GZ, build new aggregates out of such values, and return them as
well. If y is a value returned by the invocation of <I,A> on < V},..V,>, then the values in
GAssoc(y) that existed before the invocation must all be in GZ.

Note: It is assumed that for a procedure closure <I,A> to invoke another procedure closure
<J,B>, <J,B> must be:

l. in rg(A) (the most common case)
2. accessible from an input argument,

3. constructed out of accessible values.

6.16 Argument translations

When a procedure invocation is required to cross between execution contexts, it may not be
possible to pass the argument and return values directly between these contexts. Consider the
following two examples.

In the first example, a program written in programming language L1 calls a procedure written in
language L2. If L1 and L2 have different datatypes, this call may require translating L1 input
values into their L2 equivalents. On return a reverse translation may be needed.

In the second example, a program calls a procedure written in the same language (thus needing
no datatype translation), but in a separate address space. Assume that pointers are implemented
in a way that ties them to a specific address space (the usual case). So any pointers in the input
values will be tied to the caller’s address space. These pointers must be uniformly replaced by
“equivalent” pointers tied to the procedure’s address space. Again, on return a reverse trans-
lation may be needed.

Argument translations can lose information (e.g., when translating between different floating
point formats), and can disrupt sharing relationships (e.g., when moving pointers between

13
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address spaces). Since these effects are visible to programmers, LIPC must be able to model
them. :

Argument translations can be modelled in the following way. Let C be an arbitrary procedure
closure, and let TF and TB be procedure closures that do forward and backward argument trans-
lations for C. Then we will define

wrap (TF, C, TB)
to be a procedure closure that (when invoked) does the following:
1. invokes TF to translate the input arguments
2. invokes C with the translated arguments, and
3. invokes TB to translate the returned values back again.
The following describes how the wrap function aids in modelling cross execution context calls.
Let X1 and X2 be execution contexts.

Note: It doesn’t matter what an execution context is, just that some sort of translation is necessary
to call from one to the other. .

Let Cl be the procedure closure representing the target procedure in its native context xl1.
Then, '

€2 = wrap (TF, C1, TB)

is the procedure closure which is actually called in context X2. In many cases, calling C2 will
have visibly different effects than calling C1.

A more precise definition of wrap would be:

wrap: Procedure Closure x Procedure_Closure X Procedure_Closure
--> Procedure_Closure

wrap (TF, C, TB) = <IM, [pre->TF] + [main->C] + [post->TB]>
For convenience, assume that TF and TB take a single Sequence(Value) input and produce a

single Sequence(Value) output. This allows TB in particular to be invoked on output sequences
of differing length.

When procedure closure wrap(TF,C,TB) is invoked on input sequence V the image IM causes
the following steps to occur:

1. TF is invoked on <V>, producing <k, W>

(1.1) If € ~= "normal", IM terminates with <k, W>
(1.2) If E = "normal", W is a singleton <W;>

2. C is invoked on W,, producing <F, X>
3. TB is invoked on <X>, producing <G, Y>

-= "normal", IM terminates with <G, Y>
= "normal", Y is a singleton <Y,>

St St

If G
If G

— —h

(3.1
(3.2

4, IM terminates with <F, Y\>
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Using procedure closures to do the argument and result translations allows the full computa-

tional power of the model to be used in expressing these translations. TF and TB can communi-
cate with each other via shared boxes, and can access arbitrary other parts of the global state if

their association maps are defined accordingly. However in typical usage, TF and TB are

expected to be quite simple.

Note: TF and TB are the only places where Value (the union of all types) is used in a conceptual
context.

** EXAMPLES **

Example (1):

Let's assume that we want to model a remote procedure call (RPC) from client
address space (CAS) to server address space (SAS). Let P be a procedure in SAS.
Let MC be the client side marshalling code, and UC be the client side

unmarshalling code. MS and US are the corresponding codes on the server
side. The procedure closure

PW = wrap (US, P, MS)

represents procedure P as exported to the outside world. PW takes "wire
format" data as input and returns "wire format" data as output. The
procedure closure .

PC = wrap (MC, PW, UC)

represents procedure P as imported into CAS. PC's inputs and outputs are
appropriate for CAS.

6.17 Defining Translation Procedures

Translation procedures typically need to take a complex value V and replace only certain
portions of V, leaving the rest of V “congruent” to the original. For example, replacing all boxes
in V with new ones while preserving the sharing structure within V. Expressing this as an algo-
rithm can be somewhat complex. However there are a number of concepts that can help
describe the intended result (leaving the algorithmic details to the implementors).

Let T be some mapping from values to values:

T: Value --> Value

T is an identity on datatype Q if for all values v of type Q,
T(v) = v
Let F be a characterizing operation of datatype Q, and F’ be a characterizing operation on

datatype Q" with the same number of arguments as F. T maps F to F’ if for all values v,,...v_ in
the input domain of F,

TOF(Vieeevy) ) = FY(T(v), oo T(v,) )

If T maps all the characterizing operations of Q to corresponding ones in Q’, we say that “T
maps Q into Q.

T preserves datatype Q if T maps each characterizing operation of Q to itself,

15
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TF is defined as a translation procedure that replaces all the boxes in a value V with new ones
while preserving the sharing structure within V. :

TF invoked on input sequence V operates as follows:

1. Compute the set
{By,...By} = Assoc (V) intersect Boxes
2. Fori=1+ton,
C; = create()
3. Return Z(V), where Z: Value --> Value is a mapping satisfying
For any box B, Z(B) =G
Z preserves all aggregate types except Box
Z is an identity on all non-aggregate types

6.18 Execution Context

An execution context is the instance of the objects satisfying the external references necessary to
allow the procedure to operate, whose lifetime exceeds the lifetime of the procedure call, that can
be referenced by the instantiated procedure. An execution context can contain one Or more
invocation contexts, although any particular procedure has associated with it a specific execution
and invocation context. Each invocation context defines the scope of language semantics, such
as local names. Data utilized by a specific invocation context can be either local or remote.
Local data is defined to be data which has a scope that is limited to the invocation context of
the procedure. External data is defined to be data which has a scope that spans multiple invoca-
tion contexts within a specific execution context.

Note: External data does not necessarily have to be accessible to every procedure defined in a par-
ticular execution context.

6.19 Model overview

A procedure is defined to be a closed sequence of instructions that is entered from, and returns
control to, an external source.

The general structure of a language-independent procedure call can be described as a single
thread of execution in a particular program where the flow of control is passed from one proce-

dure to another. The originator of the call is known as the caller and the procedure being called
is referred to as the called procedure.

Note: It is possible for a called procedure to also be a caller if it makes a call to another procedure
in order to complete its desired function.

Procedures have the ability to exchange data between the client and server via the use of param-
eters (see 6.4). In addition, client and server procedures may also share data through the use of
global data (see 6.4.6). In order for the parameters specified by the caller to be interpreted cor-
rectly, the parameters are required to be marshalled (see 6.4.7) to a base form for transmission
that is shared by both the client and the server procedure. After the data has been transmitted,
the called procedure must then unmarshall (see 6.4.7) the data from the base form into datatypes
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that are defined in the server language or language binding to the LID for that particular lan-

guage.
Note: An example of the process of marshalling and unmarshalling of parameters would be if a
Pascal caller made a call to a Fortran called procedure passing a single character parameter by value.
The Pascal “char” type would map to a LID character. In order to have the LID character be trans-
mitted to the called procedure, the LID character is marshalled to an ASN.1 “char” form, for
example, which is a form that would be understood by both the client and server procedures. The
ASN.1 “char” would then be transmitted to the server and upon receipt it is unmarshalled into a
LID character, which in turn maps to a “character*1” in Fortran.

The following diagram outlines the basic components of the language-independent call model:

Languags—Indapendent Procedure Call Model

Comtrast  Adirihurtes

Client IDN Server
Procedure Procedure
Endpoint
Specifie
Attributen
= Actual
isn
Corntract . Server
Provider Provider

This model illustration how the client and called procedures communicate when their implemen-
tations conform to this draft International Standard. The virtual contract between the caller and
called procedure is defined by the Interface Definition Notation contained within this draft Inter-
national Standard. Upon the instantiation of a call, the marshalling interface marshalls the
parameters and passes this information on to the client LIPC provider. The client LIPC pro-
vider is connected to the server LIPC provider via the actual contract which is the transmittable
form (e.g., ASN.1). The server LIPC provider then unmarshalls the data, via the unmarshalling
interface, into a form that is compatible with the called procedure. Upon return, the process is
reversed with the unmarshalling interface now being the marshalling interface and the
marshalling interface now being the unmarshalling interface.

17
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7 Interface Definition Notation

The Interface Definition Notation is the means defined in this draft International Standard for
specifying declarations for procedures, procedure parameters, datatypes, and attributes. This
concrete notation supports the datatypes defined in the Language-Independent Datatypes
standard. For a language processor to comply with this draft International Standard, a binding
from the procedure calling mechanism on that language processor to the IDN defined in this
draft International Standard needs to be specified in a binding standard. Included in this binding
standard should be the inward and outward mappings for the language’s datatypes to the types
defined in the LID.

7.1 IDN Grammar Syntax

7.1.1 Interface Type Declarations

interface-type = interface [interface-synonym mat ]
[interface-identifier] "begin" interface-body "end".

interface-synonym = identifier.
interface-identifier = object-identifier.
interface-body = {import} {declaration ";"}.

Note: An interface type definition contains the declaration of various interface entities, such as con-
stants, datatypes, components of generated types (e.g., fields of a record), etc. These declarations
associate an identifier with the interface entity given in the declaration. The usage of this identifier is
called its defining occurrence. When this identifier is used elsewhere in the interface type definition,
it refers to the entity associated with its defining occurrence. In order to avoid ambiguity as to
which entity a reference identifier refers to, rules governing the uniqueness of defining identifiers and
rules governing how to resolve reference identifiers are provided in the appropriate clauses.

The interface-synonym in the interface-type declaration is an optional human readable name for
an interface type. The interface-identifier of this production is an object-identifier that uniquely
identifies the interface type definition.

All interface-synonyms shall be unique within the immediately containing interface-type.

7.1.1.1 Type references

If an identifier is used in an interface type definition to refer to an fype-spec, it is called a zype-
reference (see 7.1.9).

A type-reference matches a type-decl if the type-identifier of the type-decl is the same as the identi-
fier component of the rype-reference. The following rules govern the use of type-references
within an interface-type.

If the interface-synonym component of the fype-reference is absent then the type-reference shall
either match a rype-dec! in the immediately containing interface-type or match a type-dec! which
is imported into the immediately containing interface-type (either explicitly as an import-symbol
or implicitly by importing an entire interface type definition). If the zype-reference matches a
type-decl in the immediately containing interface-type, then it refers to the immediately contained
1ype-spec of that rype-decl. Otherwise, the fype-reference shall match at most one imported type-
decl, and the type-reference refers to the immediately contained type-spec of that fype-decl.
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Note: If the type-identifier of an imported type-dec! is the same as a type-identifier defined in the
immediately containing interface-type or is the same as a type-identifier of a type-decl imported from
a different interface type definition, then it may only be referenced using its associated interface-

synonym.

If the interface-synonym component of the type-reference is present then the rype-reference shall
match a fype-decl in the interface type definition denoted by the interface-synonym. The lype-
reference refers to the immediately contained fype-spec of this fype-decl.

7.1.1.2 Value References
If an identifier is used in an interface type definition to refer to a value, it is called a value-
reference. A value-reference shall refer to either:

a) a value-expr used in an value-decl; or

b) an enumeration-identifier; or

¢) a field within a record-type; or

d) a formal parameter of a procedure-decl, procedure-type, or termination-decl; or

€) a return-arg within a procedure-decl or procedure-type; or

f) a formal-value-parm of a parameterized-type-decl.
The value of a value-reference may be known statically, if it refers to a value-expr or enumeration-
identifier. Otherwise, it is determined at the time of procedure invocation or termination.

7.1.2 Import Declaration

import = "imports" ["("import-symbol-Tist")"] “from"
[interface-synonym ":"] object-identifier.

import-symbol-Tist = import-symbol {"," import-symbol}.

import-symbol = identifier.

The import declaration shall be used to allow the current interface-body to reference identifiers
defined in other interface type declarations. The object-identifier in the import statement is the
interface-identifier of the interface type definition in which the symbols are defined. The
interface-synonym in the imporr production, if present, may be used within the scope of the
current interface-body as a prefix when referencing the imported symbol.

Each import-symbol shall be an identifier that is defined by a value-decl, a type-decl, a procedure-
decl, or a termination-decl in the interface-body of the interface type definition denoted by the
object-identifier in the imporr statement. Only those impori-symbols that appear in the import-
symbol-list shall be used within the scope of the current interface-body. The meaning associated
with the impori-symbol is that which it has in its defining interface type definition. If no import-
symbol-list is present, then the entire interface is imported. This is equivalent to explicitly
importing (as an impori-symbol) every identifier defined by a value-decl, type-decl, procedure-decl,
and rermination-decl in the referenced interface type definition.

7.1.3 Declarations
declaration = value-decl | type-decl | procedure-decl | termination-decl.
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7.1.4 Value Declarations

value-decl = “"value" value-identifier ":" constant-type-spec "="
value-expr.

value-identifier -= identifier.

constant-type-spec = integer-type ] real-type | character-type I
boolean-type | enumerated-type ] state-type |
ordinal-type | time-type | bit-type | rational-type |
scaled-type | complex-type.

A value-decl declares an identifier to be equal to a constant value of a given type. This fdenf:}_‘ier
may then be used wherever a value-expr of that type may be used in the interface type definition
(e.g., in declaring the bounds of an array).

All value-identifiers shall be unique within the immediately containing interface-type.

An interface shall only define constants of type “integer”, “real”, “character”, “boolean”, or “enu-
merated”.

value-expr = value-reference | integer-literal | real-Titeral |
character-literal ? boolean-literal | state-literal |
ordinal-Titeral | time-literal | bit-literal
rational-literal | scaled-literal | complex-literal |
void-literal.

A value expression is either a literal (immediate value) of the specified type or a value-reference.
This value-reference shall refer to a value-expr declared in another value-decl or to an enumer-
ation literal (if the specified type is an enumeration).

integer-literal = ["-"]digit{digit}.

real-literal = integer-literal ["."digit{digit}]
[["-"] "E" digit{digit}].
character-literal = "'"character"'".

character =
The value of character shall be any character drawn
from the character set identified by the repertoire
identifier in the production character-type, or from the
default character set if the repertoire identifier is
absent.

boolean-Titeral = "true" | “false".

state-literal = identifier.

ordinal-literal = digit {digit}.

time-literal = digit{digit} ["."digit{digit}].
bit-literal = "@" | "1".

rational-literal = [-] digit{digit} ["/" digit{digit}].
scaled-literal = [-] digit{digit} [fraction].

fraction = "." digit{digit}.

complex-literal = "(" real-part "," imaginary-part ")".

20 LIPC WD#6.0 - SC22/WG11 N344



SC22/WGI11 N344

real-part = real-literal.
imaginary-part = real-literal.

void-literal = "nil".

7.1.5 Datatype Declarations
type-decl = "type" type-identifier "=" type-spec | parameterized-type-decl.

type-identifier = identifier.

A datatype declaration declares an identifier to be a specific type. This identifier may then be
used wherever a fype-spec may be used in the interface (e.g., to define the type of a parameter in
a procedure declaration). The syntax and semantics of the parameterized-type-decl is given in
clause 6.2.2.8.

All type-identifiers shall be unique within the immediately containing interface-type.

The semantics of all datatypes given in this document are consistent with ISO CD 11404
Common Language Independent Datatypes.

type-spec = primitive-datatype | generated-datatype | defined-datatype.
defined-datatype = type-reference [subtype-spec].

The type-reference in the defined-datatype production shall refer to a type-spec. The type-
identifier defined in the immediately containing rype-dec! is a synonym for the type-spec referred
to by the defined-datatype. If the rype-reference refers to an integer-type, real-type, or an
enumerated-type then an optional subtype-spec may be included. If the type-reference refers to a
real-type and a subtype-spec is included, that subtype-spec shall only include a single range of real
values.

7.1.5.1 Primitive Datatypes

primitive-datatype = integer-type
real-type
character-type
boolean-type
enumerated-type
octet-type
procedure-type
state-type
ordinal-type
time-type
bit-type
rational-type
scaled-type
complex-type
void-type.

7.1.5.1.1 The integer datatype
integer-type = "integer" [subtype-spec].

7.1.5.1.2 The real datatype

real-type = "real" [range]
["relative_error" relative-error].
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relative-error = real-literal.

7.1.5.1.3 The character datatype

character-type = "character" ["(" repertoire-list")"].

repertoire-list = repertoire {"," repertoire}.

repertoire = object-identifier.

The value of a repertoire shall be an object identifier specified in ISO 10646 or ISO 7330, or an
object identifier obtained by the procedures specified in ISO 2375, to identify collection of char-
acters.

7.1.5.1.4 The boolean datatype

boolean-type = "boolean".

7.1.5.1.5 The enumerated datatype

enumerated-type = "enumerated" "("enumeration-identifier
{ "," enumeration-i dentifi E‘I"} " ) n
[subtype-spec].

enumeration-identifier = identifier.
An enumerated type is ordered; an enumeration-identifier is considered less than any other

enumeration-identifier if it appears textually earlier than it in the list of enumeration-identifiers in
the enumerated-type.

All enumeration-identifiers shall be unique within the immediately containing enumerated-type.

7.1.5.1.6 The octet datatype
octet-type = "octet".

According to the LID, the octet type is the derived type: array (1..8) of (bit).

7.1.5.1.7 The procedure datatype

procedure-type = "procedure" "("parameter-decls")"
["returns" "("return-arg")"]
[termination-list].

A procedure-type is used to define a reference to a closure. One can invoke such a reference just
as a procedure is invoked. The declaration of a procedure-rype defines the type and direction of
its parameters. For a function it defines the type of its return value. It may define a list of
terminations (exceptional outcomes). Each termination given in the termination-list shall refer to
a termination defined in a rermination-decl.

7.1.5.1.8 The state datatype

state-type = "state" "(" state-value-list ")".
state-value-list = state-value {"," state-value}.
state-value = state-literal | parametric-value.

parametric-value = identifier.
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7.1.5.1.9 The ordinal datatype

ordinal-type = "ordinal".

7.1.5.1.10 The time datatype
time-type = "time" "(" time-unit ["," radix %o THCEOF]R )N,

"year" ] “month" | "day" ] "hour" ] "minute" I "second"” [
parametric-value.

time-unit

radix = value-expr.

factor = value-expr.

7.1.5.1.11 The bit datatype
bit-type = "bit".

7.1.5.1.12 The rational datatype

rational-type = "rational".

7.1.5.1.13 The scaled datatype
scaled-type = "scaled" "(" radix "," factor s

7.1.5.1.14 The complex datatype

comp]ex-type = "complex" [“(" radix "o" factor u)n]'

7.1.5.1.15 The void datatype
void-type = "void".

7.1.5.2 Generated Datatypes

generated-datatype = record-type
select-type
array-type
pointer-type.
7.1.5.2.1 The record datatype
record-type = "record" "of" “("field-Tist")",
field-Tist = field {"," field}.
field = field-name ":" type-spec.

field-name = identifier.
All field-names shall be unique within their immediately containing record-rype or select-type.

7.1.5.2.2 The select datatype

select-type = "choice" "("discriminants")" "of"
“("alternative-field {"," alternative-field}")".

discriminant = value-reference.
alternative-field = subtype-spec field-specifier | default-alternative.

default-alternative = "default" field-specifier.
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field-specifier = field | field-name ":" "void".

A select datatype consists of a value-reference, called the discriminant, and a list of alternative-
fields. Each alternative-field consists of a subrange of the discriminant type and either a fleld-
name and a type-spec, or the void specifier. At most one alternative-field may be the
default-alternative, containing the keyword “default’ in place of the subrange.

The type of the discriminant shall be either an integer-ype, a character-ype, a boolean-type, or an
enumerated-type. The subranges defined in the alternative-fields shall be disjoint and shall be
specified in accordance with the rules governing the discriminant type.

During procedure invocation and termination, exactly one alternative-field is selected for each
select-type parameter. The value of a select-fype parameter is of the type specified by the selected
alternative-field. If the field-specifier of the selected alternative-field is void, then the select-type
has no meaningful value. An alternative-field is selected if the value of the discriminant, at proce-
dure invocation/termination time, lies within the subrange associated with that alternative-field.
If the value of the discriminant does not lie within the subrange of any alternative-field, and a
default-alternative is specified, then the default-alternative is selected.

If the select-type is an input or input/output value, then the value referenced by the discriminant
of the select-type shall be an input value. The value of the discriminant at procedure invocation
shall be used to determine which alternative-field is selected. If the select-type is an output value
and the discriminant is an input value, then the value of the discriminant at procedure invocation
shall be used to determine which alternative-field is selected. If the selecr-zype is an output value,
then the value of the discriminant at procedure termination shall be used to determine which
alternative-field is selected.

All field-names shall be unique within their immediately containing record-type or select-type.

7.1.5.2.3 The array datatype

array-type = "array" "("array-bounds-list")" "of" "("type-spec")".
array-bounds-list = array-dimension {"," array-dimension}.
array-dimension = lower-bound ".." upper-bound | typed-array-bound.

typed-array-bound = defined-datatype.

An array datatype includes a specification of the base type of the array, identified by zype-spec,
and each array-dimension of the array. Each array-dimension has a lower-bound and upper-bound
of the same type. This type shall be either the integer type or an enumerated type. The lower-
bound shall be less than the upper-bound. If the typed-array-range is used to specify the array-
dimension, the resulting type shall be an enumerated type or an integer subtype with a finite
lower-bound and upper-bound. Array bounds may be constant or may be specified as being deter-
mined during procedure invocation and/or termination. Constant array bounds may be specified
using either a constant literal or an identifier declared in a value-decl. Non-constant array
bounds may be described using a value-reference that refers to a field of a record-iype, a formal
parameter of a procedure or termination, or a refurn-arg of a procedure. In this case the bounds
are determined at procedure invocation or termination as dictated below.

If an in or inout array has an array-bound specified by a value-reference, then that value-reference

shall be an in parameter, and the value of the array-bound is the value of that value-reference at
the time of the call.
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If an out array has an array-bound specified by a value-reference, then that value-reference may
be either an in, inout, or out parameter. When the value-reference is an in parameter, the value
of the array-bound is the value of that value-reference at the time of the call. When the variable
Is an out or inout parameter, the value of the bound is the value of that value-reference at the
time of the return from the call.

If an array with one or more variable bounds is contained in a record-type, then the array shall
be the last fleld in the field-listz. A record containing an array with variable bounds shall appear
only as the last field in the field-list of another record.

7.1.5.2.4 The pointer datatype
pointer-type = [pointer-attribute] "pointer" "to" "("type-spec")".

pointer-attribute = "restricted" | "unaliased”.

Abstractly, a pointer consists of a tuple, <label, data>. One can view the data as the value of
an instance of a datatype, and the label as the abstract address of the data. Whenever two
pointers have equivalent labels, they also have the same data. In this case, the pointers are said
to be aliased. Two pointers may, however, have the same data but have different labels. In
addition, the null label is a distinguished label that is not associated with any data.

Aliasing of pointers takes two forms: static and dynamic. Static aliasing occurs when two
pointers have equivalent labels at the same time, €.g., at procedure invocation or at procedure
termination. Dynamic aliasing occurs when two pointers have equivalent labels at different
times, e.g., when an out pointer has the same label at procedure termination as an in pointer had
at procedure invocatien.

When a pointer is passed to a called procedure, representations of both thé label and the value
of the data are passed. Likewise, when a pointer is returned from a called procedure, represen-
tation of both the label and the most recent value of the data are returned.

A pointer with the ‘restricted’ attribute is a pointer that never has the null label and is neither
statically nor dynamically aliased with any other pointer. Restricted pointers can be supported
efficiently; however, due to the optimized protocol it is impossible to determine whether the label
of an inout restricted pointer was changed as a result of executing the called procedure.

A pointer with the ‘unaliased’ attribute is a pointer that may have the null label, but is neither
statically nor dynamically aliased with any other pointer. Unaliased pointers also can be sup-
ported efficiently; however, due to the optimized protocol it is impossible to determine whether
the label of an inout unaliased pointer with a non-null label was changed to a different non-null
label as a result of executing the called procedure.

Note: If a specific restricted pointer has the null label or is aliased with other pointers, or if a spe-
cific unaliased pointer is aliased with other pointers, the results are implementation defined.
Whether it is assumed that the labels of inout restricted and unaliased pointers never change or
always change as a result of executing a called procedure is implementation defined.

A pointer without the ‘restricted” and ‘unaliased’ attributed is a full pointer. Such a pointer may
have the null label and may be statically or dynamically aliased with any other full pointer,
whether in, out or inout. Consequently, it is possible to determine whether two in full pointers
are aliased at the time of procedure invocation; whether two out full pointers are aliased at the
time of procedure termination; whether the label of an inout full pointer was changed as a result
of executing the called procedure and, if so, whether the returned label was originally passed to
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or was created by the called procedure; and whether the label of an out full pointer was ori-
ginally passed to or was created by the called procedure.

The detection and maintenance of static aliasing of full pointers is performed on each procedure
invocation and each procedure termination.

The period during which dynamic aliasing of full pointers is detected and maintained is limited to
the duration of a single, non-callback procedure call. Thus dynamic aliasing is detected and
maintained on invocation and termination of a non-callback procedure, and all procedure
callbacks which occur during its execution. The detection and maintenance of dynamic aliasing
does not occur between any two non-callback procedures.

Note: The existence of pointer aliasing in the application that is external to the pointer declarations
specified in an interface type definition may result in pointer inconsistencies or undefined behavior
either during the execution of a called procedure, its callbacks, or in the calling procedure after the
called procedure terminates.

7.1.5.3 Subtypes
subtype-spec = "select" "("select-element {"," select-element}")".
select-element = value-expr | range.

range = lower-bound ".." upper-bound | ".." upper-bound | Tower-bound "..".

lower-bound = value-expr.

upper-bound = value-expr.

»
A subtype-spec consists of a list of elements, where each element is either a value-expr of the
specified type or a range of values of the specified type. The value-exprs that occur in a subtype-
spec must refer to either a literal (immediate value), an enumeration literal, or to a formal-value-
parm.

7.1.6 Procedure Declarations

procedure-decl = [residence-indicator] "procedure" procedure-identifier
“("[parameter-decis]")"
["returns" "("return-arg")"]
[termination-Tlist].

residence-indicator = "client" | “server".
procedure-identifier = identifier.
parameter-decls = param-decl {"," param-decl}.
param-decl = direction parameter.

direction = "in" | "out" | "inout".

parameter = parameter-name ":" {ype-spec.
parameter-name = identifier.

return-arg = [identifier ":"] type-spec.
termination-list = "raises" "("termination-reference

{||,\| termi"at‘ion-reference} Il)u.

A procedure-decl declares the signature of a procedure supported by the interface. Procedures
may be identified as residing in the client, making them possible targets for procedure callbacks
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from the server. If a procedure is not identified as residing in the client then it shall reside in the
server. In addition to the procedure name, the procedure declaration defines the type of its
parameters. For functions, it defines the type of its return value. The procedure declaration
may define a list of terminations (exceptional outcomes). Each termination given in the
termination-list shall refer to a termination defined in a rermination-deci.

All procedure-identifiers shall be unique within the immediately containing interface-type.

A procedure-decl also defines the direction of each parameter; i.e., whether the parameter is an
input, an input/output, or an output parameter.

All parameter-names shall be unique within the immediately containing procedure-decl, procedure-
lype or termination-decl.

If an identifier is specified for a return-arg, then that identifier shall be distinct from all
parameter-names in the immediately containing procedure-dec! or procedure-type.

7.1.7 Termination Declarations

termination-dec]l = "termination" termination-identifier
"("[parameter {"," parameter} ]")".

termination-identifier = identifier.

A termination-decl declares the parameters associated with a specific termination and associates a
termination-identifier with this termination. If a specific procedure includes this rermination-
identifier in its termination-list, then this termination becomes a valid termination of that proce-
dure.

All termination-identifiers shall be unique within the immediately containing interface-rype.

7.1.8 Parameterized Types

parameterized-type-decl = "type" type-identifier
"("formal-value-parms")" "=" type-spec.

formal-value-parms = forma]—va]ue-pa_rm {"," formal-value-parm}.
formal-value-parm = identifier ":" value-param-type-spec.

value-parm-type-spec = type-spec.

A parameterized-type-dec! introduces a partial specification of a datatype. It associates a Lype-
identifier and a set of formal parameters, called formal-value-parms, with a type-spec. Each
Sformal-value-parm is itself an identifier that can be referenced from within the type-spec. Refer-
ences to these formal-value-parms can only be used in place of value-exprs within the type-spec
(e.g., in place of an array bound).

Each formal-value-param has a value-param-type-spec associated with it, specifying the type of the
formal-value-param. This type shall be a type that a value-expr may have in an interface type
definition.

The type-identifier introduced by a parameterized-type-dec! can be used anywhere a rype-spec can
be used in the interface, as long as actual values are provided for the formal-value-parms of the
parameterized-type-spec. Hence, whenever this fype-identifier is referenced, it shall be referenced
as a parameterized-type-reference.
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A parameterized-type-decl shall not directly reference itself (via a parameterized-type-reference)
nor shall it reference itself indirectly (via a parameterized-type-reference to a different
parameterized type the directly or indirectly references this parameterized type).

All formal-value-parms shall be unique within the immediately containing parameterized-type-decl.

7.1.9 ldentifiers

object-identifier

"{"ObjectIdComponent {ObjectIdComponent}"}".
identifier | digit | identifier "("digit {digit}")".

ObjectIdComponent

The syntax for object-identifier is that of an ASN.1 ObjectldentifierValue, as defined in ISO 8824.

type-reference = [interface-synonym "::" ] identifier |
parameterized-type-reference.

parameterized-type-reference = [interface-synonym "::"]
identifier "("actual-value-parm
{"," actual-value-parm}")".

actual-value-parm = value-reference.

Wherever a parameterized-type-reference is used in the interface-type, it shall reference the type-
spec of a parameterized-type-decl. An actual-value-parm must be supplied for each formal-value-
parm of the parameterized-type-decl. The type of an actual-value-parm must be the same as the
type of the corresponding formal-value-parm. The semantics of the resulting type-spec is that
obtained by replacing each formal-value-parm reference within the zype-spec by the corresponding
actual-value-parm.

value-reference = [interface-synonym "::"]
identifier {"." identifier}.

termination-reference = [interface-synonym "::"] identifier.
identifier = Tetter {pseudo-letter}.

'Ietter = llAl\ IIBII IICII IID“ IIEII IlFII lthl IIHII IUIII IIJII IIK!I IILII I I!Mll [ IINII IIIOII |
e e - e el Nl R A
Itall I!bll “C" lldll lleH llfll llgll tlhll ll-i n "j" Ilkll II'I n | llmll |llnll ] "0"
Ilpll Ilqll u rll IISII lltli Ilutl IIVII “wll lell Ilyll Ilzll "

pseudo-letter = letter | digit | underline.
d-lgnlt = Ilellllflll "2"|"3"|"4"["5“'"6“|"?"|"8"|“g".

underline = "_",
7.1.9.1 Value references to fields

A value-reference matches a field if:
a) the field is immediately contained within a record-type R; and
b) the value-reference is contained within R; and

c) the first identifier component of the value-reference is the same as the field-name of the
field; and

d) the value-reference is not contained within a procedure-type that is ccatained within R; and
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e) there is no record-rype R2 such that R2 is contained within R, and a), b), ¢) and d) are
true when substituting R2 for R.

If a value-reference matches a field , then the first identifier of the value-reference refers to that
field. If the ith identifier of a value-reference refers to a field and the value-reference consists of
more than i identifiers, then the field that the ith identifier refers to shall be a record-type, and the
(i+ 1)th identifier of the value-reference shall be the same as a field-name of this record-type. The
(i+ 1)th identifier of the value-reference refers to the field associated with the field-name. If the
ith identifier of a value-reference refers to a field and the value-reference consists of exactly i iden-
tifiers, then the value-reference refers to this field.

7.1.9.2 Value references to parameters, return-args, or to fields contained
within them
A value-reference matches a parameter (return-arg) if:

a) the value-reference does not match a field; and

b) the parameter (return-arg) is immediately contained within a procedure-decl or procedure-
type P; and

c) the value-reference is contained within P; and

d) the first identifier component of the value-reference is the same as the parameter-name
(identifier) of the parameter (return-arg); and

e) the value-reference is not contained within a procedure-type (distinct from P) that is con-
tained within P.

If a value-reference matches a parameter (return-arg) and the value-reference consists of a single
identifier, then the value-reference refers to that parameter (return-arg). Otherwise, the paramerer
(return-arg) must be a record-type and value-reference shall refer to a fleld, following the rules
given in clause 7.1.9.1.

7.1.9.3 Value references to formal-value-parms

A value-reference matches a formal-value-parm if:
a) the value-reference does not match a field, a parameter, nor a return-arg; and
b) the formal-value-parm is immediately contained within a parameterized-type-decl; and
c) the value-reference is contained within the fype-spec of this parameterized-type-decl and is

the same as the formal-value-parm.

If a value-reference matches a formal-value-parm then it refers to that Sormal-value-parm.
7.1.9.4 Value references to value-exprs

A value-reference matches a value-decl if the value-identifier of the value-decl is the same as the
identifier component of the value-reference.

If the interface-synonym component of the value-reference is absent, and the value-reference
matches a value-decl in the immediately containing interface-rype, and the value-reference does
not match a field, a parameter, a return-arg, nor a formal-value-arg, then the value-reference
refers to the immediately contained value-expr of that value-decl. Otherwise, if the interface-
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synonym component of the value-reference is absent, and the value-reference matches exactly one
imported value-decl, and the value-reference does not match a field, a parameter, a return-arg, nor
a formal-value-parm, then the value-reference refers to the immediately contained value-expr of
that value-decl.

Note: If the value-identifier of an imported value-decl is the same as a value-identifier defined in the
immediately containing interface-type or is the same as a value-identifier of a value-decl imported
from a different interface type definition, then it may only be referenced using its associated interface-
synonym.

If the interface-synonym component of the value-reference is present and value-reference matches
a value-decl in the interface type definition denoted by the interface-synonym, then the value-
reference refers to the immediately contained value-expr of this value-decl.

7.1.9.5 Value references to enumeration-identifiers

When the type-identifier component of the value-reference is present, a value-reference matches an
enumeration-identifier of an enumerated-type if the type-identifier of the value-reference is the same
as an enumeration-identifier of the enumerated-type. If the type-identifier is not present, a value-
reference matches an enumeration-identifier of an enumerated-type if the identifier component of
the value-reference is the same as an enumeration-identifier of the enumerated-type.

If the interface-synonym component of the value-reference is absent, and the value-reference
matches exactly one enumeration-identifier in the immediately containing interface-type, and the
value-reference does not match a field, a parameter, a return-arg, a formal-value-parm, nor a
value-expr, then the value-reference refers to the matching enumeration-identifier. Otherwise, if
the interface-synonym component of the value-reference is absent, and the value-reference matches
exactly one imported enumeration-identifier, and the value-reference does not match a field, a
parameter, a return-arg, a formal-value-parm, nor a value-expr, then the value-reference refers to
the imported matching enumeration-identifier.

If the interface-synonym component of the value-reference is present, and the value-reference
matches exactly one enumerarion-identifier in the interface type definition denoted by the
interface-synonym, and the value-reference does not match a value-expr in the definition denoted
by the interface-synonym, then the value-reference refers to the matching enumeration-identifier.

7.1.9.6 Termination References

The rules governing the resolution of rermination-references are identical to the rules governing
the resolution of zype-references. '

7.1.10 User Defined Letters

The set of letters in the character set defined by a processor shall be user specified. The default
set of letters defined by the LIPC are the upper case letters ‘A’ through ‘Z’. A user defined set
of letters shall include the default set of letters.

Note: User defined letters allow an implementation to have internationalized procedure-ids.

Note: Issues concerning case sensitivity are the responsibility of the link-editor which is outside the
scope of the LIPC standard.
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8 Parameter Passing

Any datatype defined in the Common Language-Independent Data Types standard can be the
datatype of a formal parameter of a language-independent procedure call. The LIPC defines
parameter passing solely on the passing of values. Therefore an actual parameter may be any
expression yielding a value of the datatype required by the call. The parameter passing model
defined in this draft International Standard is a strongly typed model.

Note: Weak typing can be accomplished by relaxing association rules and adding implicit type con-
versions in the language bindings to this International Standard.

There are four basic types of parameter passing defined in this International Standard:

1. Call by Value Sent on Initiation
2. Call by Value Sent on Request
3. Call by Value Returned as Specified

4, Call by Value Returned when Available

8.1 Call by Value Sent on Initiation

This is the simplest form of parameter passing. The formal parameter of the called procedure
requires a value of the datatype concerned. The virtual contract is that the client evaluates the
actual parameter and supplies the resulting value at the time of transfer of control. The called
procedure accepts this value and no further interaction takes place with respect to this param-
eter.

Note: This type of parameter passing is commonly known as Call by Value.
8.2 Call by Value Sent on Request

The virtual contract for this type of parameter passing is that the client undertakes to evaluate
the actual parameter and supply the resulting value, but only upon receipt of a request to do so
from the called procedure. The evaluation and passing of the actual parameter takes place if and
only if the called procedure requests it.

The essential difference from Call by Value Sent on Initiation is that in some cases the value sent
will be different.

Note: While this mechanism is not common to programming languages as an explicit standards
requirement, it is an optimization mechanism for programming language implementations.

Note: An example would be the current date and time.
Call by Value Sent on Request could be regarded as a call of an implicit procedure parameter
where the called procedure does the evaluation one time. Any further reference in the called

procedure to the formal parameter simply uses the value supplied. The called procedure does
not issue a further request for a value.
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8.3 Call by Value Returned on Termination

In this type of parameter passing, the virtual contract is that at the termination of the call, the
called procedure will supply a value of the datatype of the formal parameter and the client will
accept it and send the returned value to the appropriate destination.

Note: This type of parameter passing is better know as Call by Value Return and is essentially the
‘out” equivalent of Call by Value Sent on Initiation.

Conceptually the client and not the server procedure sends the returned value to the destination,
because the client language or mapping determines the interpretation of the destination and the
process of return.

Note: In a closely coupled environment where providing the actual destination (hardware address)
to the called procedure is a trivial task, there is no reason why the actual service contract at the
implementation level should not include providing the actual destination to the called procedure,
which then sends its returned value directly there. This is an additional service level function that
the called procedure contracts to perform for the caller, which does not affect the logical division of
responsibility at the virtual contract level.

Note: This kind of parameter passing also accommodates the return of a value for the procedure as
a whole, in the case of function procedures. Parameter passing utilizing Call by Value Returned as
Specified accommodates function procedures through the use of an additional anonymous param-
eter.

8.4 Call by Value Returned when Available

In this type of parameter passing, the called procedure returns the parameter value at any time
after the returned value is available. It could be returned while the call is still in progress, at the
termination of the call, or some time later. What time is chosen is determined by the binding of
the LIPC based service and is not a matter for the LIPC itself. All the LIPC model requires is
that this possibility be accommodated for. The virtual contract is that whenever the called pro-
cedure returns the value, the client will accept it and send the returned value to the appropriate
destination.

Note: In this type of parameter passing. the possibility that the returned value will be returned more
than once is not excluded.

8.5 LIPC Parameter Passing related to Common terminology

The following notes map the common parameter passing mechanisms that exist languages to the
four defined parameter passing schemes that are defined in this draft International Standard.

Note: (1) Call by Value (In parameters): This is the simplest of all common parameter passing
mechanism and appears directly in the LIPC as Call by Value Sent on Initiation (see clause 6.4.1).
The virtual contract is fulfilled by the client evaluating the actual parameter and sending the value to
the called procedure, and the called procedure accepting it. No further action is required of the
caller. The server procedure does what it likes with the received value, but can make no further
demands on the client with respect to the actual parameter that generated the value.

Note: (2) Call by Value Return (Out parameters): This common parameter passing mechanism is
also directly supported in the LIPC by Call by Value Returned as Specified. The virtual contract for
this mechanism involves the concept of passing a parameter only as a means of receiving a value. If
in a specific language binding, a parameter is passed at the language processor level, what is passed is
an implicit pointer to a value of the datatype concerned, which the called procedure contracts to set.
The called procedure cannot access the value of the datatype prior to the call. Some languages in
their datatyping model, explicitly distinguish between the datatypes of values held by variables and
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those of the variables themselves. For example, some languages have an explicit dereference (i.c.,
obtain the value of). For languages without such a model, the LIPC allows that distinction to be
made at the language binding service contract level without disturbing the virtual contract model.

Note: (3) Call by Value Send and Retumn (In-out parameters): This common parameter passing
mechanism is an in/out mechanism where the actual parameter can be evaluated to a destination for
Call by Value Return as Specified (see clause 6.4.3). However, in the LIPC model it is regarded as a
parameter with both that property and that of Call by Value Sent on Initiation (see clause 6.4.1).
Equivalently, it can be expanded into two implicit parameters being of each kind.

The actual parameter corresponding to a formal parameter of a given datatype “t” must be capable,
on evaluation, of yielding a destination for such a value (i.e., an implicit or explicit pointer to a value
of datatype “t”). For the “in” part of the in/out specification, the current value held in that destina-
tion on initiation of the call is retrieved by the client and relayed to the called procedure. The desti-
nation itself is also recorded. In the virtual contract the client receives the returned value, the “out”
part of the in/out specification, from the called procedure and sends it to that destination.

Where the language binding or service contract passes the destination itself to the called procedure as
part of the copy-in/copy-out, the called procedure must contract to retrieve the “in” value imme-
diately on transfer and then to send the returned “out” value to the destination on completion of the
call. While the call is in progress, the client explicitly or implicitly marks the destination as “read
once only, write once only” and any attempt by the server procedure to violate that condition is an

exception.
Note: (4) Call by Reference: In this case a formal parameter of datatype “t” is interpreted as an

implicit “pointer to “t”” and the actual parameter must evaluate to such a pointer accordingly. This
pointer to “t” is then passed by value as an “in” parameter.

This is not passed as an in/out parameter due to the fact that this would cause an extra level of
indirect addressing.

The virtual contract is that the client provides an access path to the destination. The destination is
fixed, but the access path can be used by the called procedure both reading and writing of values of
datatype “t”. In the close-coupled case the service contract may well involve passing the actual desti-
nation with the client needing to take no further action until the call is complete. In a loosely-
coupled service environment the service contract will involve client action during the call, responding
to requests by the server for a value of datatype “t” to be read or written. In effect this would be
reciprocal calls with the “in” and “out” directions reversed.

These reciprocal calls implied by Call by Reference in a loosely-coupled environment represent a
potential significant overhead, which may result in Call by Reference not being supported in such
services.

8.6 Global data

Global data refers to data that is defined in a shared execution context that can be referenced by
another procedure executing in a different invocation context within the same execution context.
Conceptually, global data requires the marshalling/unmarshalling of global data into individual
information units. Implementations conforming to the Language-Independent Procedure Calling
standard shall support an implementation-defined mechanism for the sharing of global data and
may support partitioning of global data. Partitioning of data refers to the ability to insulate data
from a procedure. It is recommended that implementations choose to support global data via
implicit parameters that are passed on the call, but this may not be the only valid mechanism
where the marshalling/unmarshalling operations are known to be trivial.
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Note: In the IDN, global data is represented as an explicit parameter to the procedure. In a partic-
ular language mapping, these explicit parameters can be provided to the procedure using such mech-
anisms as external variables and as such are implicit parameters.

Note: Global data should be available to the server by the time it is needed (i.e., before invocation,
at invocation, before use is required, or at the time access is required).

Note: The mechanism by which objects in the invocation context are associated to the global
objects may be defined by the language, language mapping, or left to the implementation.

8.7 Parameter Marshalling / Unmarshalling

It is necessary that data to be communicated between the caller and the called procedure be
assimilated into a transmissible form. This transmissible form will allow the client and called
procedures to encode their LID mapped data into a form that is suitable for both language inde-
pendent calling on the same system and remote procedure calls. The specification of this
transmissible form is outside the scope of this standard.

Note: An example of a form that would be suitable for this use would be Abstract Syntax Notation
- One.

The marshalling of data refers to what the caller must do in order to transform its data into a
form for transmission to the called procedure. Unmarshalling of data refers to what the called
procedure must do in order to take the data passed by the caller and transform this into data
suitable for the language of the called procedure. Marshalling is not limited to calling a proce-
dure. Upon return, the called procedure must marshall any returned data into the form shared
by the two procedures. Unmarshalling of data is not limited to the called procedure, since the
caller must be able to unmarshall any data that is returned by the called procedure.

Since marshalling and unmarshalling of data for procedure calls is often complex and degrades
performance, an implementation may want to perform optimization of this process wherever
possible. Optimizations will likely be available when the client and server systems are homoge-
neous and the languages involved in the procedure call have the same data representation.

8.8 Pointer Parameters

A Call by Value Sent on Initiation of a pointer allows access to the entity pointed to. The
pointer value itself cannot be changed by the called procedure in order for the pointer to refer to
something else after the call.

Note: For example, if the value sent is a pointer to a record, after the call the pointer still points to
the same record even though the values in the fields of the record may have changed.

If changing what the pointer refers to is needed, then another level of indirect referencing has to
be invoked, either directly (as with call by reference) or indirectly (as with call by value-returned).
An access path via pointer parameters implies access to all lower levels, including the primitive
datatype values referenced by the lowest level pointers.

8.9 Private types

A private type is a type that is protected from modification within the procedure regardless of
the attributes on a parameter being passed as a private type. No operations shall be permitted

on a protected parameter. A private type is declared by including the restricted keyword prior to
the LID type in the IDN.
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Note: A private type can be considered as an octet stream that can have no operations performed
on it.

9 Run-time Control
9.1 Terminations

An implementation conforming to the Language-Independent Procedure Calling standard shall
provide a method for raising and handling terminations that occur during the initialization, exe-
cution, or termination of a procedure call. Raising a termination does not necessarily imply that
the called procedure should be terminated immediately, however terminations that are raised
should not be ignored all together by the implementation. Some examples of possible termi-
nations include:

* hardware or software detected events which may or may not be critical to the proper exe-
cution of the application

* asynchronous events
¢ cancellation of a call
* invalid interface instance identifier

* normal termination of a procedure call which returns the output and Input/output parame-
ters '

* aborting a procedure

* cancelling a procedure

9.1.1 Cancelling a procedure

To cancel a procedure call means to issue a command from outside that causes the procedure to
terminate, or be terminated, in an orderly way. In the case of an asynchronous call, the cancel-
lation may come from the caller. Whether the call is synchronous or asynchronous, the
command to cancel a procedure may come from an outside source, L.e., outside the LIPC model.
The two cases are indistinguishable to the procedure being called. In both cases, the caller
receives a notification via an implementation defined termination raising mechanism.

9.1.2 Abnormal Termination

A procedure terminating abnormally raises a termination as a result of some condition other
than an external cancel command. The usual reason a procedure abnormally terminates is that
the procedure encounters some condition that makes it impossible to continue or impossible to
successfully complete the function(s) requested by the caller. The caller is notified by the imple-
mentation defined terminations raising mechanism. Abnormal terminations can be divided into
WO cases:

* a procedure detects an abnormal termination as part of its logic and executes an explicit
abort procedure as a result

* an abnormal termination occurs during execution of the procedure, causing a fault at some
level lower than that of the procedure logic; the fault causes control to go to some generic
fault-handling routine within the procedure that terminates the procedure as in case one.
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A special case of abnormal termination of a procedure is the case where one or more of the
actual parameter values in the procedure call are incorrect, e.g., a value is of the wrong datatype
_ for a given parameter or of the right datatype but outside the required range. One can distin-
guish here between parameter values that violate the advertised requirements of the procedure
interface as specified in the IDN and values (or combination of values) that violate application
specific constraints that cannot be specified in the IDN formalism and hence must be checked
explicitly by the procedure itself. However, from the point of view of the caller, the only differ-
ence between the two cases is that in the first case, the error specified is one of a predefined set
specified in the International Standard (see 9.1.4). In the second case, it is an application-
specific condition code specified in some other, perhaps application-specific, standard.

9.1.3 Normal termination

A procedure terminating normally raises a termination signifying a normal return. A procedure
may report additional terminations; e.g., at return from a synchronous procedure call, the proce-
dure may return two or more terminations; however, the first of these terminations must specify
whether termination is normal, abnormal, or via a cancel. If the procedure call is asynchronous,
the procedure may return an additional termination code before, during, or after termination.

9.1.4 Predefined conditions
As a minimum, implementations conforming to this draft International Standard should report
the following terminations during a procedure call: '

e called procedure unavailable, call not executed

e client or called procedure does not have defined mapping to IDN

 value out of range for parameter datatype

¢ cancellation of call

* insufficient resources available to complete call

e normal termination of call

10 Execution Control

10.1 Synchronous and Asynchronous Calling

The issue of whether of not a call executes synchronously or asynchronously is outside the scope
of the LIPC standard. The LIPC does not inhibit either synchronous or asynchronous calls. An
implementation can choose whether or not to limit the number of threads of execution in any
particular call environment.

10.2 Recursion

The Language-Independent Procedure Calling standard does not prohibit recursion. It is outside
the scope of the LIPC as to how an implementation should implement a recursive procedure call.

Note: Implementors should be aware that optimization considerations for LIPC calls needs to take
recursion into account.
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Appendix A - Model diagram (alternative)

This appendix reflects some of the concepts relating to clause 6 of this draft International

Standard. This model is not complete and requires expansion. It may also be necessary to
eventually merge an enhanced version of the diagram with the diagram in clause 6.19.
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Appendix B - Procedure Parameters

The syntax for the language-independent calling mechanism allows for a procedure to be a
parameter of another procedure. There are three different cases that result from the procedure
parameters feature.

A1 LIPC Reference / Local Access

In this case, procedure A in language X calls procedure B in language Y and passes to procedure
B a pointer to procedure C which is also in language Y. There shall exist a way for language X
to reference procedure C in order to generate a pointer to pass to procedure B. This reference to
C shall be referred to as the lipc-reference. After B has begun execution, it will eventually call C,
but this is simply a local call therefore no lipc-access is necessary.

Note: Procedure B must understand how to call procedure C “locally” based on the lipc-reference
information it was passed.

Longuoge X Language Y
‘z i l
A: bagin 8: bagin i
B(C): C:
' and ! end
|
[ C: begin
i end |
i |
! |

B.2 LIPC Reference / LIPC Access

In this case, procedure A in language X calls procedure B in language Y and passes to procedure
B a pointer to procedure C which which is in language X. Eventually, B will call C and in this
case the call to C must use lipc-access since the call crosses the boundary. In addition to this for
B to call C, it must have the lipc-reference of C. This information is obtained from that which
was passed from procedure A.
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Longuoge X Language Y
A: begin B: bagin
B(C); G
and end
C: begin
snd
|

B.3 Local Reference / Local Access

In this case, procedure A in language X calls procedure B in language Y and passes to procedure
B a pointer to routine D in language X. Eventually, B will call procedure C in language X and
pass to procedure C the pointer to routine D. C will then call D, but in this case both the
reference and access of D by C are local. Therefore it is not necessary for the pointer informa-
tion describing D to be a lipc-reference, but it must be in a form that allows the transformation
to B’s environment and back to its original state.

Lengucge X Language Y
| ] |
A: begin B: bagin
8o | c(p) .
end end
C: begin
| £ |
| and |
D: begin
and
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Appendix C - Interface Definition Notation syntax

In this appendix, certain production rules are highlighted as being contained within the Global
IDN. This significance of this distinction is that the LIPC has made restrictions on certain rules
or has eliminated production rules for use in this draft International Standard.

interface-type = interface [interface-synonym ":"]
[interface-identifier] "begin" interface-body "end".
***G]oba] IDN**********************i**********************************

* interface-type = interface [interface-synonym ":"] *

¥ interface-identifier "begin" interface-body "end". *
A KA AEEE IR A A I A KA A EEK IR A AT R I TA TR AT IR I T Ik khhddddhihkdhhdhhhkhihhhdhhihr

interface-synonym = identifier.
interface-identifier = object-identifier.
interface-body = {import} {declaration ";"}.
import = "imports" ["("import-symbol-list")"] "from"
[interface-synonym ":"] object-identifier.
import-symbol-list = import-symbol {"," import-symbol}.
import-symbol = identifier.
declaration = value-decl | type-dec] | procedure-decl | termination-decl.

value-decl = "value" value-identifier ":" constant-type-spec "="
value-expr.

value-identifier = identifier.

constant-type-spec = integer-type | real-type | character-type |
boolean-type | enumerated-type | state-type |
ordinal-type | time-type | bit-type | rational-type ]
scaled-type | complex-type.

value-expr = value-reference | integer-literal | real-literal |
character-literal T boolean-literal | state-literal |
ordinal-literal I time-literal [ bit-literal
rational-Titeral | scaled-literal | complex-literal |
void-literal.

integer-literal = ["-"]digit{digit}.

real-literal = integer-literal ["."digit{digit}]
[[u_u] uEN digit{digjt}]-

character =

The value of character shall be any character drawn

from the character set identified by the repertoire
identifier in the production character-type, or from the
default character set if the repertoire identifier is
absent.

boolean-literal = "true" | "false".
state-literal = identifier.

ordinal-literal = digit {digit}.
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time-literal = digit{digit} ["."digit{digit}].

bit-1iteral = "g" | "1v, |

rational-literal = [-] digit{digit} [*/" digit{digit}].

scaled-literal = [-] digit{digit} [fraction].

fraction = "." digit{digit}.

complex-Titeral = "(" real-part "," imaginary-part ")".

real-part = real-literal.

imaginary-part = real-literal.

void-literal = "nil".

type-decl = "type" type-identifier "=" type-spec [ parameterized-type-decl.
type-identifier = identifier.

type-spec = primitive-datatype | generated-datatype l defined-datatype.
defined-datatype = type-reference [subtype-spec].

primitive-datatype = integer-type
real-type
character-type
boolean-type
enumerated-type
octet-type
procedure-type
state-type
ordinal-type
time-type
bit-type
rational-type
scaled-type
complex-type
void-type.

***G1oba] IDN********************************

* primitive-datatype = integer-type

# real-type
character-type
boolean-type
enumerated-type
octet-type
procedure-type
interface-reference
state-type
ordinal-type
time-type
bit-type
rational-type
scaled-type
complex-type
void-type.

kA AT AT AL LI A EE K KT EREKRKRRAEA AT AL AAAA R A RRKARR KR

* 4 % % o % % o A F * ¥ * * XA *

* % % % A o H A X A ¥ ¥ * ¥

integer-type = "integer" [subtype-spec].
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real-type = “real" [range]
["relative_error" relative-error].

relative-error

real-literal.

character-type.= "character" ["(" repertoire-list ")"].
repertoire-1ist = repertoire {"," repertoire}.
repertoire = object-identifier

boolean-type = "boolean".

enumerated-type = "enumerated" "("enumeration-identifier
{"," enumeration-identifier}")"
[subtype-spec].

enumeration-identifier = identifier.
octet-type = "octet".

procedure-type = "procedure" " ("parameter-decls")"
["returns" "("return-arg")"]
[termination-Tist].

***G] oba] I DN*** EE e e e e R st ekt ek ks k]

* interface-reference = interface-reference [interface-identifier]. *
bR ek e s A e e S r e e ek e L R ek ok ko

state-type = "state" "(" state-value-list ")".
state-value-1ist = state-value {"," state-value}.
state-value = state-literal | parametric-value.
parametric-value = identifier.

ordinal-type = "ordinal".

time-type = “time" "(" time-unit ["," radix "," factor]")".

time-unit = "year" | "month" | "day" | "hour" | "minute" | "second" |
parametric-value. :

radix = value-expr.

factor = value-expr.

bit-type = "bit".

rational-type = "rational".

scaled-type = "scaled" “(" radix "," factor ")".
complex-type = "complex" ["(" radix "," factor ")"].
void-type = "void".

generated-datatype = record-type
select-type
array-type
pointer-type.

T‘ECOI"d—type = "T‘ECOT‘d" "Of“ n(llf.ie‘ld_'l-istu)u.
field-list = field {"," field}.

field = field-name ":" type-spec.
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field-name = identifier.

select-type = "choice" "("discriminants")" "of"
"("alternative-field {"," alternative-field}")".

discriminant = value-reference.

alternative-field = subtype-spec field-specifier [ default-alternative.
default-alternative = "default" field-specifier.

field-specifier = field | field-name ":" "void".

array-type = "array" "("array-bounds-list")" "of" "("type-spec")".
array-bounds-list = array-dimension {"," array-dimension}.
array-dimension = lower-bound ".." upper-bound ] typed-array-bound.
typed-array-bound = defined-datatype.

pointer-type = [pointer-attribute] "pointer" "to" "("type-spec")".
pointer-attribute = "restricted" | "unaliased".

subtype-spec = "select" "("select-element {"," select-element}")".

select-element = value-expr ] range.

SC22/WG11 N344

range = lower-bound ".." upper-bound | ".." upper-bound I lower-bound "..".

lower-bound = value-expr.
upper-bound = value-expr.

procedure-dec] = [residence-indicator] "procedure" procedure-identifier
"("[parameter-decls]")"
["returns" "("return-arg")"]
[termination-Tist].

residence-indicator = "client” | "server".
procedure-identifier = identifier.
parameter-decls = param-decl {"," param-decl}.

param-dec] = direction parameter.

direction = "in" | "out" | "inout".

|

parameter = parameter-name ":" type-spec.
parameter-name = identifier.
return-arg = [identifier ":"] type-spec.

termination-list = “raises" “("termination-reference
{"," termination-reference} ")".

termination-decl = "termination" termination-identifier
“("[parameter {"," parameter} ]")".

termination-identifier = identifier.

parameterized-type-decl = "type" type-identifier
"("formal-value-parms")" "=" type-spec.

formal-value-parms = formal-value-parm {"," formal-value-parm}.
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formal-value-parm = identifier ":" value-param-type-spec.
value-parm-type-spec = type-spec.

object-identifier = "{"ObjectIdComponent {ObjectIdComponent}"}".
ObjectIdComponent = identifier ] digit | identifier "("digit {digit}")".

type-reference = [interface-synonym "::" ] identifier |
parameterized-type-reference.

parameterized-type-reference = [interface-synonym "::"]
identifier "("actual-value-parm
{"," actual-value-parm}")".

actual-value-parm = value-reference.

value-reference = [interface-synonym "::"]
identifier {"." identifier}.

termination-reference = [interface-synonym "::"] identifier.
identifier = letter {pseudo-letter}.

'Iet-ter = IIAII IIBII IICII IIDH IIEII I!Fil IIG!I ltHII IIIII IIJII IIKII IILlllllMlllllNlllrIUII |
IIPII IIQI: IlRll IISII IITII Ilull Ilu“ llwll lell IIYII "le
Ilali Ilbll IICII Ildll Ilell Ilfli Ilglt tlhll n -‘ " Iljll !lkil Il'l n |!lmlt tlnll |GIOII |
I|pll Ilqll Ilrll IISII Il-tll Ilull Ilvll "wll ||x|| ||yll llzll “

pseudo-letter = letter | digit | underline.
d-ig-it = "Glll“lll||l2“||l3ﬂ||l4"|||5|I|I|6|| “7“’“8"'"9“.

underline = "_",
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