ISO/IEC JTC1/SC22/WG9 N528
ISO/IEC JTC 1/SC 22 N

Date: 2012-06-06
ISO/IEC DIS 8652
ISO/IEC JTC 1/SC 22/WG 9

Information technology — Programming languages — Ada
Technologies de l'information — Langages de programmation — Ada

Revision of second edition (ISO/IEC 8652:1995)

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is
subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comment, notification of any relevant patent
rights of which they are aware and to provide supporting documentation.

Copyright Notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While
the reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored, or transmitted in any form for any other purpose
without prior written permission from ISO.

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ISO/IEC 8652:DIS

Table of Contents

Table of CONtENtS.......ccoeei i e e s e s s r e nm e e e e nnnaas i
[o =N Vo o Xi
INErodUCTIONo xii
Section 1: General ... —————————— 1
T TS o o o - N 1
1A EXEeNt... e ————————— 1

I T T o (] SRR 2
1.1.3 Conformity of an Implementation with the Standardcccccerriiiiiiiinnnnnnnn. 4
1.1.4 Method of Description and Syntax Notation...........cccccceeiiiiieeeeeeee, 5
1.1.5 Classification of Errorsccccciiiiiiieeemnisssrss s sssssssss s sssssssnses 6

1.2 Normative ReferencCes......... s s nnnan 7
1.3 DEfiNItiONS ... s 8
Section 2: Lexical Elements..........coeiiiiiciiieec s e 9
2.1 Character Set ... s 9
2.2 Lexical Elements, Separators, and Delimitersccccoveeeiiiiiinieccscccscn s eeeeeeeeas 1
2 8 [=Y o 3 =Y 12
2.4 NUMETIC LIterals...... .ot r s e s s s s e s e snmsns s s s s e s e e enm s s e e s s e e e e mmmnnns 13
2.4.1 Decimal Literals ... 13
2.4.2 Based Literalsooueeeeemeeeeeeeeeeieeeeeeeenneennnnnnnnnsnnnssnsssns s ssnsssnssnnsssssssnssnnnsnnnns 13

2.5 Character Literalscooooieeeiimmiieeieeeeieeeeeseeeseeeeseesee e s eeeseesn e e s nn e s e e e s nssnnnenmnsnmnsmmmmnmnnnnns 14
] L] g Yo T I Y 2 1 C 14
7 A 0o T3 11 1.4 =1 01 P 15
- T o - Ve | 1T T 15
e I 3 LT =T =Y V4T T o L= 17
Section 3: Declarations and Types.........ccccrrrririnnrnnnnnnnnn s 19
3.1 Declarationsccocviiiiii i ————————— 19
3.2 Types and SUDLYPESouiiiiiimmmmririiiissr s 20
3.2.1 Type Declarations.........cccoucciiimmmimniiissrr s 21
3.2.2 Subtype Declarations...........ccooiiiiiiiiiiiiiiiiicescreee st nne 23
3.2.3 Classification of Operations..........ccu e 24
3.2.4 Subtype Predicatescccorimmiiimiiinserrr s 24

3.3 Objects and Named NUmMDbers...........coccmiiinrr 26
BT Wt B0] o YT-Yo f D T-Yod F=1 = 1 T o L= 28
3.3.2 Number Declarations ... 31

3.4 Derived Types and ClasSesccccciiiiiiinnmrinnsiinnsssssss s ssssssssssss s sssssssss s 31
3.4.1 Derivation ClaSSesccccuiiiiiiiiiiiieeeeeeeeeeeeeeeesseseeseseeeeersssresseessesssesssssnsssnnssnnsnnnnnnnes 34
3.5 S CalAr TYPES i iiiiiii ittt ————————————— 35
3.5.1 ENUMeEration TYPEeS ...ccvceceiiiiiiiirrriceisss s s s s s scmssssss s s s s s s s mms s ss s s s s e s s mmnsssssssssennnnnnns 40
KT 04 ¢ T- 1 - T =T T T = 41
3.5.3 BOOIEAN TYPESuuueeeerririiiiiiissnr s n e 42
3.5.4 INteger TYPES ooiiieeii ittt rre s s e s e s e e e s s n s s s s e e e e s nnna e e s e e e e rnnnnnnaaeenanns 42
3.5.5 Operations of Discrete TYPes...... e ssnnes 44
BT N 3= TN Y/ T = 45
3.5.7 Floating Point TYPes ... s 46
3.5.8 Operations of Floating Point Types ... eee e 48
3.5.9 FiXed PoinNt TYPeS.....ciiieececiiiiiirirccessss s s s e s s ss s s s s s s nmms s s s s s e e s nmmm s s s e e e e nnmmnns 48
3.5.10 Operations of Fixed Point TYPEeSccevevieeiieeemieeeesrsesssssssssssssssssssssssssssssssssssnnes 50

i © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

B N = 15/ 1= 3 OO 51
3.6.1 Index Constraints and Discrete Rangesccueeeeeeeeeemeemnennennnnnnennnnnnnnnnnnsnnnnes 54
3.6.2 Operations of Array TYPESccccvmmmmmrriiinniiissssrrrs s nsssssssssss s s sssssss s s s ssssssnns 55
3.6.3 StriNG TYPeS..ueiiiiiiiiiiiinnrrrr e 56

3.7 DiSCrMINANES ... e 56
3.7.1 Discriminant Constraints...........ccccccmmmiiiiiniinnsirr s 59
3.7.2 Operations of Discriminated TYPeScccccuuemmmmmmmmmnmmmnnnnnnnnnnnnnnsnnssnssnssnnsnnnnes 60

BRI =T o0 o I I o 1= 60
3.8.1 Variant Parts and Discrete Choices..........cccccccmimiiiiiiiccsmmrnni e 62

3.9 Tagged Types and Type EXtensions..........cccoeeeecciiiiirrrsccencsss s e e e 64
3.9.1 Type EXteNSIONScuueeeiiiiiiiiinrssrrr s s 67
3.9.2 Dispatching Operations of Tagged TYpescccccourrrriimmmmmnen s 68
3.9.3 Abstract Types and Subprograms..............ee e 71
BT I 1 1 1= = Lo YN 1N o 1= 3 72

3.10 ACCESS TYPOS..ciiiiiiunnnrrr s i iissssssssr e s s s s s e e e e s s aa s a e e e e e e e e e R R R R e e e e e e e annnns 75
3.10.1 Incomplete Type Declarationsoooo e 77
3.10.2 Operations of ACCESS TYPES ...ccemmrmmmemmeeeeeeeeeeenneennennnnnnnnnnnnnnsnnnsnnssnnnsnnssnnnsnnnsannnen 79

3.11 Declarative Parts ... 85
3.11.1 Completions of Declarations...........ccueeeeeeeeemmmmeeeeeenennnn e 85

Section 4: Names and EXPreSSiONSccccciiiieeeiiiiremsiissrressssssssnssssssssnsssssssssssssenes 87

R N Y =T 41> 87
4.1.1 Indexed COMPONENES.......cccccciiiiiiiririrrrrrrr s s 88
L BN 0 1o 3 89
4.1.3 Selected COMPONENLS........ccccciiriiriirrrrrr s e 89
4.1.4 ALErIDULES ... 91
4.1.5 User-Defined References.........cccocccieemmminiiinicssesrnnes s ssssssssss e 92
4.1.6 User-Defined INAeXingcccceiiiiiiiiimemmmnissrrns s s 93

L B T Y - 1 95

L B B X e [=Y o F= =3 RSP RR 96
4.3.1 Record AgQregatescccimmireeecininiirrsrcsssssss s s s s s rssss s s s s s s s snmsnssssssseesennnnnsssnnns 96
4.3.2 Extension AgQregates ..o 98
4.3.3 Array AgQregatesccccivemmrriiiiinssn s 929

4.4 EXPreSSIONS ..cceuuuiiiiiiiiiicasiss s s srernnmsssssss s s s e e s nnmssssssssssennnanssssssssrrennnnnssssnsseenmnnnnnnssnnnsnnn 102

4.5 Operators and Expression Evaluation ... 103
4.5.1 Logical Operators and Short-circuit Control Forms...........ccccceeiriiicciiccssncnnnnns 104
4.5.2 Relational Operators and Membership Testsccccoceiirriicriicciirrcicees 105
4.5.3 Binary Adding Operators..........cccccciirciiiriiniiinrinnnnsssssssssssssssssssssssssnnes 109
4.5.4 Unary Adding Operators...........cccccciiriiiiniinsinssnnes 110
4.5.5 Multiplying Operatorscccccciiniiinmemmmnnrsssrr s ssssss s 110
4.5.6 Highest Precedence Operators..........cccceriiiniiiisesmnssnssssssssssss s 112
4.5.7 Conditional EXPreSSIONSccccciciiiriiinriirrnrr s sssssssssssssssssssnnes 113
4.5.8 Quantified EXPreSSiONScccccriiiiiiiriiinsinsisssssrss s ssee s ssse s s s ssessssssssssssssnns 114

4.6 TYPE CONVEISIONS ...ciiiieeeeirirrsiissssssssnssss s s s s s ssssss s s s s sssn s e s e e s s mmnnn e e e e nnnas 115

4.7 Qualified EXPreSSIONS........ccccicci s 119

4.8 AllOCAOLS ... 120

4.9 Static Expressions and Static Subtypesccccccccciiiciirnnirrrrrrrr s 122
4.9.1 Statically Matching Constraints and Subtypesccccoerriirriicrnnccsscccncssseennns 125

Section 5: Statements..........cccocirii——————— 127

5.1 Simple and Compound Statements - Sequences of Statements............ccccccceeet 127

5.2 Assignment Statements..........ccooceiieiiiiiiiiciicciieeireerre e nnn_ 128

L 1 = - 1= 0 1= 0 129

5.4 Case Statements..........coooeeiiiiiieiiimmimeeiieeeeeceees e s nnssnnnsnnsnnmmsnmmnnnn 130

© ISO/IEC 2012 — All rights reserved i

ISO/IEC 8652:DIS

5.5 Loop Statements..........coooooiiiiiii i 131
5.5.1 User-Defined Iterator TYPes ... 133
5.5.2 Generalized Loop Iterationccoeveimiieiieees s s s e e s e e s e e e e s e e e e e e e ennnes 134

5.6 Block Statements...........coooviiiiiiiii i e nnrenne 136

5.7 EXit Statements..........oooooiiiiii i ————— 137

5.8 Goto Statements ... ————— 137

Section 6: SUDProgramscccccccierrrrsssssssssssssssss s 139

6.1 Subprogram Declarationscccoeiiiiiiiiinmiree e ———— 139
6.1.1 Preconditions and Postconditionsccccieeciiiiiiiecccc e 142

6.2 Formal Parameter Modes...........ccccciiiiiiii s 144

6.3 Subprogram BOdiesccciimeiimriiiier s 145
6.3.1 Conformance RUIES............coooriiiiiiiiee e e e e e e s eennennees 146
6.3.2 Inline Expansion of Subprogramscccccceiiiiiiiieeeee e 148

6.4 Subprogram Calls...........cooeiiiiiiiiiiiiii i s e e e e anrraane 148
6.4.1 Parameter ASSOCIatioNS..........coeviiiiiiiiiis s iss s s s e s s s e s e s s e s e e e s r e nnen 150

6.5 Return Statements..........oooooiiieiii e 153
6.5.1 Nonreturning Procedures............icciiiiiiinirceccss s rr s rcsssss s s e e s e e snmss s s eeees 155

6.6 Overloading of Operators ... 156

6.7 NUII ProCedUIESooeeeeiiiiiiiiieee e s s e e s e e s ss s e s s s s s s s e ss s s ssessssssessesssnsssnssssssssssnnssnnsennsnnnnnnnnes 157

6.8 EXPression FUNCLIONScoooeiiieiiii e cee e e e s e e e e e e e e e s e e e e e e e e e s e e e e e e e n e e e e e e nnnnnnnnes 158

Section 7: PaCKagesccuuiieeeeiiiiiiiininneesssssss s s s sssssssssssssss s s s s s s s snsssssssssssssnssnnnnnns 159

7.1 Package Specifications and Declarations............ccccceiveiiiiiieeeeeeeeeeee e, 159

7.2 Package Bodiescccciiiiiiinseeiinr s 160

7.3 Private Types and Private EXtensions..........ccccoiiiiimmmnnncsnssee e 161
7.3.1 Private Operations..........coooiiiiiiiiiiiiiiiccseeeseres ettt anne 163
7.3.2 Type INVAriantscccooiiiiiiicccr e rrr s rr s s s r e e s mm s s s s e e e rnmm e e nees 165

7.4 Deferred Constantsoooeviiiiiiiiiiii s s s s s e s s s s s s s s s s s s s s e s s se s e e s s e e s e e e e rrne s enrressennnnnnne 167

48 0 I 4 15 L= e I I3 TSP 168

7.6 Assignment and Finalization ... e 170
7.6.1 Completion and Finalization..........cccccocciiiimmmmiiee s 172

Section 8: Visibility RUles ... 175

8.1 Declarative REQIONccciiiiiiiieiiiie e 175

8.2 Scope of Declarationscooeeiiiiiiii it ———— 176

8.3 ViSIDilitycevreiiiiiiiiiri i 177
8.3.1 Overriding INdicatorscccvimimiiiir e ——————————— 179

8.4 USE ClaUSEScooeeeiieeeeeeeeeeeee i e e e e e e s e e e e e s e s s e e e e s e e e s e e e e e e e neseneeaeeseeeeeeneaeenanenennnnnnnnsnnnnnnnnnnnnes 180

8.5 Renaming Declarations.........c....ciiiiiiiiiccciin s s e rnes s s s s e s mns e e e e e ennn 181
8.5.1 Object Renaming Declarationscooveiiiiiiiiiciecseessesssse e e 182
8.5.2 Exception Renaming Declarationscccccciiiiniiiimemmnnseens e 183
8.5.3 Package Renaming Declarations............cccceeriiiiniiiisemmnn s 183
8.5.4 Subprogram Renaming Declarationscccccceiiriiiiiiiiciiie e 184
8.5.5 Generic Renaming Declarationsccccocemmiiiiinninnseninn s 186

8.6 The Context of Overload Resolution............ccoevivieiiiiiiieesssees e 186

Section 9: Tasks and Synchronizationcccooiiiiiiriinns 189

9.1 Task Units and Task Objects.........ccccceeriiiiiiiiiiie et 189

9.2 Task Execution - Task Activation.............cccceiiiiiiii e 192

9.3 Task Dependence - Termination of Tasks...........cccceeeviiviiir e 193

9.4 Protected Units and Protected Objectscccoeiiimmmmmiiiinnccie e 194

9.5 Intertask Communication...........ccooeiiiiiiii e —————— 197
9.5.1 Protected Subprograms and Protected Actions..........cccccceerrrmrrimerreeieeeeeeennnnn. 199
9.5.2 Entries and Accept Statements.........ooeeeeeeemeeemmmmmeecemeceeee - 200

iii © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

9.5.3 ENtry Calls......c s 203
9.5.4 Requeue StatemeNnts.........cccccccccciiriiinniiss e 205
9.6 Delay Statements, Duration, and Timecceeveeeiemimeeeeemeeeeereeeeeeerreeeee e eeeeeeenne 207
9.6.1 Formatting, Time Zones, and other operations for Time...........ccccceeieecnnnnneee 209
9.7 Select Statements.........cccoviiiiiicci e ——— 215
9.7.1 SelecCtive ACCEPL... .. e 215
9.7.2 Timed Entry Callsccccimmmmiriiiiiieerrrn s ssnnnnes 217
9.7.3 Conditional Entry Calls........cccceiiiiiiiiieiiire s 218
9.7.4 Asynchronous Transfer of Control............cccccoiriirriirriirrinnrrcrcr e 219
9.8 Abort of a Task - Abort of a Sequence of Statements...........cccccevvvvieriiiiiiciiieniennns 220
9.9 Task and Entry Attributes..........cccovcmmmiiiiiiiiiir s 221
9.10 Shared Variables ..o s 222
9.11 Example of Tasking and Synchronization...........ccccccceriiiiiiiiiiiiiiiccsccccceceeeeeeeeeeeens 223
Section 10: Program Structure and Compilation Issues........ccccccccceiiiiiiiinnnnneees 225
10.1 Separate Compilation...........cccoviiiiiiiiiiiiii i —————— 225
10.1.1 Compilation Units - Library Unitsccccceriiiiiiiiiiirinseenn e 225
10.1.2 Context Clauses - With Clausesccccccmiriiiiiicccmrnnn s 228
10.1.3 Subunits of Compilation Units............ccceeeviiiiiiiiiiiiieiiceceeeeeee e 230
10.1.4 The Compilation ProCesscuuiiiiiiiieeiiisemesisssssssssssssesssssssssssssssssssssssssssssssenne 232
10.1.5 Pragmas and Program UNits ... 233
10.1.6 Environment-Level Visibility Rules ... 234
10.2 Program EX@CULION..........cociiiiiieeecis i irrr s s s e s s s ness s s s s e s e e s s s s s s e e e e nmmmnnnnnnnes 234
10.2.1 Elaboration Control.............ceeimeeimmmimemmmemeeeeeeeeeeeeeeeeeee e nns s s snn s s s s s snnssnnnnns 236
5T =Yox i o] o T B I 5o o] 4 Lo o 1= 241
11.1 Exception Declarations.........ccueciiiiiiiiccccccce s e s s e s e e e mnn s s e e e e e 241
11.2 Exception Handlerscoieeeeciin s s s s rsessssss s s s s e s nmms s s s e s e e e n s s s e e n e 242
11.3 Raise Statements........ccccc i —————————— 243
11.4 Exception Handlingccccovmmimiiiiiiiiccesrrr s 243
11.4.1 The Package EXCeplionscooiiiieeciiii i e s s e e s e s 244
11.4.2 Pragmas Assert and Assertion_PoOliCY ... 246
11.4.3 Example of Exception Handling...........cccevveeeieeeieeeses e evee e 248
IR UT o o] =TTy [T 0 =Y o] 249
11.6 Exceptions and Optimization ... 252
Section 12: Generic UNIts ..o snnnnnas 253
12.1 Generic Declarations..........cccccc i 253
I € T=Y o T 4o = o T [255
12.3 Generic Instantiation............ccccmiriiiiicccccr 256
12.4 FOrmal ODBJECLS ... s s s 258
72 30 e T T 1 I8/ o L= 259
12.5.1 Formal Private and Derived TYpPescccccerriiiiniiiinmmmnns s sssnnnns 261
12.5.2 Formal Scalar TYPeSccciiiiiiiiiiiiiiiicitiiete et te st e e et s s s s s e s s s e s s e s s s s e s s s s e s s s e s s s s nnsnnnnnnns 263
12.5.3 FOrmal Array TYPeS....ccciceecciiiirirrrimmssssssssrsssnmsssssssserssssmanssssssssesssnmansssssssennenns 263
12.5.4 Formal ACCESS TYPES ...ccciicuumerrrriiriinssssss s ssssss s sns s s s n s nnnns 264
12.5.5 Formal Interface TYPescccccmrrrriiiiiiiiinnrrre e 265
12.6 Formal SUbPrograms ... e 265
12.7 FOrmal PacCKagescuuuuiiiiiiiriiceeiis i e e rrrsccanssss s s s s s s smmassssss s s e s e s nmmassssssssnnnsnmnnssssssnnnnnns 267
12.8 Example of a Generic Packageccccccermiiiiiniiinnsesinns s 269
Section 13: Representation ISSUESccccriiiiiriirnnnnnnnnnnn s 273
13.1 Operational and Representation Aspectsccccceviiiiiiieee e 273
13.1.1 Aspect Specificationscccovviiiiiiiiii e 276
7 o= T (=T o I I o 1= 278

© ISO/IEC 2012 — All rights reserved iv

ISO/IEC 8652:DIS

13.3 Operational and Representation Attributescccocciiiiiiriiiriiiiircccccrre, 279
13.4 Enumeration Representation Clauses..........cccccovcciiiciirrnincnncssnsccssssssscssssssssssnnas 285
13.5 Record Layout...........oocciiemmimiiiiinssisrs s s 286
13.5.1 Record Representation Clausesccccccirrirrrrrrrrnnsssnsssssss s 286
13.5.2 Storage Place Attributes.........ccoo i s 288
13.5.3 Bit Ordering.....cccociiiiiiiiiicrcrirrr s s 289
13.6 Change of Representation...........cccovmmiiiiiieei s 290
13.7 The Package System ... 291
13.7.1 The Package System.Storage_Elementsccceeeiiiiiiiiiieeeveeeeee, 293
13.7.2 The Package System.Address_To_Access_Conversions.............ccceeeereennn. 294
13.8 Machine Code INSertionsceeeeeeeeeeeeneenne s nnnnn 294
13.9 Unchecked Type CONVEISIONS.......cccccueeriiiiiiiiinsssrrs s nssssssss s sssssss s s 295
13.9.1 Data Validityccccceriiiiiiriieiirresinssscssssnee e ssssss s s s ssmnn e s e smmnnns 296
13.9.2 The Valid Attribute...........ccooiiiiiirrr s 297
13.10 Unchecked Access Value Creation...........cccovuemmmmiiiinnnninssssnnns s 298
13.11 Storage Management ... ———— 298
13.11.1 Storage Allocation Attributes.........cccooriiiiiiiiiiii . 301
13.11.2 Unchecked Storage Deallocation............ccceeevveiiiiiiiiceereeee e 302
13.11.3 Default Storage POOIS ..o 303
13.11.4 Storage SUbPOOIS.......ccccmmiiriiii i ——————————— 304
13.11.5 Subpool Reclamation..........cccooiiiiiiiii 306
13.11.6 Storage Subpool Example........ccccoiiiiiiiiiiiieeeeeeerr e 307
13.12 Pragma Restrictions and Pragma Profileccccccoiiiiiiiincccceeeeeeceine 309
13.12.1 Language-Defined Restrictions and Profiles.........cccccconiiiiinemnnniincccinnns 310
TR S =T 14 T 312
13.13.1 The Package Streamscccoviiiiiiiiiiiiiiiciirrer e e e 312
13.13.2 Stream-Oriented Attributescccc e 313
13.14 Freezing RUIES ...t 318
The Standard Libraries...........cciiiieecniiniiiisnrsssssssss s ssssssssssss s s s s sssssssssss s 321
Annex A (normative) Predefined Language Environment............cccccciiiiiiiinnnnn, 323
A.1 The Package Standard..............ooeuumemmmmmmmemimmmmmeeeeeeeeeeeceeneensensnesnsnnsnnnnsnnsnnssnnnssnnssnnnns 326
A.2 The Package Adaccccemmiiiiiiniieiirrr s sss s sssn s s 330
A.3 Character Handlingcccceeiiiiiiiiiiern s 330
A.3.1 The Packages Characters, Wide_Characters, and Wide_Wide_Characters 330
A.3.2 The Package Characters.Handling..........ccccccrriiriiiiiiiiiiiciniccrrccrrccr s 331
A.3.3 The Package Characters.Latin_1........cccccooniiiimincerrree e 333
A.3.4 The Package Characters.Conversionscccccermmmiinnnnissssssesssssnnnsssssssssssees 338
A.3.5 The Package Wide_Characters.Handlingccccociiirriiiriinininnniccnncccncccncnnns 340
A.3.6 The Package Wide_Wide_Characters.Handling............ccccoeeiicriiiciicciiccciccnnnns 342
A.4 String Handling ... 343
A.4.1 The Package Strings........cccccoiiiiiiinmmimnsinssnrr s 343
A.4.2 The Package Strings.Maps ... s s s 343
A.4.3 Fixed-Length String Handling.........cccccooiriiiiiiiiiiiiirccrrccrrrrrrrrrrrrrs e 346
A.4.4 Bounded-Length String Handlingcccoeviiimmmimiieeeee e 354
A.4.5 Unbounded-Length String Handlingcccooommmiiiiiiciiiee e 361
A.4.6 String-Handling Sets and Mappingscccccovrriirrrirrnnrninnnsnscssss s ssssssssssnes 366
A.4.7 Wide_String Handling........cccccoioiiiiiinicirccccrrcrrsrcrscsrrrr s s 366
A.4.8 Wide_Wide_String Handlingccccciiiiinniiiismiine s 368
A.4.9 String Hashing ... 37
A.4.10 String COMPAriSON.........ciiiiirrrrrrrrrrrr s s s s e e e s e 372
A.4.11 String ENCOAiNg ... s 373
A.5 The Numerics PacKages............uueeummmmmmmmmmmneeieeeeeennnnnns e 378

\" © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

A.5.1 Elementary FUNCLIONSccoemeee e 378
A.5.2 Random Number Generation...........cccoovmmmmiiiinnnnnsssserrr s sannes 381
A.5.3 Attributes of Floating Point Typescccccciiiiiiniiiiiesnin e 386
A.5.4 Attributes of Fixed Point Types........cccoivmmmmiiiiiniiiiieniree s 390
ALB INPUE-OULPUL ... s 390
A.7 External Files and File ODbjJects........ccccciocciirciicnic e 390
A.8 Sequential and Direct Files..........cccciiiiiiiiiiiiiriiirirr e e 391
A.8.1 The Generic Package Sequential_IO ... 392
A.8.2 File Management..............oo i rrr s s s s e s rmms s s s e e e s 393
A.8.3 Sequential Input-Output Operations...........cccoeevveiiiiii e, 395
A.8.4 The Generic Package Direct_lOcccccmimmmiiiiiniinieiinrr s 395
A.8.5 Direct Input-Output Operations..........cccceeeeeeii e 396
A.9 The Generic Package Storage_lO ... 397
A.10 Text INPUt-OULPUL ... s 397
A.10.1 The Package Text_lO.......ccccmmmiiiiiieerrri s ssnnes 399
A.10.2 Text File Management ... s 403
A.10.3 Default Input, Output, and Error Files...........cccceerriiiiiiiiieeeeeeeeeeeeee 404
A.10.4 Specification of Line and Page Lengths..........cccoooviiiiiiiiiiieeeeeee, 405
A.10.5 Operations on Columns, Lines, and Pages...........cccccceiinniiiieennnnnnnnncssnnnns 406
A.10.6 Get and Put Procedures..........cooooviiiiiieiiiiiiie e s e e s s e s s s e e s e e 409
A.10.7 Input-Output of Characters and Stringsccceeviiiiieeeee, 410
A.10.8 Input-Output for Integer TYPeS ... 412
A.10.9 Input-Output for Real TYPEeScceveiiiiiriiiiririirrrrrs s 414
A.10.10 Input-Output for Enumeration TYPesScccoeviiiiiiiiierrier e 416
A.10.11 Input-Output for Bounded Stringscceeeeviiiiiiiiee e 417
A.10.12 Input-Output for Unbounded Strings..........cccceevveeiiieiiiieeeeeeeeeeeeee, 418
A.11 Wide Text Input-Output and Wide Wide Text Input-Output...........cccoevvvvevveeenennn. 420
A.12 Stream INPUL-OULPUL ... 420
A.12.1 The Package Streams.Stream_IO..........ccoooiiiiiiiiiiiier e 420
A.12.2 The Package Text_IO.Text_Streams..........ccccevviiiiiiiiiiii e, 423
A.12.3 The Package Wide_Text_IO.Text_Streamscccceevrirriirinininnsninssnnsnnssssenns 423
A.12.4 The Package Wide_Wide_Text_IO.Text_Streams.........cccceeveerrirrrrrrrnrrinnnnnnnns 423
A.13 Exceptions in INput-Output.........cccoiiiiiiiiiii e 424
A 14 File SNAIING .ooeeee s 425
A.15 The Package Command_LiNne.........ccoocmmmmmiiiininnseirrn s ssssssssssses 425
A.16 The Package DireCtoriesccccoiiiiiimmmmmrinssrr s 426
A.16.1 The Package Directories.Hierarchical_File_Namesccccccccccceeirirrrirecnnnnee. 434
A.17 The Package Environment_Variables............cccooiimmiiimccciiiiiisse e e 435
W0t 30 o T 1= 438
A.18.1 The Package ContainNers........cccccouiiiiiummrrnnerinnnssssssss s sssssss s ssnnes 438
A.18.2 The Generic Package Containers.Vectorsccccccviiiiiiiiiiiiieiieeceeenee, 438
A.18.3 The Generic Package Containers.Doubly_Linked_Lists..............ccceeeveeennnn. 454
g I T 1 - T o TP PRRPPRRPRRPNS 465
A.18.5 The Generic Package Containers.Hashed_Mapsccceveeviirriiniiiniiennnennne 471
A.18.6 The Generic Package Containers.Ordered_Mapscccceeevevvvieviiieiieeeeenn, 475
A18.7 SetS ..o annne 479
A.18.8 The Generic Package Containers.Hashed_Sets.............cccovvmmmmmrriiiiiiiiiinnnns 486
A.18.9 The Generic Package Containers.Ordered_Setsccoevvmmmmrriiiiinicsinnnns 491
A.18.10 The Generic Package Containers.Multiway_Trees...........cccccevvviiviiiiiiennnnnn. 496
A.18.11 The Generic Package Containers.Indefinite_Vectorscceeevevvrieennnnn. 510
A.18.12 The Generic Package Containers.Indefinite_Doubly_Linked_Lists.......... 510
A.18.13 The Generic Package Containers.Indefinite_Hashed_Maps 511
A.18.14 The Generic Package Containers.Indefinite_Ordered_Maps..................... 511
A.18.15 The Generic Package Containers.Indefinite_Hashed_Sets....................... 511

© ISO/IEC 2012 — All rights reserved Vi

ISO/IEC 8652:DIS

A.18.16 The Generic Package Containers.Indefinite_Ordered_Sets 512
A.18.17 The Generic Package Containers.Indefinite_Multiway_Trees 512
A.18.18 The Generic Package Containers.Indefinite_Holders...............ccccouuurrnnnn. 512
A.18.19 The Generic Package Containers.Bounded_Vectors..........ccccecivunennnnnnn 516
A.18.20 The Generic Package Containers.Bounded_Doubly_Linked_Lists.......... 516
A.18.21 The Generic Package Containers.Bounded_Hashed_Maps...................... 518
A.18.22 The Generic Package Containers.Bounded_Ordered_Maps...........ccuu... 519
A.18.23 The Generic Package Containers.Bounded_Hashed_Sets....................... 520
A.18.24 The Generic Package Containers.Bounded_Ordered_Sets...................... 521
A.18.25 The Generic Package Containers.Bounded_Multiway_Trees................... 522
A.18.26 Array SOrtingccccivimmmmmriiiiissrrr s 524
A.18.27 The Generic Package Containers.Synchronized_Queue_Interfaces 525
A.18.28 The Generic Package Containers.Unbounded_Synchronized_Queues .. 526
A.18.29 The Generic Package Containers.Bounded_Synchronized_Queues....... 527
A.18.30 The Generic Package Containers.Unbounded_Priority_Queues............. 527
A.18.31 The Generic Package Containers.Bounded_Priority_Queues.................. 529
A.18.32 Example of Container Use ... 530
A.19 The Package LOCales.......cc..ucciiiiiiiiieecccis e rrsrsessss s s s s s s s snmssssss s s e e s e s nmm s s s s e e n e s mmmnnns 532
Annex B (normative) Interface to Other Languages..........cccceervriiiiiiririeeeeceneeeenn, 533
B.1 Interfacing ASPecCtS........cccciimmmmimiiiiieerr s ———————— 533
B.2 The Package Interfacescccccoiiiiieminnssssrrr s 536
B.3 Interfacing with C and CH+............ e 537
B.3.1 The Package Interfaces.C.Stringscccooiiiiiiiiiiiciiiccirrr e 543
B.3.2 The Generic Package Interfaces.C.Pointers...........ccccceriiiniiiiieennnnnnccsinnns 546
B.3.3 Unchecked UnNion TYPEeScccceiiiiiiiiimmmmemeinsssss s nssssssssss s sssssssnsnes 548
B.4 Interfacing with COBOL........... e 550
B.5 Interfacing with Fortran............. 556
Annex C (normative) Systems Programmingcccccvvvrririrrissrnssssssssssssssessseseenns 559
C.1 Access to Machine Operations..........ccccceeeeiiiei s 559
C.2 Required Representation SUPPOIt.........cooooriiiiiiiiiiiiiecee e 560
C.3 INterrupt SUPPOIt..... ..o e ———— 560
C.3.1 Protected Procedure Handlerscccoovmmimiiiiiniiisesnnn s 562
C.3.2 The Package INterruptsccccccemrriiiininiinsninnr s 564
C.4 Preelaboration ReqUuIirementsoooooriiimiiiieiiieeesssesesseeeeeesee s s see e eseeessesssessssssesnnes 566
C.5 Pragma Discard_Namesccooeiiiiiiiiiiiiii i ci s sees e e s s e s s e s e s s e e e s e s s s s s e e e s e s s e e s s eseeennes 566
C.6 Shared Variable Controlccccuiiiiiineiirr s s 567
C.7 Task INformationcooooveiiiiiiie e r e s s r e e e e e e e e e e e e e s e e e e e e e e e e e e ennnnnnnes 569
C.7.1 The Package Task_Ildentificationccccceriiiiiiiiiemmnccrr e 569
C.7.2 The Package Task_Attributes...........ccccorriiiiiiiii e 571
C.7.3 The Package Task_Terminationcccccceeeiiiiiiiiiieeiiieieeeeseeer e 573
Annex D (normative) Real-Time Systems ... 575
[20 T = T o o) 4= 575
D.2 Priority SChedulingccciimmmmmiiiiesrrr s 577
D.2.1 The Task Dispatching Modelcoiiiiccrrrrr e 577
D.2.2 Task Dispatching Pragmascoeieeecciiiiimisiceecssss s s essmsssssss s e e s sssmmsssssnssens 578
D.2.3 Preemptive DispatChing........ccccciriiiiiiiirisirrrrrrssrrrrrrs s s s s 580
D.2.4 Non-Preemptive DispatChing.......cccooorriiiriiiiirrrrrrrrrrrr e 580
D.2.5 Round Robin DispatChing ... e 582
D.2.6 Earliest Deadline First Dispatching...........cccoommmicccninrsre e 583
D.3 Priority Ceiling LOCKINGccccummiiiiiiiieiirr s 585
D.4 Entry Queuing POlIiCIescccccueieiiiiiiiieerrr e 587
D.5 DYNamicC Priorities oot r s e s s s s e e r s e s 588

Vii © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

D.5.1 Dynamic Priorities for Tasksccuuiiiiiiiiiiiiiiiiiniisciss e e e s s esssessnne 588
D.5.2 Dynamic Priorities for Protected Objects........ccccccvririiiiiiriiiiiieciceccceeeeeeeeeeneeenns 589
D.6 Preemptive ADOrtoooo oo e e e e s e s s s s e s s s s s s s s s e e s s s e e s e s s e e e s s e e e s e e s e neenenenneennennnrnnnnes 590
D.7 Tasking ReStriCtions...........ccciimmiiiicrr e 591
[2R 28 11 o g Lo o o 1T 200 I 3 o =TT 593
D.9 Delay ACCUFACY ...ceeuuuuieiirirremcassssssserrenmnnsssssssssrrssnnssssssssssmmmmnnssssssssssmmmsnnnssssssssssennnnnn 596
D.10 Synchronous Task CoNntrol ... 597
D.10.1 Synchronous Barriersccccceeiiiiniiiinemees s s ssannes 598
D.11 Asynchronous Task Control............cccoviiiiiiiiiiiieee e 599
D.12 Other Optimizations and Determinism Rules.........cccccccviviiiiiiiieveeeeeeee, 600
D.13 The Ravenscar Profile ... et e s s e e s s e e s e s s s s s s s e s s s e e s s e s s s e s s s s e s s e s s s nnennees 601
[2R I =Y e W 4o o TR I 3 = 602
D.14.1 Execution Time TimMers ... s s ss s s nnsnnes 604
D.14.2 Group Execution Time Budgetscccccerririiiiiiiiiiceiieeeeeeeeeceeeeeeeeeeeeeeeeeeeesennes 606
D.14.3 Execution Time of Interrupt Handlers.............oooeremerreeiiieeiieeeeeeeee e 608
D.15 TiMiNg EVENLSueeeiiiiiiiiiceirrr s 608
D.16 Multiprocessor Implementation................oiiiiiiiccccirrrcr e 610
D.16.1 Multiprocessor Dispatching DoOomainsccceuciiiiiimmiiccecccss s eenes 611
Annex E (normative) Distributed Systems...........cccccieiiiiiiiieeeeeeee e 615
g O o= o o T 615
E.2 Categorization of Library Units..........cccociiimmmmiiieerres e 617
E.2.1 Shared Passive Library Units ... see e eeeeeees 617
E.2.2 Remote Types Library UNits ... s s s s s e s s e 618
E.2.3 Remote Call Interface Library Unitsccccciiiiniiiieeinnneesnne s 619
E.3 Consistency of a Distributed System...........ccccoeiiiiiiiiiiii e 620
E.4 Remote Subprogram Callscooooiiiiiiii ittt 621
E.4.1 Asynchronous Remote Calls...........ccooveiiiiiiiiiiiiiiicciccceceereee e 623
E.4.2 Example of Use of a Remote Access-to-Class-Wide Type.......cccceeevrerrreerennnns 623
E.5 Partition Communication Subsystemcccciiiiiii 625
Annex F (normative) Information Systems...........ccccccnn, 629
F.1 Machine_Radix Attribute Definition Clause..........ccccccciiiiiiiiieeeee, 629
F.2 The Package Decimal.........cooececiiiiiiiiicccccss s s s s s ccsssss s s e s s e s s s s s e e e e nmma s s s e e enes 629
F.3 Edited Output for Decimal TYPesS.......cccceveirriiiiiisiissees e e se e s s e e s s e e e e e e e e e e e e e e e e eeeeeeeesesees 630
F.3.1 Picture String Formationcccceeiiiiiiiiiieir s 632
F.3.2 Edited Output Generation ... ann s nnnaanaaas 635
F.3.3 The Package Text_|O.Editing........cccccevveiiiiiiiiiiiiiiicccec e eeennes 638
F.3.4 The Package Wide_Text_IO.Editingcccccrriiiiiiiimmmmmnisernn s 641
F.3.5 The Package Wide_Wide_Text_I0.Editing........cceeveeerreemieimieeiieeieeeeeeeeeeeeeeeeeeees 642
Annex G (normative) NUMErICScoovviiiiiiiiiiiiiiiir s 643
G.1 Complex ArithmetiC ... nnnnan 643
G.1.1 COMPIEX TYPES ...oeeeeeeiennennmnnnnnnnnnnnnnnnnnnnnnnsnnssnnssnnsssnssssssssssssssssssssssssssssssssnnnnnnnnnns 643
G.1.2 Complex Elementary FUNCLIONS...........cocciiememinneerrr e 647
G.1.3 Complex Input-Output............ooeeeeee e nnan 651
G.1.4 The Package Wide_Text_10.Complex_lO....... e 653
G.1.5 The Package Wide_Wide_Text_I0.Complex_IOcccccmnnnnnnnnnnnnnnnnnnnnnns 653
G.2 Numeric Performance Requirements..........ccccuuveeemeememmmemmmeemessmemeeesemesssmsssesssssseeenne 653
G.2.1 Model of Floating Point Arithmeticcccoommmmiiiinni e 654
G.2.2 Model-Oriented Attributes of Floating Point Types........ccccccvirriiirriiciicccicccnnns 655
G.2.3 Model of Fixed Point Arithmetic............coooiiimmmiir s 656
G.2.4 Accuracy Requirements for the Elementary Functions...........cccocccmveriiinnnnee 658
G.2.5 Performance Requirements for Random Number Generation...................... 660
G.2.6 Accuracy Requirements for Complex Arithmetic..........ccccoeiiiiiiiicciicciinne, 661

© ISO/IEC 2012 — All rights reserved viii

ISO/IEC 8652:DIS

G.3 Vector and Matrix Manipulation...............coouiiiiiiiiiiiiiciisseereesses e 663
G.3.1 Real Vectors and Matricesccccciiiiiinimmmmnnininnnssssss s ssssssss s ssssnnns 663
G.3.2 Complex Vectors and MatriCescccccvrrriiiieiiisressssssssssssseessessesessessesssesssenees 668

Annex H (normative) High Integrity Systems..........cccooiiiimimiiiccccccic e, 679

H.1 Pragma Normalize_Scalarscccccrvmmmmmiiiinniisssrse s 679

H.2 Documentation of Implementation Decisions...........cccccoiiiiiirniiniincninsccncccccccecccnnns 680

H.3 Reviewable Object Code s 680
H.3.1 Pragma Reviewable ..o s ssnnnes 680
H.3.2 Pragma Inspection_Point.........ccco s 681

H.4 High Integrity Restrictionseeiiiiiiii e 682

H.5 Pragma Detect_BIOCKING.......ccecuciiiiiiirecceccsss s rr s s s s e s s s s s s s s e e e 684

H.6 Pragma Partition_Elaboration_PoliCyccccceirimmiiniicseeene e 684

Annex J (normative) Obsolescent Featuresccccoviiimmmiirccccciis e, 687

J.1 Renamings of Library UNitscccccomiiiiiiiiiiiiie s 687

J.2 Allowed Replacements of Characters ... nnnnanaane 687

J.3 Reduced Accuracy SUDtYPEescceuremimemmmmmmmemmmemeeeeeeeneeenennnneannensnnnnsnnnnnssnnnnnnnsnnnnnn 688

J.4 The Constrained Attribute............ooe e 688

N 1 0 | PSR 689

J.6 NUMEIIC_EITON ...t rr s e e e s s e e e e e s e nma s e s s e e e e e mmman s e e s e e e e nnnnnn 689

YR A N 0 - T = = N 689
J. 7.1 INterrupt ENtries. ... s 690

B 1 e T 03 = 11T o 691

J.9 The Storage_Size Attribute...........ooo oo 691

J.10 Specific Suppression of CheCksccuueeemmmmmmmmmmmmmmmmmememeeeecenceeneenneennnnnnnnnsnnssnnnnes 691

J.11 The Class Attribute of Untagged Incomplete Types........ccccoouiriiiimmmmnnnninnnisiinnes 692

J.12 Pragma Interface.........cccceeiiiiiiiiieiiirn s 692

J.13 Dependence Restriction Identifiers............uo s 692

J.14 Character and Wide_Character Conversion Functionsccccccceveriiriieiiiennnnnns 693

J.15 Aspect-related Pragmas..........ccoovmmmiiiiiiiiinineiiin s 693
J.15.1 Pragma INliNe ...t 693
J.15.2 Pragma No_Return........ ..t 694
B0 IR T T o - Vo T T TN Ve O 694
J.15.4 Pragma Storage_Size.........cccecciimmmmmmmiiiiinsssnnr s s 694
J.15.5 Interfacing Pragmascccccoiiimmmmnnnnnsssrre s 694
J.15.6 Pragma Unchecked_Union ... e s s s e e e e emennes 695
J.15.7 Pragmas Interrupt_Handler and Attach_Handlerccoomrrirmecciiirrinnneeee. 696
J.15.8 Shared Variable Pragmascccccmmiiiiininineesiins s sssssssssns s 696
J.15.9 Pragma CPU ... s 697
J.15.10 Pragma Dispatching_Domain...........ccceeemiiiiiiimiiccccscs e 697
J.15.11 Pragmas Priority and Interrupt_Priorityccoeveeecceiiirrcccce e, 698
J.15.12 Pragma Relative_Deadline.........ccccccoiiiiiimmimmmiserrr e 698
J.15.13 Pragma ASYNCRIONOUScccciiummmmiriiinnnsss s sssssss s s 699

Annex K (informative) Language-Defined Aspects and Attributes..................... 701
K.1 Language-Defined ASPECtS....... . eeeeeeeeeeeeenennnnnnennnnnn s snn s snn s snn s s nnnnnnnn 701
K.2 Language-Defined Attributes............ e 704

Annex L (informative) Language-Defined Pragmas...........ccccceeeieiiieeieiieeeeeeeeeeeenn, 719

Annex M (informative) Summary of Documentation Requirements................... 721

M.1 Specific Documentation Requirements..........cccccciiririiirrrsrssssssssss s 721

M.2 Implementation-Defined Characteristics..........cccociiriiiirriiiiicrcrrcccc e 723

M.3 Implementation AdVICE ... e 728

ix © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Annex N (informative) GIOSSary ... 737
Annex P (informative) Syntax SUMMarYy ... 743
Annex Q (informative) Language-Defined Entities..........ccccceveviviiiiiieeiiviciieeeee, 771
Q.1 Language-Defined Packages.........ccccciiiiniiimmmmmnniinnssssssssss s s ssssssnnes 771
Q.2 Language-Defined Types and Subtypes.........cccccoiiiiiiimmmmniccennne s 773
Q.3 Language-Defined Subprograms............ccccovcmmmmiiiniiiscssssnenr e 778
Q.4 Language-Defined EXCepPLionsccccciiiiiiimimmnniniinsssss s 787
Q.5 Language-Defined ODBJECtSccoiiciciriiirismrirnrsere e s 788
0 o =G 793

© ISO/IEC 2012 — All rights reserved X

ISO/IEC 8652:DIS

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part
2.

The main task of the joint technical committee is to prepare International Standards. Draft
International Standards adopted by the joint technical committee are circulated to national bodies for
voting. Publication as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 8652 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information Technology Subcommittee SC22, Programming languages, their environments and
system software interfaces.

This third edition cancels and replaces the second edition (ISO/IEC 8652:1995), of which it
constitutes a technical revision. This edition incorporates the contents of Technical Corrigendum 1
(ISO/IEC 8652:1995:COR.1:2001) and Amendment 1 (ISO/IEC 8652:1995:AMD 1:2007).

Annexes A to J form an integral part of this International Standard. Annexes K to Q are for
information only.

Xi © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Introduction

This is the Ada Reference Manual.

Other available Ada documents include:

e Ada 2012 Rationale. This gives an introduction to the changes and new features in Ada 2012,
and explains the rationale behind them. Programmers should read this rationale before reading
this Standard in depth. Rationales for Ada 83, Ada 95, and Ada 2005 are also available.

e The Annotated Ada Reference Manual (AARM). The AARM contains all of the text in this
International Standard, plus various annotations. It is intended primarily for compiler writers,
validation test writers, and others who wish to study the fine details. The annotations include
detailed rationale for individual rules and explanations of some of the more arcane
interactions among the rules.

Design Goals

Ada was originally designed with three overriding concerns: program reliability and maintenance,
programming as a human activity, and efficiency. The 1995 revision to the language was designed to
provide greater flexibility and extensibility, additional control over storage management and
synchronization, and standardized packages oriented toward supporting important application areas,
while at the same time retaining the original emphasis on reliability, maintainability, and efficiency.
This third edition provides further flexibility and adds more standardized packages within the
framework provided by the 1995 revision.

The need for languages that promote reliability and simplify maintenance is well established. Hence
emphasis was placed on program readability over ease of writing. For example, the rules of the
language require that program variables be explicitly declared and that their type be specified. Since
the type of a variable is invariant, compilers can ensure that operations on variables are compatible
with the properties intended for objects of the type. Furthermore, error-prone notations have been
avoided, and the syntax of the language avoids the use of encoded forms in favor of more English-like
constructs. Finally, the language offers support for separate compilation of program units in a way
that facilitates program development and maintenance, and which provides the same degree of
checking between units as within a unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt was
made to keep to a relatively small number of underlying concepts integrated in a consistent and
systematic way while continuing to avoid the pitfalls of excessive involution. The design especially
aims to provide language constructs that correspond intuitively to the normal expectations of users.

Like many other human activities, the development of programs is becoming ever more decentralized
and distributed. Consequently, the ability to assemble a program from independently produced
software components continues to be a central idea in the design. The concepts of packages, of private
types, and of generic units are directly related to this idea, which has ramifications in many other
aspects of the language. An allied concern is the maintenance of programs to match changing
requirements; type extension and the hierarchical library enable a program to be modified while
minimizing disturbance to existing tested and trusted components.

No language can avoid the problem of efficiency. Languages that require over-elaborate compilers, or
that lead to the inefficient use of storage or execution time, force these inefficiencies on all machines
and on all programs. Every construct of the language was examined in the light of present
implementation techniques. Any proposed construct whose implementation was unclear or that
required excessive machine resources was rejected.

Language Summary

An Ada program is composed of one or more program units. Program units may be subprograms
(which define executable algorithms), packages (which define collections of entities), task units

© ISO/IEC 2012 — All rights reserved Xii

ISO/IEC 8652:DIS

(which define concurrent computations), protected units (which define operations for the coordinated
sharing of data between tasks), or generic units (which define parameterized forms of packages and
subprograms). Each program unit normally consists of two parts: a specification, containing the
information that must be visible to other units, and a body, containing the implementation details,
which need not be visible to other units. Most program units can be compiled separately.

This distinction of the specification and body, and the ability to compile units separately, allows a
program to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. All libraries are
structured in a hierarchical manner; this enables the logical decomposition of a subsystem into
individual components. The text of a separately compiled program unit must name the library units it
requires.

Program Units

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it
may read data, update variables, or produce some output. It may have parameters, to provide a
controlled means of passing information between the procedure and the point of call. A function is the
means of invoking the computation of a value. It is similar to a procedure, but in addition will return a
result.

A package is the basic unit for defining a collection of logically related entities. For example, a
package can be used to define a set of type declarations and associated operations. Portions of a
package can be hidden from the user, thus allowing access only to the logical properties expressed by
the package specification.

Subprogram and package units may be compiled separately and arranged in hierarchies of parent and
child units giving fine control over visibility of the logical properties and their detailed
implementation.

A task unit is the basic unit for defining a task whose sequence of actions may be executed
concurrently with those of other tasks. Such tasks may be implemented on multicomputers,
multiprocessors, or with interleaved execution on a single processor. A task unit may define either a
single executing task or a task type permitting the creation of any number of similar tasks.

A protected unit is the basic unit for defining protected operations for the coordinated use of data
shared between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing
protocols can be defined. A protected operation can either be a subprogram or an entry. A protected
entry specifies a Boolean expression (an entry barrier) that must be True before the body of the entry
is executed. A protected unit may define a single protected object or a protected type permitting the
creation of several similar objects.

Declarations and Statements

The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of
the program unit.

The declarative part associates names with declared entities. For example, a name may denote a type,
a constant, a variable, or an exception. A declarative part also introduces the names and parameters of
other nested subprograms, packages, task units, protected units, and generic units to be used in the
program unit.

The sequence of statements describes a sequence of actions that are to be performed. The statements
are executed in succession (unless a transfer of control causes execution to continue from another
place).

Xiii © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

Case statements and if statements allow the selection of an enclosed sequence of statements based on
the value of an expression or on the value of a condition.

The loop statement provides the basic iterative mechanism in the language. A loop statement specifies
that a sequence of statements is to be executed repeatedly as directed by an iteration scheme, or until
an exit statement is encountered.

A block statement comprises a sequence of statements preceded by the declaration of local entities
used by the statements.

Certain statements are associated with concurrent execution. A delay statement delays the execution
of a task for a specified duration or until a specified time. An entry call statement is written as a
procedure call statement; it requests an operation on a task or on a protected object, blocking the
caller until the operation can be performed. A called task may accept an entry call by executing a
corresponding accept statement, which specifies the actions then to be performed as part of the
rendezvous with the calling task. An entry call on a protected object is processed when the
corresponding entry barrier evaluates to true, whereupon the body of the entry is executed. The
requeue statement permits the provision of a service as a number of related activities with preference
control. One form of the select statement allows a selective wait for one of several alternative
rendezvous. Other forms of the select statement allow conditional or timed entry calls and the
asynchronous transfer of control in response to some triggering event.

Execution of a program unit may encounter error situations in which normal program execution
cannot continue. For example, an arithmetic computation may exceed the maximum allowed value of
a number, or an attempt may be made to access an array component by using an incorrect index value.
To deal with such error situations, the statements of a program unit can be textually followed by
exception handlers that specify the actions to be taken when the error situation arises. Exceptions can
be raised explicitly by a raise statement.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are elementary types (comprising enumeration, numeric, and
access types) and composite types (including array and record types).

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states
or an alphabet of characters. The enumeration types Boolean, Character, Wide Character, and
Wide Wide Character are predefined.

Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations
use either fixed point types, with absolute bounds on the error, or floating point types, with relative
bounds on the error. The numeric types Integer, Float, and Duration are predefined.

Composite types allow definitions of structured objects with related components. The composite types
in the language include arrays and records. An array is an object with indexed components of the
same type. A record is an object with named components of possibly different types. Task and
protected types are also forms of composite types. The array types String, Wide String, and
Wide Wide_ String are predefined.

Record, task, and protected types may have special components called discriminants which
parameterize the type. Variant record structures that depend on the values of discriminants can be
defined within a record type.

Access types allow the construction of linked data structures. A value of an access type represents a
reference to an object declared as aliased or to an object created by the evaluation of an allocator.

© ISO/IEC 2012 — All rights reserved Xiv

ISO/IEC 8652:DIS

Several variables of an access type may designate the same object, and components of one object may
designate the same or other objects. Both the elements in such linked data structures and their relation
to other elements can be altered during program execution. Access types also permit references to
subprograms to be stored, passed as parameters, and ultimately dereferenced as part of an indirect call.

Private types permit restricted views of a type. A private type can be defined in a package so that only
the logically necessary properties are made visible to the users of the type. The full structural details
that are externally irrelevant are then only available within the package and any child units.

From any type a new type may be defined by derivation. A type, together with its derivatives (both
direct and indirect) form a derivation class. Class-wide operations may be defined that accept as a
parameter an operand of any type in a derivation class. For record and private types, the derivatives
may be extensions of the parent type. Types that support these object-oriented capabilities of class-
wide operations and type extension must be tagged, so that the specific type of an operand within a
derivation class can be identified at run time. When an operation of a tagged type is applied to an
operand whose specific type is not known until run time, implicit dispatching is performed based on
the tag of the operand.

Interface types provide abstract models from which other interfaces and types may be composed and
derived. This provides a reliable form of multiple inheritance. Interface types may also be
implemented by task types and protected types thereby enabling concurrent programming and
inheritance to be merged.

The concept of a type is further refined by the concept of a subtype, whereby a user can constrain the
set of allowed values of a type. Subtypes can be used to define subranges of scalar types, arrays with a
limited set of index values, and records and private types with particular discriminant values.

Other Facilities

Aspect clauses can be used to specify the mapping between types and features of an underlying
machine. For example, the user can specify that objects of a given type must be represented with a
given number of bits, or that the components of a record are to be represented using a given storage
layout. Other features allow the controlled use of low level, nonportable, or implementation-
dependent aspects, including the direct insertion of machine code.

The predefined environment of the language provides for input-output and other capabilities by means
of standard library packages. Input-output is supported for values of user-defined as well as of
predefined types. Standard means of representing values in display form are also provided.

The predefined standard library packages provide facilities such as string manipulation, containers of
various kinds (vectors, lists, maps, etc.), mathematical functions, random number generation, and
access to the execution environment.

The specialized annexes define further predefined library packages and facilities with emphasis on
areas such as real-time scheduling, interrupt handling, distributed systems, numerical computation,
and high-integrity systems.

Finally, the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects and
packages) and so allow general algorithms and data structures to be defined that are applicable to all
types of a given class.

Language Changes

This International Standard replaces the second edition of 1995. It modifies the previous edition by
making changes and additions that improve the capability of the language and the reliability of
programs written in the language. This edition incorporates the changes from Amendment 1 (ISO/IEC
8652:1995:AMD 1:2007), which were designed to improve the portability of programs, interfacing to
other languages, and both the object-oriented and real-time capabilities.

XV © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Significant changes originating in Amendment 1 are incorporated:

e Support for program text is extended to cover the entire ISO/IEC 10646:2003 repertoire.
Execution support now includes the 32-bit character set. See clauses 2.1, 3.5.2, 3.6.3, A.1,
A.3,and A.4.

e The object-oriented model has been improved by the addition of an interface facility which
provides multiple inheritance and additional flexibility for type extensions. See clauses 3.4,
3.9, and 7.3. An alternative notation for calling operations more akin to that used in other
languages has also been added. See clause 4.1.3.

e Access types have been further extended to unify properties such as the ability to access
constants and to exclude null values. See clause 3.10. Anonymous access types are now
permitted more freely and anonymous access-to-subprogram types are introduced. See clauses
3.3,3.6,3.10, and 8.5.1.

e The control of structure and visibility has been enhanced to permit mutually dependent
references between units and finer control over access from the private part of a package. See
clauses 3.10.1 and 10.1.2. In addition, limited types have been made more useful by the
provision of aggregates, constants, and constructor functions. See clauses 4.3, 6.5, and 7.5.

e The predefined environment has been extended to include additional time and calendar
operations, improved string handling, a comprehensive container library, file and directory
management, and access to environment variables. See clauses 9.6.1, A.4, A.16, A.17, and
A.18.

e Two of the Specialized Needs Annexes have been considerably enhanced:

e The Real-Time Systems Annex now includes the Ravenscar profile for high-integrity
systems, further dispatching policies such as Round Robin and Earliest Deadline First,
support for timing events, and support for control of CPU time utilization. See clauses
D.2, D.13, D.14, and D.15.

e The Numerics Annex now includes support for real and complex vectors and matrices as
previously defined in ISO/IEC 13813:1997 plus further basic operations for linear
algebra. See clause G.3.

e The overall reliability of the language has been enhanced by a number of improvements.
These include new syntax which detects accidental overloading, as well as pragmas for
making assertions and giving better control over the suppression of checks. See clauses 6.1,
11.4.2,and 11.5.

In addition, this third edition makes enhancements to address two important issues, namely, the
particular problems of multiprocessor architectures, and the need to further increase the capabilities
regarding assertions for correctness. It also makes additional changes and additions that improve the
capability of the language and the reliability of programs written in the language.

The following significant changes with respect to the 1995 edition as amended by Amendment 1 are
incorporated:

e New syntax (the aspect specification) is introduced to enable properties to be specified for
various entities in a more structured manner than through pragmas. See clause 13.1.1.

e The concept of assertions introduced in the 2005 edition is extended with the ability to
specify preconditions and postconditions for subprograms, and invariants for private types.
The concept of constraints in defining subtypes is supplemented with subtype predicates that
enable subsets to be specified other than as simple ranges. These properties are all indicated
using aspect specifications. See clauses 3.2.4, 6.1.1, and 7.3.2.

e New forms of expressions are introduced. These are if expressions, case expressions,
quantified expressions, and expression functions. As well as being useful for programming in
general by avoiding the introduction of unnecessary assignments, they are especially valuable
in conditions and invariants since they avoid the need to introduce auxiliary functions. See
clauses 4.5.7, 4.5.8, and 6.8. Membership tests are also made more flexible. See clauses 4.4
and 4.5.2.

© ISO/IEC 2012 — All rights reserved XVi

ISO/IEC 8652:DIS

A number of changes are made to subprogram parameters. Functions may now have
parameters of all modes. In order to mitigate consequent (and indeed existing) problems of
inadvertent order dependence, rules are introduced to reduce aliasing. A parameter may now
be explicitly marked as aliased and the type of a parameter may be incomplete in certain
circumstances. See clauses 3.10.1, 6.1, and 6.4.1.

e The use of access types is now more flexible. The rules for accessibility and certain
conversions are improved. See clauses 3.10.2, 4.5.2, 4.6, and 8.6. Furthermore, better control
of storage pools is provided. See clause 13.11.4.

e The Real-Time Systems Annex now includes facilities for defining domains of processors and
assigning tasks to them. Improvements are made to scheduling and budgeting facilities. See
clauses D.10.1, D.14, and D.16.

e A number of important improvements are made to the standard library. These include
packages for conversions between strings and UTF encodings, and classification functions for
wide and wide wide characters. Internationalization is catered for by a package giving locale
information. See clauses A.3, A.4.11, and A.19. The container library is extended to include
bounded forms of the existing containers and new containers for indefinite objects, multiway
trees, and queues. See clause A.18.

e Finally, certain features are added primarily to ease the use of containers, such as the ability
to iterate over all elements in a container without having to encode the iteration. These can
also be used for iteration over arrays, and within quantified expressions. See clauses 4.1.5,
4.1.6, 5.5.1,and 5.5.2.

Xvii © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Instructions for Comment Submission

Informal comments on this International Standard may be sent via e-mail to ada-comment@ada-
auth.org. If appropriate, the Project Editor will initiate the defect correction procedure.

Comments should use the following format:

Itopic Title summarizing comment
!reference Ada 2012 RMss.ss(pp)
from Author Name yy-mm-dd
'keywords keywords related to topic
!discussion

text of discussion

where ss.ss is the section, clause or subclause number, pp is the paragraph number where applicable,
and yy-mm-dd is the date the comment was sent. The date is optional, as is the !keywords line.

Please use a descriptive “Subject” in your e-mail message, and limit each message to a single
comment.

When correcting typographical errors or making minor wording suggestions, please put the correction
directly as the topic of the comment; use square brackets [| to indicate text to be omitted and curly
braces { } to indicate text to be added, and provide enough context to make the nature of the
suggestion self-evident or put additional information in the body of the comment, for example:

Itopic [c]{C}haracter

!topic it[']s meaning is not defined
Formal requests for interpretations and for reporting defects in this International Standard may be
made in accordance with the ISO/IEC JTC 1 Directives and the ISO/IEC JTC 1/SC 22 policy for
interpretations. National Bodies may submit a Defect Report to ISO/IEC JTC 1/SC 22 for resolution

under the JTC 1 procedures. A response will be provided and, if appropriate, a Technical
Corrigendum will be issued in accordance with the procedures.

© ISO/IEC 2012 — All rights reserved Xviii

ISO/IEC 8652:DIS

DRAFT INTERNATIONAL STANDARD ISO/IEC 8652:201z(E)

Information technology — Programming
Languages — Ada

Section 1: General

Ada is a programming language designed to support the construction of long-lived, highly reliable
software systems. The language includes facilities to define packages of related types, objects, and
operations. The packages may be parameterized and the types may be extended to support the
construction of libraries of reusable, adaptable software components. The operations may be
implemented as subprograms using conventional sequential control structures, or as entries that
include synchronization of concurrent threads of control as part of their invocation. The language
treats modularity in the physical sense as well, with a facility to support separate compilation.

The language includes a complete facility for the support of real-time, concurrent programming.
Errors can be signaled as exceptions and handled explicitly. The language also covers systems
programming; this requires precise control over the representation of data and access to system-
dependent properties. Finally, a predefined environment of standard packages is provided, including
facilities for, among others, input-output, string manipulation, numeric elementary functions, random
number generation, and definition and use of containers.

1.1 Scope

This International Standard specifies the form and meaning of programs written in Ada. Its purpose is
to promote the portability of Ada programs to a variety of data processing systems.

1.1.1 Extent
This International Standard specifies:
e The form of a program written in Ada;
e The effect of translating and executing such a program;
e The manner in which program units may be combined to form Ada programs;
e The language-defined library units that a conforming implementation is required to supply;

e The permissible variations within the standard, and the manner in which they are to be
documented,;

e Those violations of the standard that a conforming implementation is required to detect, and
the effect of attempting to translate or execute a program containing such violations;

e Those violations of the standard that a conforming implementation is not required to detect.

1 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

This International Standard does not specify:

The means whereby a program written in Ada is transformed into object code executable by a
processor;

The means whereby translation or execution of programs is invoked and the executing units
are controlled;

The size or speed of the object code, or the relative execution speed of different language
constructs;

The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages;

The effect of unspecified execution.

The size of a program or program unit that will exceed the capacity of a particular conforming
implementation.

1.1.2 Structure

This International Standard contains thirteen sections, fourteen annexes, and an index.

The core of the Ada language consists of:

Sections 1 through 13
Annex A, “Predefined Language Environment”
Annex B, “Interface to Other Languages”

Annex J, “Obsolescent Features”

The following Specialized Needs Annexes define features that are needed by certain application areas:

Annex C, “Systems Programming”
Annex D, “Real-Time Systems”
Annex E, “Distributed Systems”
Annex F, “Information Systems”
Annex G, “Numerics”

Annex H, “High Integrity Systems”

The core language and the Specialized Needs Annexes are normative, except that the material in each
of the items listed below is informative:

Text under a NOTES or Examples heading.

Each clause or subclause whose title starts with the word “Example” or “Examples”.

All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Specialized Needs Annexes.

The following Annexes are informative:

Annex K, “Language-Defined Aspects and Attributes”
Annex L, “Language-Defined Pragmas”

Annex M, “Summary of Documentation Requirements”
Annex N, “Glossary”

Annex P, “Syntax Summary”

Annex Q, “Language-Defined Entities”

© ISO/IEC 2012 — All rights reserved 2

ISO/IEC 8652:DIS

Each section is divided into clauses and subclauses that have a common structure. Each section,
clause, and subclause first introduces its subject. After the introductory text, text is labeled with the
following headings:

Syntax
Syntax rules (indented).
Name Resolution Rules

Compile-time rules that are used in name resolution, including overload resolution.

Legality Rules

Rules that are enforced at compile time. A construct is legal if it obeys all of the Legality Rules.

Static Semantics

A definition of the compile-time effect of each construct.

Post-Compilation Rules

Rules that are enforced before running a partition. A partition is legal if its compilation units are legal
and it obeys all of the Post-Compilation Rules.

Dynamic Semantics

A definition of the run-time effect of each construct.

Bounded (Run-Time) Errors

Situations that result in bounded (run-time) errors (see 1.1.5).

Erroneous Execution

Situations that result in erroneous execution (see 1.1.5).

Implementation Requirements

Additional requirements for conforming implementations.

Documentation Requirements

Documentation requirements for conforming implementations.

Metrics

Metrics that are specified for the time/space properties of the execution of certain language constructs.

Implementation Permissions

Additional permissions given to the implementer.

Implementation Advice

Optional advice given to the implementer. The word “should” is used to indicate that the advice is a
recommendation, not a requirement. It is implementation defined whether or not a given
recommendation is obeyed.

NOTES
1 Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material is informative.

Examples

Examples illustrate the possible forms of the constructs described. This material is informative.

3 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

1.1.3 Conformity of an Implementation with the Standard

Implementation Requirements
A conforming implementation shall:

e Translate and correctly execute legal programs written in Ada, provided that they are not so
large as to exceed the capacity of the implementation;

e Identify all programs or program units that are so large as to exceed the capacity of the
implementation (or raise an appropriate exception at run time);

o Identify all programs or program units that contain errors whose detection is required by this
International Standard;

e Supply all language-defined library units required by this International Standard;

e Contain no variations except those explicitly permitted by this International Standard, or
those that are impossible or impractical to avoid given the implementation's execution
environment;

e Specify all such variations in the manner prescribed by this International Standard.

The external effect of the execution of an Ada program is defined in terms of its interactions with its
external environment. The following are defined as external interactions:

e Any interaction with an external file (see A.7);

e The execution of certain code_statements (see 13.8); which code_statements cause external
interactions is implementation defined.

e Any call on an imported subprogram (see Annex B), including any parameters passed to it;

e Any result returned or exception propagated from a main subprogram (see 10.2) or an
exported subprogram (see Annex B) to an external caller;

e Any read or update of an atomic or volatile object (see C.6);

e The values of imported and exported objects (see Annex B) at the time of any other
interaction with the external environment.

A conforming implementation of this International Standard shall produce for the execution of a given
Ada program a set of interactions with the external environment whose order and timing are
consistent with the definitions and requirements of this International Standard for the semantics of the
given program.

An implementation that conforms to this Standard shall support each capability required by the core
language as specified. In addition, an implementation that conforms to this Standard may conform to
one or more Specialized Needs Annexes (or to none). Conformance to a Specialized Needs Annex
means that each capability required by the Annex is provided as specified.

An implementation conforming to this International Standard may provide additional aspects,
attributes, library units, and pragmas. However, it shall not provide any aspect, attribute, library unit,
or pragma having the same name as an aspect, attribute, library unit, or pragma (respectively)
specified in a Specialized Needs Annex unless the provided construct is either as specified in the
Specialized Needs Annex or is more limited in capability than that required by the Annex. A program
that attempts to use an unsupported capability of an Annex shall either be identified by the
implementation before run time or shall raise an exception at run time.

Documentation Requirements

Certain aspects of the semantics are defined to be either implementation defined or unspecified. In
such cases, the set of possible effects is specified, and the implementation may choose any effect in
the set. Implementations shall document their behavior in implementation-defined situations, but

© ISO/IEC 2012 — All rights reserved 4

ISO/IEC 8652:DIS

documentation is not required for unspecified situations. The implementation-defined characteristics
are summarized in M.2.

The implementation may choose to document implementation-defined behavior either by
documenting what happens in general, or by providing some mechanism for the user to determine
what happens in a particular case.

Implementation Advice

If an implementation detects the use of an unsupported Specialized Needs Annex feature at run time,
it should raise Program_Error if feasible.

If an implementation wishes to provide implementation-defined extensions to the functionality of a
language-defined library unit, it should normally do so by adding children to the library unit.

NOTES
2 The above requirements imply that an implementation conforming to this Standard may support some of the
capabilities required by a Specialized Needs Annex without supporting all required capabilities.

1.1.4 Method of Description and Syntax Notation

The form of an Ada program is described by means of a context-free syntax together with context-
dependent requirements expressed by narrative rules.

The meaning of Ada programs is described by means of narrative rules defining both the effects of
each construct and the composition rules for constructs.

The context-free syntax of the language is described using a simple variant of Backus-Naur Form. In
particular:

e Lower case words in a sans-serif font, some containing embedded underlines, are used to
denote syntactic categories, for example:

case_statement
e Boldface words are used to denote reserved words, for example:
array
e Square brackets enclose optional items. Thus the two following rules are equivalent.
simple_return_statement ::= return [expression];
simple_return_statement ::= return; | return expression;

e Curly brackets enclose a repeated item. The item may appear zero or more times; the
repetitions occur from left to right as with an equivalent left-recursive rule. Thus the two
following rules are equivalent.

term ::= factor {multiplying_operator factor}
term ::= factor | term multiplying_operator factor

e A vertical line separates alternative items unless it occurs immediately after an opening curly
bracket, in which case it stands for itself:

constraint ::= scalar_constraint | composite_constraint
discrete_choice_list ::= discrete_choice {| discrete_choice}

e If the name of any syntactic category starts with an italicized part, it is equivalent to the
category name without the italicized part. The italicized part is intended to convey some
semantic information. For example subtype name and task name are both equivalent to
name alone.

The delimiters, compound delimiters, reserved words, and numeric_literals are exclusively made of
the characters whose code point is between 16#20# and 16#7E#, inclusively. The special characters
for which names are defined in this International Standard (see 2.1) belong to the same range. For

5 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

example, the character E in the definition of exponent is the character whose name is “LATIN
CAPITAL LETTER E”, not “GREEK CAPITAL LETTER EPSILON”.

When this International Standard mentions the conversion of some character or sequence of characters
to upper case, it means the character or sequence of characters obtained by using simple upper case
mapping, as defined by documents referenced in the note in section 1 of ISO/IEC 10646:2011.

A syntactic category is a nonterminal in the grammar defined in BNF under “Syntax.” Names of
syntactic categories are set in a different font, like_this.

A construct is a piece of text (explicit or implicit) that is an instance of a syntactic category defined
under “Syntax”.

A constituent of a construct is the construct itself, or any construct appearing within it.

Whenever the run-time semantics defines certain actions to happen in an arbitrary order, this means
that the implementation shall arrange for these actions to occur in a way that is equivalent to some
sequential order, following the rules that result from that sequential order. When evaluations are
defined to happen in an arbitrary order, with conversion of the results to some subtypes, or with some
run-time checks, the evaluations, conversions, and checks may be arbitrarily interspersed, so long as
each expression is evaluated before converting or checking its value. Note that the effect of a program
can depend on the order chosen by the implementation. This can happen, for example, if two actual
parameters of a given call have side effects.
NOTES

3 The syntax rules describing structured constructs are presented in a form that corresponds to the recommended
paragraphing. For example, an if_statement is defined as:

if_statement ::=
if condition then
sequence_of_statements
{elsif condition then
sequence_of_statements}
[else
sequence_of statements]
end if;

4 The line breaks and indentation in the syntax rules indicate the recommended line breaks and indentation in the
corresponding constructs. The preferred places for other line breaks are after semicolons.

1.1.5 Classification of Errors

Implementation Requirements

The language definition classifies errors into several different categories:
e Errors that are required to be detected prior to run time by every Ada implementation;

These errors correspond to any violation of a rule given in this International Standard, other
than those listed below. In particular, violation of any rule that uses the terms shall, allowed,
permitted, legal, or illegal belongs to this category. Any program that contains such an error is
not a legal Ada program; on the other hand, the fact that a program is legal does not mean, per
se, that the program is free from other forms of error.

The rules are further classified as either compile time rules, or post compilation rules,
depending on whether a violation has to be detected at the time a compilation unit is
submitted to the compiler, or may be postponed until the time a compilation unit is
incorporated into a partition of a program.

e Errors that are required to be detected at run time by the execution of an Ada program,;

The corresponding error situations are associated with the names of the predefined
exceptions. Every Ada compiler is required to generate code that raises the corresponding
exception if such an error situation arises during program execution. If such an error situation

© ISO/IEC 2012 — All rights reserved 6

ISO/IEC 8652:DIS

is certain to arise in every execution of a construct, then an implementation is allowed
(although not required) to report this fact at compilation time.

e Bounded errors;

The language rules define certain kinds of errors that need not be detected either prior to or
during run time, but if not detected, the range of possible effects shall be bounded. The errors
of this category are called bounded errors. The possible effects of a given bounded error are
specified for each such error, but in any case one possible effect of a bounded error is the
raising of the exception Program_Error.

e Erroneous execution.

In addition to bounded errors, the language rules define certain kinds of errors as leading to
erroneous execution. Like bounded errors, the implementation need not detect such errors
either prior to or during run time. Unlike bounded errors, there is no language-specified
bound on the possible effect of erroneous execution; the effect is in general not predictable.

Implementation Permissions

An implementation may provide nonstandard modes of operation. Typically these modes would be
selected by a pragma or by a command line switch when the compiler is invoked. When operating in
a nonstandard mode, the implementation may reject compilation_units that do not conform to
additional requirements associated with the mode, such as an excessive number of warnings or
violation of coding style guidelines. Similarly, in a nonstandard mode, the implementation may apply
special optimizations or alternative algorithms that are only meaningful for programs that satisfy
certain criteria specified by the implementation. In any case, an implementation shall support a
standard mode that conforms to the requirements of this International Standard; in particular, in the
standard mode, all legal compilation_units shall be accepted.

Implementation Advice

If an implementation detects a bounded error or erroneous execution, it should raise Program_Error.

1.2 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions
of this International Standard. At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based on this International Standard are
encouraged to investigate the possibility of applying the most recent editions of the standards
indicated below. Members of IEC and ISO maintain registers of currently valid International
Standards.

ISO/IEC 639-3:2007, Terminology and other language and content resources — Codes for the
representation of names of languages — Part 3: Alpha-3 code for comprehensive coverage of
languages.

ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information
interchange.

ISO/IEC 1539-1:2004, Information technology — Programming languages — Fortran — Part 1:
Base language.

ISO/IEC 1989:2002, Information technology — Programming languages — COBOL.

ISO/IEC 3166-1:2006, Information and documentation — Codes for the representation of names of
countries and their subdivisions — Part 1: Country Codes.

ISO/IEC 6429:1992, Information technology — Control functions for coded graphic character sets.

ISO 8601:2004, Data elements and interchange formats — Information interchange —
Representation of dates and times.

7 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

ISO/IEC 8859-1:1987, Information processing — 8-bit single-byte coded character sets — Part 1:
Latin alphabet No. 1.

ISO/IEC 9899:2011, Information technology — Programming languages — C.

ISO/IEC 10646:2011, Information technology — Universal Multiple-Octet Coded Character Set
(UCS).

ISO/IEC 14882:2011, Information technology — Programming languages — C++.

ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments
and system software interfaces — Extensions for the programming language C to support new
character data types.

1.3 Definitions

Terms are defined throughout this International Standard, indicated by ifalic type. Terms explicitly
defined in this International Standard are not to be presumed to refer implicitly to similar terms
defined elsewhere. Mathematical terms not defined in this International Standard are to be interpreted
according to the CRC Concise Encyclopedia of Mathematics, Second Edition. Other terms not defined
in this International Standard are to be interpreted according to the Webster's Third New International
Dictionary of the English Language. Informal descriptions of some terms are also given in Annex N,
“Glossary”.

© ISO/IEC 2012 — All rights reserved 8

ISO/IEC 8652:DIS

Section 2: Lexical Elements

The text of a program consists of the texts of one or more compilations. The text of a compilation is a
sequence of lexical elements, each composed of characters; the rules of composition are given in this
section. Pragmas, which provide certain information for the compiler, are also described in this
section.

2.1 Character Set

The character repertoire for the text of an Ada program consists of the entire coding space described
by the ISO/IEC 10646:2011 Universal Multiple-Octet Coded Character Set. This coding space is
organized in planes, each plane comprising 65536 characters.

Syntax

A character is defined by this International Standard for each cell in the coding space described
by ISO/IEC 10646:2011, regardless of whether or not ISO/IEC 10646:2011 allocates a character
to that cell.

Static Semantics

The coded representation for characters is implementation defined (it need not be a representation
defined within ISO/IEC 10646:2011). A character whose relative code point in its plane is 16#FFFE#
or 16#FFFF# is not allowed anywhere in the text of a program. The only characters allowed outside of
comments are those in categories other_format, format_effector, and graphic_character.

The semantics of an Ada program whose text is not in Normalization Form KC (as defined by section
21 of ISO/IEC 10646:2011) is implementation defined.

The description of the language definition in this International Standard uses the character properties
General Category, Simple Uppercase Mapping, Uppercase Mapping, and Special Case Condition of
the documents referenced by the note in section 1 of ISO/IEC 10646:2011. The actual set of graphic
symbols used by an implementation for the visual representation of the text of an Ada program is not
specified.

Characters are categorized as follows:

letter_uppercase
Any character whose General Category is defined to be “Letter, Uppercase”.

letter_lowercase
Any character whose General Category is defined to be “Letter, Lowercase”.

letter_titlecase
Any character whose General Category is defined to be “Letter, Titlecase”.

letter_modifier
Any character whose General Category is defined to be “Letter, Modifier”.

letter_other
Any character whose General Category is defined to be “Letter, Other”.

mark_non_spacing
Any character whose General Category is defined to be “Mark, Non-Spacing”.

mark_spacing_combining
Any character whose General Category is defined to be “Mark, Spacing Combining”.

number_decimal
Any character whose General Category is defined to be “Number, Decimal”.

number_letter
Any character whose General Category is defined to be “Number, Letter”.

9 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

punctuation_connector
Any character whose General Category is defined to be “Punctuation, Connector”.

other_format
Any character whose General Category is defined to be “Other, Format”.

separator_space
Any character whose General Category is defined to be “Separator, Space”.

separator_line
Any character whose General Category is defined to be “Separator, Line”.

separator_paragraph
Any character whose General Category is defined to be “Separator, Paragraph”.

format_effector
The characters whose code points are 16#09# (CHARACTER TABULATION), 16#0A#
(LINE FEED), 16#0B# (LINE TABULATION), 16#0C# (FORM FEED), 16#0D#
(CARRIAGE RETURN), 16#85# (NEXT LINE), and the characters in categories
separator_line and separator_paragraph.

other_control
Any character whose General Category is defined to be “Other, Control”, and which is
not defined to be a format_effector.

other_private_use
Any character whose General Category is defined to be “Other, Private Use”.

other_surrogate
Any character whose General Category is defined to be “Other, Surrogate”.

graphic_character
Any character that is not in the categories other_control, other_private use,
other_surrogate, format_effector, and whose relative code point in its plane is neither
16#FFFE# nor 16#FFFF#.

The following names are used when referring to certain characters (the first name is that given in
ISO/IEC 10646:2011):

graphic symbol name graphic symbol name
" quotation mark : colon
number sign ; semicolon
& ampersand < less-than sign
' apostrophe, tick = equals sign
(left parenthesis > greater-than sign
) right parenthesis _ low line, underline
* asterisk, multiply | vertical line
+ plus sign / solidus, divide
, comma ! exclamation point

- hyphen-minus, minus % percent sign
full stop, dot, point

Implementation Requirements

An Ada implementation shall accept Ada source code in UTF-8 encoding, with or without a BOM
(see A.4.11), where every character is represented by its code point. The character pair CARRIAGE
RETURN/LINE FEED (code points 16#0D# 16#0A#) signifies a single end of line (see 2.2); every
other occurrence of a format_effector other than the character whose code point position is 16#09#
(CHARACTER TABULATION) also signifies a single end of line.

© ISO/IEC 2012 — All rights reserved 10

ISO/IEC 8652:DIS

Implementation Permissions

The categories defined above, as well as case mapping and folding, may be based on an
implementation-defined version of ISO/IEC 10646 (2003 edition or later).

NOTES
1 The characters in categories other_control, other_private_use, and other_surrogate are only allowed in comments.

2.2 Lexical Elements, Separators, and Delimiters

Static Semantics

The text of a program consists of the texts of one or more compilations. The text of each compilation
is a sequence of separate lexical elements. Each lexical element is formed from a sequence of
characters, and is either a delimiter, an identifier, a reserved word, a numeric_literal, a
character_literal, a string_literal, or a comment. The meaning of a program depends only on the
particular sequences of lexical elements that form its compilations, excluding comments.

The text of a compilation is divided into /ines. In general, the representation for an end of line is
implementation defined. However, a sequence of one or more format_effectors other than the
character whose code point is 16#09# (CHARACTER TABULATION) signifies at least one end of
line.

In some cases an explicit separator is required to separate adjacent lexical elements. A separator is
any of a separator_space, a format_effector, or the end of a line, as follows:

e A separator_space is a separator except within a comment, a string_literal, or a
character_literal.

e The character whose code point is 16#09# (CHARACTER TABULATION) is a separator
except within a comment.

e The end of a line is always a separator.

One or more separators are allowed between any two adjacent lexical elements, before the first of
each compilation, or after the last. At least one separator is required between an identifier, a reserved
word, or a numeric_literal and an adjacent identifier, reserved word, or numeric_literal.

One or more other_format characters are allowed anywhere that a separator is; any such characters
have no effect on the meaning of an Ada program.

A delimiter is either one of the following characters:
& () = <= >

or one of the following compound delimiters each composed of two adjacent special characters
= . Fk = = >S= <= << S>> <>

Each of the special characters listed for single character delimiters is a single delimiter except if this
character is used as a character of a compound delimiter, or as a character of a comment,
string_literal, character_literal, or numeric_literal.

The following names are used when referring to compound delimiters:

delimiter name
=> arrow
double dot
o double star, exponentiate

= assignment (pronounced: ‘“becomes”)

/= inequality (pronounced: “not equal’)

11 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

delimiter name

>= greater than or equal
<= less than or equal
<< left label bracket

>> right label bracket
< box

Implementation Requirements

An implementation shall support lines of at least 200 characters in length, not counting any characters
used to signify the end of a line. An implementation shall support lexical elements of at least 200
characters in length. The maximum supported line length and lexical element length are
implementation defined.

2.3 ldentifiers

Identifiers are used as names.

Syntax

identifier ::=

identifier_start {identifier_start | identifier_extend}
identifier_start ::=

letter_uppercase

| letter_lowercase

| letter_titlecase

| letter_modifier

| letter_other

| number_letter

identifier_extend ::=
mark_non_spacing
| mark_spacing_combining
| number_decimal
| punctuation_connector

An identifier shall not contain two consecutive characters in category punctuation_connector, or
end with a character in that category.

Static Semantics

Two identifiers are considered the same if they consist of the same sequence of characters after
applying locale-independent simple case folding, as defined by documents referenced in the note in
section 1 of ISO/IEC 10646:2011.

After applying simple case folding, an identifier shall not be identical to a reserved word.

Implementation Permissions

In a nonstandard mode, an implementation may support other upper/lower case equivalence rules for
identifiers, to accommodate local conventions.

NOTES
2 |dentifiers differing only in the use of corresponding upper and lower case letters are considered the same.

© ISO/IEC 2012 — All rights reserved 12

ISO/IEC 8652:DIS

Examples
Examples of identifiers:
Count X Get Symbol Ethelyn Marion
Snobol 4 X1 Page_ Count Store Next Item
IA&TOV -- Plato
YankoBCckuit - - Tchaikovsky
o o - - Angles

2.4 Numeric Literals

There are two kinds of numeric_literals, real literals and integer literals. A real literal is a
numeric_literal that includes a point; an integer literal is a numeric_literal without a point.
Syntax

numeric_literal ::= decimal_literal | based_literal

NOTES
3 The type of an integer literal is universal _integer. The type of a real literal is universal real.

2.4.1 Decimal Literals

A decimal_literal is a numeric_literal in the conventional decimal notation (that is, the base is ten).

Syntax
decimal_literal ::= numeral [.numeral] [exponent]
numeral ::= digit {[underline] digit}
exponent ::= E [+] numeral | E — numeral
digit::=0|1]2]314|5|6|7|8]9

An exponent for an integer literal shall not have a minus sign.

Static Semantics

An underline character in a numeric_literal does not affect its meaning. The letter E of an exponent
can be written either in lower case or in upper case, with the same meaning.

An exponent indicates the power of ten by which the value of the decimal_literal without the
exponent is to be multiplied to obtain the value of the decimal_literal with the exponent.

Examples
Examples of decimal literals:
12 0 1E6 123 456 - - integer literals
12.0 0.0 0.456 3.14159 26 -- real literals

2.4.2 Based Literals

A based_literal is a numeric_literal expressed in a form that specifies the base explicitly.

Syntax

based literal ::=
base # based_numeral [.based_numeral] # [exponent]

base ::= numeral

based _numeral ::=
extended_digit {[underline] extended_digit}

extended_digit ::=digit| A|B|C|D|E|F

13 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Legality Rules

The base (the numeric value of the decimal numeral preceding the first #) shall be at least two and at
most sixteen. The extended_digits A through F represent the digits ten through fifteen, respectively.
The value of each extended_digit of a based_literal shall be less than the base.

Static Semantics

The conventional meaning of based notation is assumed. An exponent indicates the power of the base
by which the value of the based_literal without the exponent is to be multiplied to obtain the value of
the based_literal with the exponent. The base and the exponent, if any, are in decimal notation.

The extended_digits A through F can be written either in lower case or in upper case, with the same
meaning.

Examples
Examples of based literals:
2#1111 1111# 16#FF# 016#0ff# - - integer literals of value 255
16H#E#EL 2#1110_0000# - - integer literals of value 224
16#F.FF#E+2 2#1.1111 1111 1110#E11l -- real literals of value 4095.0

2.5 Character Literals

A character_literal is formed by enclosing a graphic character between two apostrophe characters.

Syntax

character_literal ::= 'graphic_character'

NOTES
4 A character_literal is an enumeration literal of a character type. See 3.5.2.

Examples
Examples of character literals:
1 A 1 %! T 1 1
L' YT "N - - Various els.
Toot 'R - - Big numbers - infinity and aleph.

2.6 String Literals

A string_literal is formed by a sequence of graphic characters (possibly none) enclosed between two
quotation marks used as string brackets. They are used to represent operator_symbols (see 6.1),
values of a string type (see 4.2), and array subaggregates (see 4.3.3).
Syntax
string_literal ::= "{string_element}"
string_element ::="" | non_quotation_mark_graphic_character

A string_element is either a pair of quotation marks (""), or a single graphic_character other
than a quotation mark.

Static Semantics

The sequence of characters of a string_literal is formed from the sequence of string_elements
between the bracketing quotation marks, in the given order, with a string_element that is "" becoming
a single quotation mark in the sequence of characters, and any other string_element being reproduced
in the sequence.

A null string literal is a string_literal with no string_elements between the quotation marks.

© ISO/IEC 2012 — All rights reserved 14

NOTES
5 An end of line cannot appear in a string_literal.

6 No transformation is performed on the sequence of characters of a string_literal.

Examples

Examples of string literals:
"Message of the day:"

"o - - anull string literal

mon AN e - - three string literals of length 1

ISO/IEC 8652:DIS

"Characters such as $, %, and } are allowed in string literals"

"Archimedes said ""EUpnxo"""
"Volume of cylinder (mr2h) = "

2.7 Comments

A comment starts with two adjacent hyphens and extends up to the end of the line.

Syntax
comment ::= --{non_end of line character}

A comment may appear on any line of a program.

Static Semantics

The presence or absence of comments has no influence on whether a program is legal or illegal.
Furthermore, comments do not influence the meaning of a program; their sole purpose is the

enlightenment of the human reader.

Examples

Examples of comments:

- - the last sentence above echoes the Algol 68 report
end; -- processing of Line is complete

- - along comment may be split onto
- - two or more consecutive lines

———————————————— the first two hyphens start the comment

2.8 Pragmas

A pragma is a compiler directive. There are language-defined pragmas that give instructions for
optimization, listing control, etc. An implementation may support additional (implementation-defined)

pragmas.

Syntax

pragma ::=

pragma identifier [(pragma_argument_association {, pragma_argument_association})];

pragma_argument_association ::=
[pragma_argument _identifier =>] name
| [pragma_argument_identifier =>] expression
| pragma_argument _aspect_mark => name
| pragma_argument aspect_mark => expression

In a pragma, any pragma_argument_associations without a pragma_argument_identifier or
pragma_argument_aspect_mark shall precede any associations with a

pragma_argument_identifier or pragma_argument _aspect_mark.

15

© ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Pragmas are only allowed at the following places in a program:
e After a semicolon delimiter, but not within a formal_part or discriminant_part.

e At any place where the syntax rules allow a construct defined by a syntactic category
whose name ends with “declaration”, “item”, “statement”, “clause”, or “alternative”, or
one of the syntactic categories variant or exception_handler; but not in place of such a
construct if the construct is required, or is part of a list that is required to have at least one
such construct.

¢ Inplace of a statement in a sequence_of_statements.
e At any place where a compilation_unit is allowed.
Additional syntax rules and placement restrictions exist for specific pragmas.

The name of a pragma is the identifier following the reserved word pragma. The name or
expression of a pragma_argument_association is a pragma argument.

An identifier specific to a pragma is an identifier or reserved word that is used in a pragma argument
with special meaning for that pragma.
Static Semantics
If an implementation does not recognize the name of a pragma, then it has no effect on the semantics
of the program. Inside such a pragma, the only rules that apply are the Syntax Rules.
Dynamic Semantics

Any pragma that appears at the place of an executable construct is executed. Unless otherwise
specified for a particular pragma, this execution consists of the evaluation of each evaluable pragma
argument in an arbitrary order.

Implementation Requirements

The implementation shall give a warning message for an unrecognized pragma name.

Implementation Permissions

An implementation may provide implementation-defined pragmas; the name of an implementation-
defined pragma shall differ from those of the language-defined pragmas.

An implementation may ignore an unrecognized pragma even if it violates some of the Syntax Rules,
if detecting the syntax error is too complex.
Implementation Advice

Normally, implementation-defined pragmas should have no semantic effect for error-free programs;
that is, if the implementation-defined pragmas in a working program are replaced with unrecognized
pragmas, the program should still be legal, and should still have the same semantics.

Normally, an implementation should not define pragmas that can make an illegal program legal,
except as follows:

e A pragma used to complete a declaration;
e A pragma used to configure the environment by adding, removing, or replacing
library_items.
Syntax
The forms of List, Page, and Optimize pragmas are as follows:
pragma List(identifier);
pragma Page;

pragma Optimize(identifier);

© ISO/IEC 2012 — All rights reserved 16

ISO/IEC 8652:DIS

Other pragmas are defined throughout this International Standard, and are summarized in Annex
L.

Static Semantics

A pragma List takes one of the identifiers On or Off as the single argument. This pragma is allowed
anywhere a pragma is allowed. It specifies that listing of the compilation is to be continued or
suspended until a List pragma with the opposite argument is given within the same compilation. The
pragma itself is always listed if the compiler is producing a listing.

A pragma Page is allowed anywhere a pragma is allowed. It specifies that the program text which
follows the pragma should start on a new page (if the compiler is currently producing a listing).

A pragma Optimize takes one of the identifiers Time, Space, or Off as the single argument. This
pragma is allowed anywhere a pragma is allowed, and it applies until the end of the immediately
enclosing declarative region, or for a pragma at the place of a compilation_unit, to the end of the
compilation. It gives advice to the implementation as to whether time or space is the primary
optimization criterion, or that optional optimizations should be turned off. It is implementation
defined how this advice is followed.

Examples

Examples of pragmas:

pragma List (Off); -- turn off listing generation

pragma Optimize (Off); -- turn off optional optimizations

pragma Pure(Rational Numbers); -- setcategorization for package

pragma Assert (Exists(File Name),

Message => "Nonexistent file"); -- assertfile exists
2.9 Reserved Words
Syntax

The following are the reserved words. Within a program, some or all of the letters of a reserved
word may be in upper case.

abort else new return
abs elsif not reverse
abstract end null
select
accept entry
. of separate
access exception
. . or some
aliased exit
others subtype
all .
d for out synchronized
an function overriding
array tagged
at generic package task
. oto ragma terminate
begin g P . £
. private then
body if
in procedure type
case interface protected until
constant . .
is raise use
declare limited range when
delay record .
loop while
delta rem .
. . with
digits mod renames
do requeue xor

17

© ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

NOTES

7 The reserved words appear in lower case boldface in this International Standard, except when used in the
designator of an attribute (see 4.1.4). Lower case boldface is also used for a reserved word in a string_literal used as an

operator_symbol. This is merely a convention — programs may be written in whatever typeface is desired and
available.

© ISO/IEC 2012 — All rights reserved 18

ISO/IEC 8652:DIS

Section 3: Declarations and Types

This section describes the types in the language and the rules for declaring constants, variables, and
named numbers.

3.1 Declarations

The language defines several kinds of named entities that are declared by declarations. The entity's
name is defined by the declaration, usually by a defining_identifier, but sometimes by a defining_-
character_literal or defining_operator_symbol.

There are several forms of declaration. A basic_declaration is a form of declaration defined as
follows.

Syntax
basic_declaration ::=

type_declaration | subtype_declaration
| object_declaration | number_declaration
| subprogram_declaration | abstract_subprogram_declaration
| null_procedure_declaration | expression_function_declaration
| package_declaration | renaming_declaration
| exception_declaration | generic_declaration

| generic_instantiation
defining_identifier ::= identifier

Static Semantics

A declaration is a language construct that associates a name with (a view of) an entity. A declaration
may appear explicitly in the program text (an explicit declaration), or may be supposed to occur at a
given place in the text as a consequence of the semantics of another construct (an implicit
declaration).

Each of the following is defined to be a declaration: any basic_declaration; an enumeration_literal_-
specification; a discriminant_specification; a component_declaration; a loop_parameter_-
specification; an iterator_specification, a parameter_specification, a subprogram_body; an
extended_return_object_declaration; an entry_declaration; an entry_index_specification; a
choice_parameter_specification; a generic_formal_parameter_declaration.

All declarations contain a definition for a view of an entity. A view consists of an identification of the
entity (the entity of the view), plus view-specific characteristics that affect the use of the entity
through that view (such as mode of access to an object, formal parameter names and defaults for a
subprogram, or visibility to components of a type). In most cases, a declaration also contains the
definition for the entity itself (a renaming_declaration is an example of a declaration that does not
define a new entity, but instead defines a view of an existing entity (see 8.5)).

When it is clear from context, the term object is used in place of view of an object. Similarly, the
terms type and subtype are used in place of view of a type and view of a subtype, respectively.

For each declaration, the language rules define a certain region of text called the scope of the
declaration (see 8.2). Most declarations associate an identifier with a declared entity. Within its scope,
and only there, there are places where it is possible to use the identifier to refer to the declaration, the
view it defines, and the associated entity; these places are defined by the visibility rules (see 8.3). At
such places the identifier is said to be a name of the entity (the direct_name or selector_name); the
name is said to denote the declaration, the view, and the associated entity (see 8.6). The declaration is
said to declare the name, the view, and in most cases, the entity itself.

19 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

As an alternative to an identifier, an enumeration literal can be declared with a character_literal as its
name (see 3.5.1), and a function can be declared with an operator_symbol as its name (see 6.1).

The syntax rules use the terms defining_identifier, defining_character_literal, and defining_-
operator_symbol for the defining occurrence of a name; these are collectively called defining names.
The terms direct_ name and selector_name are used for usage occurrences of identifiers,
character_literals, and operator_symbols. These are collectively called usage names.

Dynamic Semantics

The process by which a construct achieves its run-time effect is called execution. This process is also
called elaboration for declarations and evaluation for expressions. One of the terms execution,
elaboration, or evaluation is defined by this International Standard for each construct that has a run-
time effect.

NOTES

1 At compile time, the declaration of an entity declares the entity. At run time, the elaboration of the declaration
creates the entity.

3.2 Types and Subtypes

Static Semantics

A type is characterized by a set of values, and a set of primitive operations which implement the
fundamental aspects of its semantics. An object of a given type is a run-time entity that contains (has)
a value of the type.

Types are grouped into categories of types. There exist several language-defined categories of types
(see NOTES below), reflecting the similarity of their values and primitive operations. Most categories
of types form classes of types. Elementary types are those whose values are logically indivisible;
composite types are those whose values are composed of component values.

The elementary types are the scalar types (discrete and real) and the access types (whose values
provide access to objects or subprograms). Discrete types are either infeger types or are defined by
enumeration of their values (enumeration types). Real types are either floating point types or fixed
point types.

The composite types are the record types, record extensions, array types, interface types, task types,
and protected types.

There can be multiple views of a type with varying sets of operations. An incomplete type represents
an incomplete view (see 3.10.1) of a type with a very restricted usage, providing support for recursive
data structures. A private type or private extension represents a partial view (see 7.3) of a type,
providing support for data abstraction. The full view (see 3.2.1) of a type represents its complete
definition. An incomplete or partial view is considered a composite type, even if the full view is not.

Certain composite types (and views thereof) have special components called discriminants whose
values affect the presence, constraints, or initialization of other components. Discriminants can be
thought of as parameters of the type.

The term subcomponent is used in this International Standard in place of the term component to
indicate either a component, or a component of another subcomponent. Where other subcomponents
are excluded, the term component is used instead. Similarly, a part of an object or value is used to
mean the whole object or value, or any set of its subcomponents. The terms component,
subcomponent, and part are also applied to a type meaning the component, subcomponent, or part of
objects and values of the type.

The set of possible values for an object of a given type can be subjected to a condition that is called a
constraint (the case of a null constraint that specifies no restriction is also included); the rules for
which values satisfy a given kind of constraint are given in 3.5 for range_constraints, 3.6.1 for

© ISO/IEC 2012 — All rights reserved 20

ISO/IEC 8652:DIS

index_constraints, and 3.7.1 for discriminant_constraints. The set of possible values for an object of
an access type can also be subjected to a condition that excludes the null value (see 3.10).

A subtype of a given type is a combination of the type, a constraint on values of the type, and certain
attributes specific to the subtype. The given type is called the type of the subtype. Similarly, the
associated constraint is called the constraint of the subtype. The set of values of a subtype consists of
the values of its type that satisfy its constraint and any exclusion of the null value. Such values belong
to the subtype.

A subtype is called an unconstrained subtype if its type has unknown discriminants, or if its type
allows range, index, or discriminant constraints, but the subtype does not impose such a constraint;
otherwise, the subtype is called a constrained subtype (since it has no unconstrained characteristics).

NOTES

2 Any set of types can be called a “category” of types, and any set of types that is closed under derivation (see 3.4) can
be called a “class” of types. However, only certain categories and classes are used in the description of the rules of the
language — generally those that have their own particular set of primitive operations (see 3.2.3), or that correspond to a
set of types that are matched by a given kind of generic formal type (see 12.5). The following are examples of
“interesting” language-defined classes: elementary, scalar, discrete, enumeration, character, boolean, integer, signed
integer, modular, real, floating point, fixed point, ordinary fixed point, decimal fixed point, numeric, access, access-to-
object, access-to-subprogram, composite, array, string, (untagged) record, tagged, task, protected, nonlimited. Special
syntax is provided to define types in each of these classes. In addition to these classes, the following are examples of
“interesting” language-defined categories: abstract, incomplete, interface, limited, private, record.

These language-defined categories are organized like this:

all types
elementary
scalar
discrete
enumeration
character
boolean
other enumeration
integer
signed integer
modular integer
real
floating point
fixed point
ordinary fixed point
decimal fixed point
access
access-to-object
access-to-subprogram
composite
untagged
array
string
other array
record
task
protected
tagged (including interfaces)
nonlimited tagged record
limited tagged
limited tagged record
synchronized tagged
tagged task
tagged protected

There are other categories, such as “numeric” and “discriminated”, which represent other categorization dimensions,
but do not fit into the above strictly hierarchical picture.

3.2.1 Type Declarations

A type_declaration declares a type and its first subtype.

21 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Syntax

type_declaration ::= full_type_declaration
| incomplete_type_declaration
| private_type_declaration
| private_extension_declaration

full_type_declaration ::=
type defining_identifier [known_discriminant_part] is type_definition
[aspect_specification];
| task_type_declaration
| protected_type_declaration

type_definition ::=
enumeration_type_definition | integer_type_definition

| real_type_definition | array_type_definition

| record_type_definition | access_type_definition

| derived_type_definition | interface_type_definition
Legality Rules

A given type shall not have a subcomponent whose type is the given type itself.

Static Semantics

The defining_identifier of a type_declaration denotes the first subtype of the type. The known_-
discriminant_part, if any, defines the discriminants of the type (see 3.7, “Discriminants”). The
remainder of the type_declaration defines the remaining characteristics of (the view of) the type.

A type defined by a type_declaration is a named type; such a type has one or more nameable
subtypes. Certain other forms of declaration also include type definitions as part of the declaration for
an object. The type defined by such a declaration is anonymous — it has no nameable subtypes. For
explanatory purposes, this International Standard sometimes refers to an anonymous type by a
pseudo-name, written in italics, and uses such pseudo-names at places where the syntax normally
requires an identifier. For a named type whose first subtype is T, this International Standard
sometimes refers to the type of T as simply “the type T”.

A named type that is declared by a full_type_declaration, or an anonymous type that is defined by an
access_definition or as part of declaring an object of the type, is called a full type. The declaration of
a full type also declares the full view of the type. The type_definition, task_definition, protected_-
definition, or access_definition that defines a full type is called a full type definition. Types declared
by other forms of type_declaration are not separate types; they are partial or incomplete views of
some full type.

The definition of a type implicitly declares certain predefined operators that operate on the type,
according to what classes the type belongs, as specified in 4.5, “Operators and Expression
Evaluation”.

The predefined types (for example the types Boolean, Wide Character, Integer, root integer, and
universal_integer) are the types that are defined in a predefined library package called Standard; this
package also includes the (implicit) declarations of their predefined operators. The package Standard
is described in A.1.

Dynamic Semantics

The elaboration of a full_type_declaration consists of the elaboration of the full type definition. Each
elaboration of a full type definition creates a distinct type and its first subtype.

© ISO/IEC 2012 — All rights reserved 22

ISO/IEC 8652:DIS

Examples

Examples of type definitions:

(White, Red, Yellow, Green, Blue, Brown, Black)
range 1 .. 72
array(l .. 10) of Integer

Examples of type declarations:
type Color 1is (White, Red, Yellow, Green, Blue, Brown, Black);

type Column is range 1 .. 72;
type Table 1is array(l .. 10) of Integer;
NOTES

3 Each of the above examples declares a named type. The identifier given denotes the first subtype of the type. Other
named subtypes of the type can be declared with subtype_declarations (see 3.2.2). Although names do not directly
denote types, a phrase like “the type Column” is sometimes used in this International Standard to refer to the type of
Column, where Column denotes the first subtype of the type. For an example of the definition of an anonymous type,
see the declaration of the array Color Table in 3.3.1; its type is anonymous — it has no nameable subtypes.

3.2.2 Subtype Declarations

A subtype_declaration declares a subtype of some previously declared type, as defined by a
subtype_indication.

Syntax

subtype_declaration ::=
subtype defining_identifier is subtype_indication
[aspect_specification];

subtype_indication ::= [null_exclusion] subtype_mark [constraint]
subtype_mark ::= subtype_name
constraint ::= scalar_constraint | composite_constraint

scalar_constraint ::=
range_constraint | digits_constraint | delta_constraint

composite_constraint ::=
index_constraint | discriminant_constraint

Name Resolution Rules

A subtype_mark shall resolve to denote a subtype. The type determined by a subtype_mark is the
type of the subtype denoted by the subtype_mark.

Dynamic Semantics

The elaboration of a subtype_declaration consists of the elaboration of the subtype_indication. The
elaboration of a subtype_indication creates a new subtype. If the subtype_indication does not include
a constraint, the new subtype has the same (possibly null) constraint as that denoted by the
subtype_mark. The elaboration of a subtype_indication that includes a constraint proceeds as
follows:

e The constraint is first elaborated.

e A check is then made that the constraint is compatible with the subtype denoted by the
subtype_mark.

The condition imposed by a constraint is the condition obtained after elaboration of the constraint.
The rules defining compatibility are given for each form of constraint in the appropriate subclause.
These rules are such that if a constraint is compatible with a subtype, then the condition imposed by
the constraint cannot contradict any condition already imposed by the subtype on its values. The
exception Constraint_Error is raised if any check of compatibility fails.

23 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

NOTES

4 A scalar_constraint may be applied to a subtype of an appropriate scalar type (see 3.5, 3.5.9, and J.3), even if the
subtype is already constrained. On the other hand, a composite_constraint may be applied to a composite subtype (or
an access-to-composite subtype) only if the composite subtype is unconstrained (see 3.6.1 and 3.7.1).

Examples

Examples of subtype declarations:
subtype Rainbow is Color range Red .. Blue; -- see3.2.1
subtype Red Blue is Rainbow;
subtype Int is Integer;
subtype Small Int is Integer range -10 .. 10;
subtype Up To K is Column range 1 .. K; -- see3.2.1
subtype Square is Matrix(1 .. 10, 1 .. 10); -- see 3.6
subtype Male is Person(Sex => M) ; -- see3.10.1
subtype Binop Ref is not null Binop_ Ptr; -- see 3.10

3.2.3 Classification of Operations

Static Semantics

An operation operates on a type T if it yields a value of type 7, if it has an operand whose expected
type (see 8.6) is T, or if it has an access parameter or access result type (see 6.1) designating 7. A
predefined operator, or other language-defined operation such as assignment or a membership test,
that operates on a type, is called a predefined operation of the type. The primitive operations of a type
are the predefined operations of the type, plus any user-defined primitive subprograms.

The primitive subprograms of a specific type are defined as follows:
e The predefined operators of the type (see 4.5);
e For a derived type, the inherited (see 3.4) user-defined subprograms;

e For an enumeration type, the enumeration literals (which are considered parameterless
functions — see 3.5.1);

e For a specific type declared immediately within a package_specification, any subprograms
(in addition to the enumeration literals) that are explicitly declared immediately within the
same package_specification and that operate on the type;

n_n

e For a specific type with an explicitly declared primitive
Boolean, the corresponding "/=" operator (see 6.6);

operator whose result type is

e For a nonformal type, any subprograms not covered above that are explicitly declared
immediately within the same declarative region as the type and that override (see 8.3) other
implicitly declared primitive subprograms of the type.

A primitive subprogram whose designator is an operator_symbol is called a primitive operator.

3.2.4 Subtype Predicates

The language-defined predicate aspects Static Predicate and Dynamic Predicate may be used to
define properties of subtypes. A predicate specification is an aspect_specification for one of the two
predicate aspects. General rules for aspects and aspect_specifications are found in Section 13 (13.1
and 13.1.1 respectively).

Name Resolution Rules

The expected type for a predicate aspect expression is any boolean type.

Static Semantics

A predicate specification may be given on a type_declaration or a subtype_declaration, and applies
to the declared subtype. In addition, predicate specifications apply to certain other subtypes:

© ISO/IEC 2012 — All rights reserved 24

ISO/IEC 8652:DIS

e For a (first) subtype defined by a derived type declaration, the predicates of the parent
subtype and the progenitor subtypes apply.

e For a subtype created by a subtype_indication, the predicate of the subtype denoted by the
subtype_mark applies.

The predicate of a subtype consists of all predicate specifications that apply, and-ed together; if no
predicate specifications apply, the predicate is True (in particular, the predicate of a base subtype is
True).

Predicate checks are defined to be enabled or disabled for a given subtype as follows:

e If a subtype is declared by a type declaration or subtype_declaration that includes a
predicate specification, then:

o if performing checks is required by the Static Predicate assertion policy (see 11.4.2) and
the declaration includes a Static Predicate specification, then predicate checks are
enabled for the subtype;

o if performing checks is required by the Dynamic Predicate assertion policy (see 11.4.2)
and the declaration includes a Dynamic Predicate specification, then predicate checks are
enabled for the subtype;

e otherwise, predicate checks are disabled for the subtype, regardless of whether predicate
checking is enabled for any other subtypes mentioned in the declaration;

e If a subtype is defined by a derived type declaration that does not include a predicate
specification, then predicate checks are enabled for the subtype if and only if predicate checks
are enabled for at least one of the parent subtype and the progenitor subtypes;

e If a subtype is created by a subtype_indication other than in one of the previous cases, then
predicate checks are enabled for the subtype if and only if predicate checks are enabled for
the subtype denoted by the subtype_mark;

e Otherwise, predicate checks are disabled for the given subtype.

Legality Rules

The expression of a Static Predicate specification shall be predicate-static; that is, one of the
following:

e a static expression;

e a membership test whose simple_expression is the current instance, and whose
membership_choice_list meets the requirements for a static membership test (see 4.9);

e a case_expression whose selecting expression is the current instance, and whose
dependent _expressions are static expressions;

e a call to a predefined equality or ordering operator, where one operand is the current instance,
and the other is a static expression;

e acall to a predefined boolean logical operator, where each operand is predicate-static;
e ashort-circuit control form where both operands are predicate-static; or
e a parenthesized predicate-static expression.

A predicate shall not be specified for an incomplete subtype.

If a predicate applies to a subtype, then that predicate shall not mention any other subtype to which
the same predicate applies.

An index subtype, discrete_range of an index_constraint or slice, or a discrete_subtype_definition
of a constrained_array_definition, entry_declaration, or entry_index_specification shall not denote
a subtype to which predicate specifications apply.

The prefix of an attribute_reference whose attribute_designator is First, Last, or Range shall not
denote a scalar subtype to which predicate specifications apply.

25 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

The discrete_subtype_definition of a loop_parameter_specification shall not denote a nonstatic
subtype to which predicate specifications apply or any subtype to which Dynamic Predicate
specifications apply.

The discrete_choice of a named_array_aggregate shall not denote a nonstatic subtype to which
predicate specifications apply.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Dynamic Semantics
If predicate checks are enabled for a given subtype, then:

On every subtype conversion, the predicate of the target subtype is evaluated, and a check is
performed that the predicate is True. This includes all parameter passing, except for certain
parameters passed by reference, which are covered by the following rule: After normal
completion and leaving of a subprogram, for each in out or out parameter that is passed by
reference, the predicate of the subtype of the actual is evaluated, and a check is performed that
the predicate is True. For an object created by an object declaration with no explicit
initialization expression, or by an uninitialized allocator, if any subcomponents have
default_expressions, the predicate of the nominal subtype of the created object is evaluated,
and a check is performed that the predicate is True. Assertions.Assertion_Error is raised if any
of these checks fail.

A value satisfies a predicate if the predicate is True for that value.

If any of the above Legality Rules is violated in an instance of a generic unit, Program_Error is raised
at the point of the violation.

NOTES
5 A predicate specification does not cause a subtype to be considered constrained.

6 A Static Predicate, like a constraint, always remains True for all objects of the subtype, except in the case of
uninitialized variables and other invalid values. A Dynamic_Predicate, on the other hand, is checked as specified
above, but can become False at other times. For example, the predicate of a record subtype is not checked when a
subcomponent is modified.

3.3 Objects and Named Numbers

Objects are created at run time and contain a value of a given type. An object can be created and
initialized as part of elaborating a declaration, evaluating an allocator, aggregate, or function_call, or
passing a parameter by copy. Prior to reclaiming the storage for an object, it is finalized if necessary
(see 7.6.1).
Static Semantics

All of the following are objects:

¢ the entity declared by an object_declaration;

e a formal parameter of a subprogram, entry, or generic subprogram;

e a generic formal object;

e aloop parameter;

e a choice parameter of an exception_handler;

e an entry index of an entry_body;

o the result of dereferencing an access-to-object value (see 4.1);

e the return object of a function;

o the result of evaluating an aggregate;

© ISO/IEC 2012 — All rights reserved 26

ISO/IEC 8652:DIS

e a qualified_expression whose operand denotes an object;
e acomponent, slice, or view conversion of another object.

An object is either a constant object or a variable object. Similarly, a view of an object is either a
constant or a variable. All views of a constant elementary object are constant. All views of a constant
composite object are constant, except for parts that are of controlled or immutably limited types;
variable views of those parts and their subcomponents may exist. In this sense, objects of controlled
and immutably limited types are inherently mutable. A constant view of an object cannot be used to
modify its value. The terms constant and variable by themselves refer to constant and variable views
of objects.

The value of an object is read when the value of any part of the object is evaluated, or when the value
of an enclosing object is evaluated. The value of a variable is updated when an assignment is
performed to any part of the variable, or when an assignment is performed to an enclosing object.

Whether a view of an object is constant or variable is determined by the definition of the view. The
following (and no others) represent constants:

e an object declared by an object_declaration with the reserved word constant;

e a formal parameter or generic formal object of mode in;

e a discriminant;

e aloop parameter unless specified to be a variable for a generalized loop (see 5.5.2);
e a choice parameter or entry index;

e the dereference of an access-to-constant value;

e the return object declared by an extended_return_statement with the reserved word
constant;

e the object denoted by a function_call or an aggregate;
o the result of evaluating a qualified_expression;

e within the body of a protected function (or a function declared immediately within a
protected_body), the current instance of the enclosing protected unit;

e a selected component, indexed _component, slice, or view conversion of a constant.

At the place where a view of an object is defined, a nominal subtype is associated with the view. The
object's actual subtype (that is, its subtype) can be more restrictive than the nominal subtype of the
view; it always is if the nominal subtype is an indefinite subtype. A subtype is an indefinite subtype if
it is an unconstrained array subtype, or if it has unknown discriminants or unconstrained discriminants
without defaults (see 3.7); otherwise, the subtype is a definite subtype (all elementary subtypes are
definite subtypes). A class-wide subtype is defined to have unknown discriminants, and is therefore
an indefinite subtype. An indefinite subtype does not by itself provide enough information to create an
object; an additional constraint or explicit initialization expression is necessary (see 3.3.1). A
component cannot have an indefinite nominal subtype.

A view of a composite object is known fo be constrained if:
¢ its nominal subtype is constrained, and is not an untagged partial view; or
e its nominal subtype is indefinite; or
e its type is immutably limited (see 7.5); or
e it is part of a stand-alone constant (including a generic formal object of mode in); or
e it is part of a formal parameter of mode in; or
e it is part of the object denoted by a function_call or aggregate; or

e it is part of a constant return object of an extended_return_statement; or

27 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

e it is a dereference of a pool-specific access type, and there is no ancestor of its type that has a
constrained partial view.

For the purposes of determining within a generic body whether an object is known to be constrained:

e if a subtype is a descendant of an untagged generic formal private or derived type, and the
subtype is not an unconstrained array subtype, it is not considered indefinite and is considered
to have a constrained partial view;

e if a subtype is a descendant of a formal access type, it is not considered pool-specific.

A named number provides a name for a numeric value known at compile time. It is declared by a
number_declaration.
NOTES

7 A constant cannot be the target of an assignment operation, nor be passed as an in out or out parameter, between its
initialization and finalization, if any.

8 The value of a constant object cannot be changed after its initialization, except in some cases where the object has a
controlled or immutably limited part (see 7.5, 7.6, and 13.9.1).

9 The nominal and actual subtypes of an elementary object are always the same. For a discriminated or array object, if
the nominal subtype is constrained, then so is the actual subtype.

3.3.1 Object Declarations

An object_declaration declares a stand-alone object with a given nominal subtype and, optionally, an
explicit initial value given by an initialization expression. For an array, access, task, or protected
object, the object_declaration may include the definition of the (anonymous) type of the object.

Syntax

object_declaration ::=
defining_identifier_list : [aliased] [constant] subtype_indication [:= expression]
[aspect_specification];
| defining_identifier_list : [aliased] [constant] access_definition [:= expression]
[aspect_specification];
| defining_identifier_list : [aliased] [constant] array_type_definition [:= expression]
[aspect_specification];
| single_task_declaration
| single_protected_declaration
defining_identifier_list ::=
defining_identifier {, defining_identifier}

Name Resolution Rules

For an object _declaration with an expression following the compound delimiter :=, the type
expected for the expression is that of the object. This expression is called the initialization
expression.

Legality Rules

An object_declaration without the reserved word constant declares a variable object. If it has a
subtype_indication or an array_type_definition that defines an indefinite subtype, then there shall be
an initialization expression.

Static Semantics

An object_declaration with the reserved word constant declares a constant object. If it has an
initialization expression, then it is called a full constant declaration. Otherwise, it is called a deferred
constant declaration. The rules for deferred constant declarations are given in clause 7.4. The rules
for full constant declarations are given in this subclause.

© ISO/IEC 2012 — All rights reserved 28

ISO/IEC 8652:DIS

Any declaration that includes a defining_identifier_list with more than one defining_identifier is
equivalent to a series of declarations each containing one defining_identifier from the list, with the
rest of the text of the declaration copied for each declaration in the series, in the same order as the list.
The remainder of this International Standard relies on this equivalence; explanations are given for
declarations with a single defining_identifier.

The subtype_indication, access_definition, or full type definition of an object_declaration defines
the nominal subtype of the object. The object declaration declares an object of the type of the
nominal subtype.

A component of an object is said to require late initialization if it has an access discriminant value
constrained by a per-object expression, or if it has an initialization expression that includes a name
denoting the current instance of the type or denoting an access discriminant.

Dynamic Semantics

If a composite object declared by an object_declaration has an unconstrained nominal subtype, then
if this subtype is indefinite or the object is constant the actual subtype of this object is constrained.
The constraint is determined by the bounds or discriminants (if any) of its initial value; the object is
said to be constrained by its initial value. When not constrained by its initial value, the actual and
nominal subtypes of the object are the same. If its actual subtype is constrained, the object is called a
constrained object.

For an object_declaration without an initialization expression, any initial values for the object or its
subcomponents are determined by the implicit initial values defined for its nominal subtype, as
follows:

e The implicit initial value for an access subtype is the null value of the access type.

e The implicit initial value for a scalar subtype that has the Default Value aspect specified is
the value of that aspect converted to the nominal subtype (which might raise Constraint_Error
— see 4.6, “Type Conversions”);

e The implicit initial (and only) value for each discriminant of a constrained discriminated
subtype is defined by the subtype.

e For a (definite) composite subtype, the implicit initial value of each component with a
default_expression is obtained by evaluation of this expression and conversion to the
component's nominal subtype (which might raise Constraint_Error), unless the component is
a discriminant of a constrained subtype (the previous case), or is in an excluded variant (see
3.8.1). For each component that does not have a default_expression, if the composite subtype
has the Default Component Value aspect specified, the implicit initial value is the value of
that aspect converted to the component's nominal subtype; otherwise, any implicit initial
values are those determined by the component's nominal subtype.

e For a protected or task subtype, there is an implicit component (an entry queue)
corresponding to each entry, with its implicit initial value being an empty queue.

The elaboration of an object_declaration proceeds in the following sequence of steps:

1. The subtype_indication, access_definition, array_type_definition, single_task_declaration,
or single_protected_declaration is first elaborated. This creates the nominal subtype (and the
anonymous type in the last four cases).

2. If the object_declaration includes an initialization expression, the (explicit) initial value is
obtained by evaluating the expression and converting it to the nominal subtype (which might
raise Constraint Error — see 4.6).

3. The object is created, and, if there is not an initialization expression, the object is initialized
by default. When an object is initialized by default, any per-object constraints (see 3.8) are
elaborated and any implicit initial values for the object or for its subcomponents are obtained
as determined by the nominal subtype. Any initial values (whether explicit or implicit) are

29 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

assigned to the object or to the corresponding subcomponents. As described in 5.2 and 7.6,
Initialize and Adjust procedures can be called.

For the third step above, evaluations and assignments are performed in an arbitrary order subject to
the following restrictions:

e Assignment to any part of the object is preceded by the evaluation of the value that is to be
assigned.

e The evaluation of a default_expression that includes the name of a discriminant is preceded
by the assignment to that discriminant.

e The evaluation of the default_expression for any component that depends on a discriminant
is preceded by the assignment to that discriminant.

e The assignments to any components, including implicit components, not requiring late
initialization precede the initial value evaluations for any components requiring late
initialization; if two components both require late initialization, then assignments to parts of
the component occurring earlier in the order of the component declarations precede the initial
value evaluations of the component occurring later.

There is no implicit initial value defined for a scalar subtype unless the Default Value aspect has been
specified for the type. In the absence of an explicit initialization or the specification of the
Default Value aspect, a newly created scalar object might have a value that does not belong to its
subtype (see 13.9.1 and H.1).

NOTES
10 Implicit initial values are not defined for an indefinite subtype, because if an object's nominal subtype is indefinite,
an explicit initial value is required.

11 As indicated above, a stand-alone object is an object declared by an object_declaration. Similar definitions apply to
“stand-alone constant” and “stand-alone variable.” A subcomponent of an object is not a stand-alone object, nor is an
object that is created by an allocator. An object declared by a loop_parameter_specification, iterator_specification,
parameter_specification, entry_index_specification, choice_parameter_specification, extended_return_statement,
or a formal_object_declaration of mode in out is not considered a stand-alone object.

12 The type of a stand-alone object cannot be abstract (see 3.9.3).

Examples
Example of a multiple object declaration:
- - the multiple object declaration
John, Paul : not null Person Name := new Person(Sex => M); -- see3.10.]

- - is equivalent to the two single object declarations in the order given

John : not null Person Name := new Person(Sex => M) ;
Paul : not null Person Name := new Person(Sex => M);

Examples of variable declarations:

Count, Sum : Integer;

Size : Integer range 0 .. 10 _000 := 0O;

Sorted : Boolean := False;

Color Table : array(l .. Max) of Color;

Option : Bit Vector(l .. 10) := (others => True);
Hello : aliased String := "Hi, world.";

6, o : Float range -m .. +T;

Examples of constant declarations:

Limit : constant Integer := 10 _000;

Low Limit : comnstant Integer := Limit/10;

Tolerance : constant Real := Dispersion(1.15);

Hello Msg : constant access String := Hello'Access; --see3.[0.2

© ISO/IEC 2012 — All rights reserved 30

ISO/IEC 8652:DIS

3.3.2 Number Declarations

A number_declaration declares a named number.

Syntax

number_declaration ::=
defining_identifier_list : constant := static_expression;

Name Resolution Rules

The static_expression given for a number_declaration is expected to be of any numeric type.

Legality Rules
The static_expression given for a number declaration shall be a static expression, as defined by
clause 4.9.
Static Semantics

The named number denotes a value of type universal integer if the type of the static_expression is
an integer type. The named number denotes a value of type universal real if the type of the static_-
expression is a real type.

The value denoted by the named number is the value of the static_expression, converted to the
corresponding universal type.

Dynamic Semantics

The elaboration of a number_declaration has no effect.

Examples
Examples of number declarations:
Two Pi : constant := 2.0*Ada.Numerics.Pi; - - a real number (see A.5)
Max : constant := 500; - - an integer number
Max Line Size : constant := Max/6; - - the integer 83
Power 16 : constant := 2**16; - - the integer 65 536
One, Un, Eins : comnstant := 1; - - three different names for 1

3.4 Derived Types and Classes

A derived_type_definition defines a derived type (and its first subtype) whose characteristics are
derived from those of a parent type, and possibly from progenitor types.

A class of types is a set of types that is closed under derivation; that is, if the parent or a progenitor
type of a derived type belongs to a class, then so does the derived type. By saying that a particular
group of types forms a class, we are saying that all derivatives of a type in the set inherit the
characteristics that define that set. The more general term category of types is used for a set of types
whose defining characteristics are not necessarily inherited by derivatives; for example, limited,
abstract, and interface are all categories of types, but not classes of types.

Syntax

derived_type_definition ::=
[abstract] [limited] new parent subtype_indication [[and interface_list] record_extension_p
art]

31 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Legality Rules

The parent subtype_indication defines the parent subtype; its type is the parent type. The
interface_list defines the progenitor types (see 3.9.4). A derived type has one parent type and zero or
more progenitor types.

A type shall be completely defined (see 3.11.1) prior to being specified as the parent type in a
derived_type_definition — the full_type declarations for the parent type and any of its
subcomponents have to precede the derived_type_definition.

If there is a record_extension_part, the derived type is called a record extension of the parent type. A
record_extension_part shall be provided if and only if the parent type is a tagged type. An
interface_list shall be provided only if the parent type is a tagged type.

If the reserved word limited appears in a derived_type_definition, the parent type shall be a limited
type. If the parent type is a tagged formal type, then in addition to the places where Legality Rules
normally apply (see 12.3), this rule applies also in the private part of an instance of a generic unit.

Static Semantics

The first subtype of the derived type is unconstrained if a known_discriminant_part is provided in the
declaration of the derived type, or if the parent subtype is unconstrained. Otherwise, the constraint of
the first subtype corresponds to that of the parent subtype in the following sense: it is the same as that
of the parent subtype except that for a range constraint (implicit or explicit), the value of each bound
of its range is replaced by the corresponding value of the derived type.

The first subtype of the derived type excludes null (see 3.10) if and only if the parent subtype
excludes null.

The characteristics and implicitly declared primitive subprograms of the derived type are defined as
follows:

e If the parent type or a progenitor type belongs to a class of types, then the derived type also
belongs to that class. The following sets of types, as well as any higher-level sets composed
from them, are classes in this sense, and hence the characteristics defining these classes are
inherited by derived types from their parent or progenitor types: signed integer, modular
integer, ordinary fixed, decimal fixed, floating point, enumeration, boolean, character, access-
to-constant, general access-to-variable, pool-specific access-to-variable, access-to-
subprogram, array, string, non-array composite, nonlimited, untagged record, tagged, task,
protected, and synchronized tagged.

e [f the parent type is an elementary type or an array type, then the set of possible values of the
derived type is a copy of the set of possible values of the parent type. For a scalar type, the
base range of the derived type is the same as that of the parent type.

e If the parent type is a composite type other than an array type, then the components, protected
subprograms, and entries that are declared for the derived type are as follows:

e The discriminants specified by a new known_discriminant_part, if there is one;
otherwise, each discriminant of the parent type (implicitly declared in the same order with
the same specifications) — in the latter case, the discriminants are said to be inkerited, or
if unknown in the parent, are also unknown in the derived type;

e Each nondiscriminant component, entry, and protected subprogram of the parent type,
implicitly declared in the same order with the same declarations; these components,
entries, and protected subprograms are said to be inherited,

e Each component declared in a record_extension_part, if any.

Declarations of components, protected subprograms, and entries, whether implicit or explicit,
occur immediately within the declarative region of the type, in the order indicated above,
following the parent subtype_indication.

© ISO/IEC 2012 — All rights reserved 32

ISO/IEC 8652:DIS

e For each predefined operator of the parent type, there is a corresponding predefined operator
of the derived type.

e For each user-defined primitive subprogram (other than a user-defined equality operator —
see below) of the parent type or of a progenitor type that already exists at the place of the
derived_type_definition, there exists a corresponding inherited primitive subprogram of the
derived type with the same defining name. Primitive user-defined equality operators of the
parent type and any progenitor types are also inherited by the derived type, except when the
derived type is a nonlimited record extension, and the inherited operator would have a profile
that is type conformant with the profile of the corresponding predefined equality operator; in
this case, the user-defined equality operator is not inherited, but is rather incorporated into the
implementation of the predefined equality operator of the record extension (see 4.5.2).

The profile of an inherited subprogram (including an inherited enumeration literal) is obtained
from the profile of the corresponding (user-defined) primitive subprogram of the parent or
progenitor type, after systematic replacement of each subtype of its profile (see 6.1) that is of
the parent or progenitor type, other than those subtypes found in the designated profile of an
access_definition, with a corresponding subtype of the derived type. For a given subtype of
the parent or progenitor type, the corresponding subtype of the derived type is defined as
follows:

o If the declaration of the derived type has neither a known_discriminant_part nor a
record_extension_part, then the corresponding subtype has a constraint that corresponds
(as defined above for the first subtype of the derived type) to that of the given subtype.

o If the derived type is a record extension, then the corresponding subtype is the first
subtype of the derived type.

o If the derived type has a new known_discriminant_part but is not a record extension,
then the corresponding subtype is constrained to those values that when converted to the
parent type belong to the given subtype (see 4.6).

The same formal parameters have default_expressions in the profile of the inherited
subprogram. Any type mismatch due to the systematic replacement of the parent or progenitor
type by the derived type is handled as part of the normal type conversion associated with
parameter passing — see 6.4.1.

If a primitive subprogram of the parent or progenitor type is visible at the place of the
derived_type_definition, then the corresponding inherited subprogram is implicitly declared
immediately after the derived_type_definition. Otherwise, the inherited subprogram is implicitly
declared later or not at all, as explained in 7.3.1.

A derived type can also be defined by a private_extension_declaration (see 7.3) or a formal_-
derived_type_definition (see 12.5.1). Such a derived type is a partial view of the corresponding full or
actual type.

All numeric types are derived types, in that they are implicitly derived from a corresponding root
numeric type (see 3.5.4 and 3.5.6).

Dynamic Semantics

The elaboration of a derived_type_definition creates the derived type and its first subtype, and
consists of the elaboration of the subtype_indication and the record_extension_part, if any. If the
subtype_indication depends on a discriminant, then only those expressions that do not depend on a
discriminant are evaluated.

For the execution of a call on an inherited subprogram, a call on the corresponding primitive
subprogram of the parent or progenitor type is performed; the normal conversion of each actual
parameter to the subtype of the corresponding formal parameter (see 6.4.1) performs any necessary
type conversion as well. If the result type of the inherited subprogram is the derived type, the result of
calling the subprogram of the parent or progenitor is converted to the derived type, or in the case of a

33 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

null extension, extended to the derived type using the equivalent of an extension_aggregate with the
original result as the ancestor_part and null record as the record_component_association_list.
NOTES

13 Classes are closed under derivation — any class that contains a type also contains its derivatives. Operations
available for a given class of types are available for the derived types in that class.

14 Evaluating an inherited enumeration literal is equivalent to evaluating the corresponding enumeration literal of the
parent type, and then converting the result to the derived type. This follows from their equivalence to parameterless
functions.

15 A generic subprogram is not a subprogram, and hence cannot be a primitive subprogram and cannot be inherited by
a derived type. On the other hand, an instance of a generic subprogram can be a primitive subprogram, and hence can
be inherited.

16 If the parent type is an access type, then the parent and the derived type share the same storage pool; there is a null
access value for the derived type and it is the implicit initial value for the type. See 3.10.

17 If the parent type is a boolean type, the predefined relational operators of the derived type deliver a result of the
predefined type Boolean (see 4.5.2). If the parent type is an integer type, the right operand of the predefined
exponentiation operator is of the predefined type Integer (see 4.5.6).

18 Any discriminants of the parent type are either all inherited, or completely replaced with a new set of discriminants.

19 For an inherited subprogram, the subtype of a formal parameter of the derived type need not have any value in
common with the first subtype of the derived type.

20 If the reserved word abstract is given in the declaration of a type, the type is abstract (see 3.9.3).

21 An interface type that has a progenitor type “is derived from” that type. A derived_type_definition, however, never
defines an interface type.

22 Ttis illegal for the parent type of a derived_type_definition to be a synchronized tagged type.

Examples
Examples of derived type declarations:
type Local Coordinate is new Coordinate; - - two different types
type Midweek is new Day range Tue .. Thu; -- see3.S./
type Counter is new Positive; - - same range as Positive
type Special Key is new Key Manager.Key; -- see7.3.1

- - the inherited subprograms have the following specifications:
-- procedure Get Key(K : out Special Key);
-- function "<"(X)Y : Special Key) return Boolean;

3.4.1 Derivation Classes

In addition to the various language-defined classes of types, types can be grouped into derivation
classes.

Static Semantics

A derived type is derived from its parent type directly; it is derived indirectly from any type from
which its parent type is derived. A derived type, interface type, type extension, task type, protected
type, or formal derived type is also derived from every ancestor of each of its progenitor types, if any.
The derivation class of types for a type T (also called the class rooted at T) is the set consisting of T
(the root type of the class) and all types derived from 7T (directly or indirectly) plus any associated
universal or class-wide types (defined below).

Every type is either a specific type, a class-wide type, or a universal type. A specific type is one
defined by a type_declaration, a formal_type_declaration, or a full type definition embedded in
another construct. Class-wide and universal types are implicitly defined, to act as representatives for
an entire class of types, as follows:

Class-wide types
Class-wide types are defined for (and belong to) each derivation class rooted at a tagged
type (see 3.9). Given a subtype S of a tagged type 7, S'Class is the subtype_mark for a
corresponding subtype of the tagged class-wide type T'Class. Such types are called “class-

© ISO/IEC 2012 — All rights reserved 34

ISO/IEC 8652:DIS

wide” because when a formal parameter is defined to be of a class-wide type 7T'Class, an
actual parameter of any type in the derivation class rooted at 7 is acceptable (see 8.6).

The set of values for a class-wide type T'Class is the discriminated union of the set of
values of each specific type in the derivation class rooted at 7 (the tag acts as the implicit
discriminant — see 3.9). Class-wide types have no primitive subprograms of their own.
However, as explained in 3.9.2, operands of a class-wide type 7"Class can be used as part
of a dispatching call on a primitive subprogram of the type 7. The only components
(including discriminants) of 7'Class that are visible are those of 7. If S is a first subtype,
then S'Class is a first subtype.

Universal types

Universal types are defined for (and belong to) the integer, real, fixed point, and access
classes, and are referred to in this standard as respectively, wuniversal integer,
universal _real, universal_fixed, and universal access. These are analogous to class-wide
types for these language-defined elementary classes. As with class-wide types, if a formal
parameter is of a universal type, then an actual parameter of any type in the corresponding
class is acceptable. In addition, a value of a universal type (including an integer or real
numeric_literal, or the literal null) is “universal” in that it is acceptable where some
particular type in the class is expected (see 8.6).

The set of values of a universal type is the undiscriminated union of the set of values
possible for any definable type in the associated class. Like class-wide types, universal
types have no primitive subprograms of their own. However, their “universality” allows
them to be used as operands with the primitive subprograms of any type in the
corresponding class.

The integer and real numeric classes each have a specific root type in addition to their universal type,
named respectively root_integer and root_real.

A class-wide or universal type is said to cover all of the types in its class. A specific type covers only
itself.

A specific type T2 is defined to be a descendant of a type T1 if T2 is the same as T1, or if 72 is
derived (directly or indirectly) from 7'/. A class-wide type 72'Class is defined to be a descendant of
type 71 if 72 is a descendant of T/. Similarly, the numeric universal types are defined to be
descendants of the root types of their classes. If a type 72 is a descendant of a type T/, then T/ is
called an ancestor of T2. An ultimate ancestor of a type is an ancestor of that type that is not itself a
descendant of any other type. Every untagged type has a unique ultimate ancestor.

An inherited component (including an inherited discriminant) of a derived type is inherited from a
given ancestor of the type if the corresponding component was inherited by each derived type in the
chain of derivations going back to the given ancestor.

NOTES

23 Because operands of a universal type are acceptable to the predefined operators of any type in their class, ambiguity

can result. For universal integer and universal _real, this potential ambiguity is resolved by giving a preference (see

8.6) to the predefined operators of the corresponding root types (root_integer and root_real, respectively). Hence, in an
apparently ambiguous expression like

1+4<7

where each of the literals is of type universal integer, the predefined operators of root_integer will be preferred over
those of other specific integer types, thereby resolving the ambiguity.

3.5 Scalar Types

Scalar types comprise enumeration types, integer types, and real types. Enumeration types and integer
types are called discrete types; each value of a discrete type has a position number which is an integer
value. Integer types and real types are called numeric types. All scalar types are ordered, that is, all
relational operators are predefined for their values.

35 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Syntax
range_constraint ::= range range

range ::= range_attribute _reference
| simple_expression .. simple_expression

A range has a lower bound and an upper bound and specifies a subset of the values of some scalar
type (the type of the range). A range with lower bound L and upper bound R is described by “L .. R”.
If R is less than L, then the range is a null range, and specifies an empty set of values. Otherwise, the
range specifies the values of the type from the lower bound to the upper bound, inclusive. A value
belongs to a range if it is of the type of the range, and is in the subset of values specified by the range.
A value satisfies a range constraint if it belongs to the associated range. One range is included in
another if all values that belong to the first range also belong to the second.

Name Resolution Rules

For a subtype_indication containing a range_constraint, either directly or as part of some other
scalar_constraint, the type of the range shall resolve to that of the type determined by the
subtype_mark of the subtype_indication. For a range of a given type, the simple_expressions of the
range (likewise, the simple_expressions of the equivalent range for a range_attribute_reference)
are expected to be of the type of the range.

Static Semantics

The base range of a scalar type is the range of finite values of the type that can be represented in
every unconstrained object of the type; it is also the range supported at a minimum for intermediate
values during the evaluation of expressions involving predefined operators of the type.

A constrained scalar subtype is one to which a range constraint applies. The range of a constrained
scalar subtype is the range associated with the range constraint of the subtype. The range of an
unconstrained scalar subtype is the base range of its type.

Dynamic Semantics

A range is compatible with a scalar subtype if and only if it is either a null range or each bound of the
range belongs to the range of the subtype. A range_constraint is compatible with a scalar subtype if
and only if its range is compatible with the subtype.

The elaboration of a range_constraint consists of the evaluation of the range. The evaluation of a
range determines a lower bound and an upper bound. If simple_expressions are given to specify
bounds, the evaluation of the range evaluates these simple_expressions in an arbitrary order, and
converts them to the type of the range. If a range_attribute_reference is given, the evaluation of the
range consists of the evaluation of the range_attribute reference.

Attributes

For every scalar subtype S, the following attributes are defined:

S'First S'First denotes the lower bound of the range of S. The value of this attribute is of the type
of S.

S'Last S'Last denotes the upper bound of the range of S. The value of this attribute is of the type
of S.

S'Range S'Range is equivalent to the range S'First .. S'Last.

S'Base S'Base denotes an unconstrained subtype of the type of S. This unconstrained subtype is
called the base subtype of the type.

S'Min S'™Min denotes a function with the following specification:

function S'Min (Left, Right : S'Base)
return S'Base

The function returns the lesser of the values of the two parameters.

© ISO/IEC 2012 — All rights reserved 36

ISO/IEC 8652:DIS

S'Max S'Max denotes a function with the following specification:

function S'Max(Left, Right : S'Base)
return S'Base

The function returns the greater of the values of the two parameters.

S'Succ S'Succ denotes a function with the following specification:

function S'Succ(d4rg : S'Base)
return S'Base
For an enumeration type, the function returns the value whose position number is one
more than that of the value of 4Arg; Constraint_Error is raised if there is no such value of
the type. For an integer type, the function returns the result of adding one to the value of
Arg. For a fixed point type, the function returns the result of adding small to the value of
Arg. For a floating point type, the function returns the machine number (as defined in
3.5.7) immediately above the value of Arg; Constraint_Error is raised if there is no such
machine number.

S'Pred S'Pred denotes a function with the following specification:

function S'Pred(4rg : S'Base)
return S'Base
For an enumeration type, the function returns the value whose position number is one less
than that of the value of Arg; Constraint Error is raised if there is no such value of the
type. For an integer type, the function returns the result of subtracting one from the value
of Arg. For a fixed point type, the function returns the result of subtracting smal/ from the
value of Arg. For a floating point type, the function returns the machine number (as
defined in 3.5.7) immediately below the value of Arg; Constraint_Error is raised if there
is no such machine number.

S'Wide Wide Image
S'Wide Wide Image denotes a function with the following specification:
function S'Wide Wide Image(d4rg : S'Base)
return Wide_ Wide_String
The function returns an image of the value of Arg, that is, a sequence of characters
representing the value in display form. The lower bound of the result is one.

The image of an integer value is the corresponding decimal literal, without underlines,
leading zeros, exponent, or trailing spaces, but with a single leading character that is
either a minus sign or a space.

The image of an enumeration value is either the corresponding identifier in upper case or
the corresponding character literal (including the two apostrophes); neither leading nor
trailing spaces are included. For a nongraphic character (a value of a character type that
has no enumeration literal associated with it), the result is a corresponding language-
defined name in upper case (for example, the image of the nongraphic character identified
as nul is “NUL” — the quotes are not part of the image).

The image of a floating point value is a decimal real literal best approximating the value
(rounded away from zero if halfway between) with a single leading character that is either
a minus sign or a space, a single digit (that is nonzero unless the value is zero), a decimal
point, S'Digits—1 (see 3.5.8) digits after the decimal point (but one if S'Digits is one), an
upper case E, the sign of the exponent (either + or —), and two or more digits (with
leading zeros if necessary) representing the exponent. If S'Signed Zeros is True, then the
leading character is a minus sign for a negatively signed zero.

The image of a fixed point value is a decimal real literal best approximating the value
(rounded away from zero if halfway between) with a single leading character that is either
a minus sign or a space, one or more digits before the decimal point (with no redundant
leading zeros), a decimal point, and S'Aft (see 3.5.10) digits after the decimal point.

S'Wide Image
S'Wide Image denotes a function with the following specification:

37 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

function S'Wide Image (4rg : S'Base)
return Wide String
The function returns an image of the value of Arg as a Wide_String. The lower bound of
the result is one. The image has the same sequence of graphic characters as defined for
S'Wide Wide Image if all the graphic characters are defined in Wide Character;
otherwise, the sequence of characters is implementation defined (but no shorter than that
of S'Wide Wide Image for the same value of Arg).

S'Tmage S'Image denotes a function with the following specification:
function S'Image (4drg : S'Base)
return String
The function returns an image of the value of Arg as a String. The lower bound of the
result is one. The image has the same sequence of graphic characters as that defined for
S'Wide Wide Image if all the graphic characters are defined in Character; otherwise, the
sequence of characters is implementation defined (but no shorter than that of
S'Wide Wide Image for the same value of Arg).

S'Wide Wide Width
S'Wide Wide Width denotes the maximum length of a Wide Wide String returned by
S'Wide Wide Image over all values of the subtype S. It denotes zero for a subtype that
has a null range. Its type is universal_integer.

S'Wide Width
S'Wide Width denotes the maximum length of a Wide String returned by S'Wide Image
over all values of the subtype S. It denotes zero for a subtype that has a null range. Its
type is universal _integer.

S'Width ~ S'Width denotes the maximum length of a String returned by S'Image over all values of
the subtype S. It denotes zero for a subtype that has a null range. Its type is
universal_integer.

S'Wide Wide Value
S'Wide Wide Value denotes a function with the following specification:
function S'Wide Wide Value(4drg : Wide Wide String)
return S'Base
This function returns a value given an image of the value as a Wide Wide_ String,
ignoring any leading or trailing spaces.

For the evaluation of a call on S'"Wide Wide Value for an enumeration subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an enumeration literal and if it corresponds to a literal of the type of S (or
corresponds to the result of S'Wide Wide Image for a nongraphic character of the type),
the result is the corresponding enumeration value; otherwise, Constraint Error is raised.

For the evaluation of a call on S'Wide Wide Value for an integer subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an integer literal, with an optional leading sign character (plus or minus for a
signed type; only plus for a modular type), and the corresponding numeric value belongs
to the base range of the type of S, then that value is the result; otherwise, Constraint Error
is raised.

For the evaluation of a call on S'Wide Wide Value for a real subtype S, if the sequence
of characters of the parameter (ignoring leading and trailing spaces) has the syntax of one
of the following:

e numeric_literal

numeral.[exponent]

.numeral[exponent]

base#based_numeral.#[exponent]

base#.based_numeral#[exponent]

© ISO/IEC 2012 — All rights reserved 38

ISO/IEC 8652:DIS

with an optional leading sign character (plus or minus), and if the corresponding numeric
value belongs to the base range of the type of S, then that value is the result; otherwise,
Constraint_Error is raised. The sign of a zero value is preserved (positive if none has been
specified) if S'Signed Zeros is True.

S'Wide Value
S'Wide Value denotes a function with the following specification:
function S'Wide Value(4rg : Wide String)
return S'Base
This function returns a value given an image of the value as a Wide_String, ignoring any
leading or trailing spaces.

For the evaluation of a call on S'Wide Value for an enumeration subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an enumeration literal and if it corresponds to a literal of the type of S (or
corresponds to the result of S'Wide Image for a value of the type), the result is the
corresponding enumeration value; otherwise, Constraint Error is raised. For a numeric
subtype S, the evaluation of a call on S'Wide Value with Arg of type Wide String is
equivalent to a call on S'Wide Wide Value for a corresponding Arg of type
Wide Wide_ String.
S'Value S'Value denotes a function with the following specification:
function S'Value (4rg : String)
return S'Base

This function returns a value given an image of the value as a String, ignoring any leading
or trailing spaces.

For the evaluation of a call on S'Value for an enumeration subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of an
enumeration literal and if it corresponds to a literal of the type of S (or corresponds to the
result of S'Image for a value of the type), the result is the corresponding enumeration
value; otherwise, Constraint_Error is raised. For a numeric subtype S, the evaluation of a
call on S'Value with Arg of type String is equivalent to a call on S'Wide Wide Value for
a corresponding Arg of type Wide Wide String.

Implementation Permissions

An implementation may extend the Wide Wide Value, Wide Value, Value, Wide Wide Image,
Wide Image, and Image attributes of a floating point type to support special values such as infinities
and NaNs.

An implementation may extend the Wide Wide Value, Wide Value, and Value attributes of a
character type to accept strings of the form “Hex_hhhhhhhh” (ignoring case) for any character (not
just the ones for which Wide Wide Image would produce that form — see 3.5.2), as well as three-
character strings of the form “'X™’, where X is any character, including nongraphic characters.

Static Semantics

For a scalar type, the following language-defined representation aspect may be specified with an
aspect_specification (see 13.1.1):
Default Value

This aspect shall be specified by a static expression, and that expression shall be explicit,

even if the aspect has a boolean type. Default Value shall be specified only on a
full_type_declaration.

If a derived type with no primitive subprograms inherits a boolean Default Value aspect, the aspect
may be specified to have any value for the derived type.

39 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules

The expected type for the expression specified for the Default Value aspect is the type defined by
the full_type_declaration on which it appears.

NOTES
24 The evaluation of S'First or S'Last never raises an exception. If a scalar subtype S has a nonnull range, S'First and
S'Last belong to this range. These values can, for example, always be assigned to a variable of subtype S.

25 For a subtype of a scalar type, the result delivered by the attributes Succ, Pred, and Value might not belong to the
subtype; similarly, the actual parameters of the attributes Succ, Pred, and Image need not belong to the subtype.

26 For any value V (including any nongraphic character) of an enumeration subtype S, S'Value(S'Image(V)) equals V,
as do S'Wide Value(S'Wide Image(V)) and S'Wide Wide Value(S'Wide Wide Image(V)). None of these expressions
ever raise Constraint_Error.

Examples

Examples of ranges:

-10 .. 10

X .. X+ 1

0.0 .. 2.0*P1i

Red .. Green --see3.5.1

1..0 - - a null range

Table'Range - - a range attribute reference (see 3.6)

Examples of range constraints:

range -999.0 .. +999.0
range S'First+l .. S'Last-1

3.5.1 Enumeration Types

An enumeration_type_definition defines an enumeration type.

Syntax

enumeration_type_definition ::=
(enumeration_literal_specification {, enumeration_literal_specification})

enumeration_literal_specification ::= defining_identifier | defining_character_literal
defining_character_literal ::= character_literal

Legality Rules

The defining_identifiers in wupper case and the defining_character_literals listed in an
enumeration_type_definition shall be distinct.]

Static Semantics

Each enumeration_literal_specification is the explicit declaration of the corresponding enumeration
literal: it declares a parameterless function, whose defining name is the defining_identifier or
defining_character_literal, and whose result subtype is the base subtype of the enumeration type.

Each enumeration literal corresponds to a distinct value of the enumeration type, and to a distinct
position number. The position number of the value of the first listed enumeration literal is zero; the
position number of the value of each subsequent enumeration literal is one more than that of its
predecessor in the list.

The predefined order relations between values of the enumeration type follow the order of
corresponding position numbers.

If the same defining_identifier or defining_character_literal is specified in more than one
enumeration_type_definition, the corresponding enumeration literals are said to be overloaded. At
any place where an overloaded enumeration literal occurs in the text of a program, the type of the
enumeration literal has to be determinable from the context (see 8.6).

© ISO/IEC 2012 — All rights reserved 40

ISO/IEC 8652:DIS

Dynamic Semantics

The elaboration of an enumeration_type_definition creates the enumeration type and its first subtype,
which is constrained to the base range of the type.

When called, the parameterless function associated with an enumeration literal returns the
corresponding value of the enumeration type.
NOTES

27 If an enumeration literal occurs in a context that does not otherwise suffice to determine the type of the literal, then
qualification by the name of the enumeration type is one way to resolve the ambiguity (see 4.7).

Examples
Examples of enumeration types and subtypes:
type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Suit is (Clubs, Diamonds, Hearts, Spades) ;

(
type Gender is (M, F);
type Level 1is (Low, Medium, Urgent) ;
type Color is (White, Red, Yellow, Green, Blue, Brown, Black);
(
(
(

type Light is (Red, Amber, Green); -- Redand Green are overloaded

type Hexa is 'A', 'B', 'Cc', 'D', 'E', 'F');

type Mixed is 'A', 'B', 'x' B, None, '?', '%');

subtype Weekday is Day range Mon .. Frij;

subtype Major is Suit range Hearts .. Spades;

subtype Rainbow is Color range Red .. Blue; -- the Color Red, not the Light

3.5.2 Character Types

Static Semantics

An enumeration type is said to be a character type if at least one of its enumeration literals is a
character_literal.

The predefined type Character is a character type whose values correspond to the 256 code points of
Row 00 (also known as Latin-1) of the ISO/IEC 10646:2011 Basic Multilingual Plane (BMP). Each
of the graphic characters of Row 00 of the BMP has a corresponding character_literal in Character.
Each of the nongraphic characters of Row 00 has a corresponding language-defined name, which is
not usable as an enumeration literal, but which is usable with the attributes Image, Wide Image,
Wide Wide Image, Value, Wide Value, and Wide Wide Value; these names are given in the
definition of type Character in A.1, “The Package Standard”, but are set in italics.

The predefined type Wide Character is a character type whose values correspond to the 65536 code
points of the ISO/IEC 10646:2011 Basic Multilingual Plane (BMP). Each of the graphic characters of
the BMP has a corresponding character_literal in Wide Character. The first 256 values of
Wide Character have the same character_literal or language-defined name as defined for Character.
Each of the graphic_characters has a corresponding character_literal.

The predefined type Wide Wide Character is a character type whose values correspond to the
2147483648 code points of the ISO/IEC 10646:2011 character set. Each of the graphic_characters
has a corresponding character_literal in Wide Wide Character. The first 65536 wvalues of
Wide Wide Character have the same character_literal or language-defined name as defined for
Wide Character.

The characters whose code point is larger than 16#FF# and which are not graphic_characters have
language-defined names which are formed by appending to the string "Hex " the representation of
their code point in hexadecimal as eight extended digits. As with other language-defined names, these
names are usable only with the attributes (Wide)Wide Image and (Wide)Wide Value; they are not
usable as enumeration literals.

41 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

NOTES
28 The language-defined library package Characters.Latin_1 (see A.3.3) includes the declaration of constants denoting
control characters, lower case characters, and special characters of the predefined type Character.

29 A conventional character set such as EBCDIC can be declared as a character type; the internal codes of the
characters can be specified by an enumeration_representation_clause as explained in clause 13.4.

Examples

Example of a character type:
type Roman Digit is ('I', 'v', 'X', 'L', 'C', 'D', 'M');

3.5.3 Boolean Types

Static Semantics

There is a predefined enumeration type named Boolean, declared in the visible part of package
Standard. It has the two enumeration literals False and True ordered with the relation False < True.
Any descendant of the predefined type Boolean is called a boolean type.

3.5.4 Integer Types

An integer_type_definition defines an integer type; it defines either a signed integer type, or a
modular integer type. The base range of a signed integer type includes at least the values of the
specified range. A modular type is an integer type with all arithmetic modulo a specified positive
modulus; such a type corresponds to an unsigned type with wrap-around semantics.

Syntax
integer_type_definition ::= signed_integer_type_definition | modular_type_definition
signed_integer_type_definition ::= range static_simple_expression .. static_simple_expression
modular_type_definition ::= mod static_expression

Name Resolution Rules

Each simple_expression in a signed_integer_type_definition is expected to be of any integer type;
they need not be of the same type. The expression in a modular_type_definition is likewise expected
to be of any integer type.

Legality Rules

The simple_expressions of a signed_integer_type_definition shall be static, and their values shall be
in the range System.Min_Int .. System.Max_Int.

The expression of a modular_type_definition shall be static, and its value (the modulus) shall be
positive, and shall be no greater than System.Max_Binary Modulus if a power of 2, or no greater than
System.Max_Nonbinary Modulus if not.

Static Semantics

The set of values for a signed integer type is the (infinite) set of mathematical integers, though only
values of the base range of the type are fully supported for run-time operations. The set of values for a
modular integer type are the values from 0 to one less than the modulus, inclusive.

A signed_integer_type_definition defines an integer type whose base range includes at least the
values of the simple_expressions and is symmetric about zero, excepting possibly an extra negative
value. A signed_integer_type_definition also defines a constrained first subtype of the type, with a
range whose bounds are given by the values of the simple_expressions, converted to the type being
defined.

© ISO/IEC 2012 — All rights reserved 42

ISO/IEC 8652:DIS

A modular_type_definition defines a modular type whose base range is from zero to one less than the
given modulus. A modular_type_definition also defines a constrained first subtype of the type with a
range that is the same as the base range of the type.

There is a predefined signed integer subtype named Integer, declared in the visible part of package
Standard. It is constrained to the base range of its type.

Integer has two predefined subtypes, declared in the visible part of package Standard:

subtype Natural is Integer range 0 .. Integer'Last;
subtype Positive is Integer range 1 .. Integer'Last;

A type defined by an integer_type_definition is implicitly derived from root _integer, an anonymous
predefined (specific) integer type, whose base range is System.Min_Int .. System.Max_Int. However,
the base range of the new type is not inherited from root_integer, but is instead determined by the
range or modulus specified by the integer_type definition. Integer literals are all of the type
universal_integer, the universal type (see 3.4.1) for the class rooted at root_integer, allowing their use
with the operations of any integer type.

The position number of an integer value is equal to the value.

For every modular subtype S, the following attributes are defined:

S'Mod S'Mod denotes a function with the following specification:

function S'Mod (Arg : universal integer)
return S'Base

This function returns 4»g mod S'Modulus, as a value of the type of S.
S'Modulus S'Modulus yields the modulus of the type of S, as a value of the type universal _integer.

Dynamic Semantics
The elaboration of an integer_type_definition creates the integer type and its first subtype.

For a modular type, if the result of the execution of a predefined operator (see 4.5) is outside the base
range of the type, the result is reduced modulo the modulus of the type to a value that is within the
base range of the type.

For a signed integer type, the exception Constraint_Error is raised by the execution of an operation
that cannot deliver the correct result because it is outside the base range of the type. For any integer
type, Constraint_Error is raised by the operators "/", "rem", and "mod" if the right operand is zero.

Implementation Requirements
In an implementation, the range of Integer shall include the range —2**15+1 .. +2**15-1.

If Long_Integer is predefined for an implementation, then its range shall include the range —2**31+1
U ARKIEN

System.Max Binary Modulus shall be at least 2**16.

Implementation Permissions

For the execution of a predefined operation of a signed integer type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is
produced.

An implementation may provide additional predefined signed integer types, declared in the visible
part of Standard, whose first subtypes have names of the form Short Integer, Long Integer,
Short_Short Integer, Long_Long_Integer, etc. Different predefined integer types are allowed to have
the same base range. However, the range of Integer should be no wider than that of Long_Integer.
Similarly, the range of Short Integer (if provided) should be no wider than Integer. Corresponding
recommendations apply to any other predefined integer types. There need not be a named integer type

43 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

corresponding to each distinct base range supported by an implementation. The range of each first
subtype should be the base range of its type.

An implementation may provide nonstandard integer types, descendants of root integer that are
declared outside of the specification of package Standard, which need not have all the standard
characteristics of a type defined by an integer_type_definition. For example, a nonstandard integer
type might have an asymmetric base range or it might not be allowed as an array or loop index (a very
long integer). Any type descended from a nonstandard integer type is also nonstandard. An
implementation may place arbitrary restrictions on the use of such types; it is implementation defined
whether operators that are predefined for “any integer type” are defined for a particular nonstandard
integer type. In any case, such types are not permitted as explicit_generic_actual_parameters for
formal scalar types — see 12.5.2.

For a one's complement machine, the high bound of the base range of a modular type whose modulus
is one less than a power of 2 may be equal to the modulus, rather than one less than the modulus. It is
implementation defined for which powers of 2, if any, this permission is exercised.

For a one's complement machine, implementations may support nonbinary modulus values greater
than System.Max_Nonbinary Modulus. It is implementation defined which specific values greater
than System.Max Nonbinary Modulus, if any, are supported.

Implementation Advice

An implementation should support Long_Integer in addition to Integer if the target machine supports
32-bit (or longer) arithmetic. No other named integer subtypes are recommended for package
Standard. Instead, appropriate named integer subtypes should be provided in the library package
Interfaces (see B.2).

An implementation for a two's complement machine should support modular types with a binary
modulus up to System.Max_Int*2+2. An implementation should support a nonbinary modulus up to
Integer'Last.

NOTES

30 Integer literals are of the anonymous predefined integer type universal_integer. Other integer types have no literals.

However, the overload resolution rules (see 8.6, “The Context of Overload Resolution”) allow expressions of the type
universal_integer whenever an integer type is expected.

31 The same arithmetic operators are predefined for all signed integer types defined by a
signed_integer_type_definition (see 4.5, “Operators and Expression Evaluation”). For modular types, these same
operators are predefined, plus bit-wise logical operators (and, or, xor, and not). In addition, for the unsigned types
declared in the language-defined package Interfaces (see B.2), functions are defined that provide bit-wise shifting and
rotating.

32 Modular types match a generic_formal_parameter_declaration of the form "type T is mod <>;"; signed integer
types match "type T is range <>;" (see 12.5.2).

Examples

Examples of integer types and subtypes:

type Page Num is range 1 .. 2 000;
type Line Size is range 1 .. Max Line Size;

subtype Small Int is Integer range -10 .. 10;
subtype Column Ptr is Line Size range 1 .. 10;
subtype Buffer Size is Integer range 0 .. Max;

type Byte is mod 256; -- an unsigned byte
type Hash Index is mod 97; -- modulus is prime

3.5.5 Operations of Discrete Types

Static Semantics

For every discrete subtype S, the following attributes are defined:
S'Pos S'Pos denotes a function with the following specification:

© ISO/IEC 2012 — All rights reserved 44

ISO/IEC 8652:DIS

function S'Pos (4rg : S'Base)
return universal_integer
This function returns the position number of the value of Arg, as a value of type
universal_integer.

S'Val S'Val denotes a function with the following specification:
function S'Val (Arg : universal integer)
return S'Base
This function returns a value of the type of S whose position number equals the value of
Arg. For the evaluation of a call on S'Val, if there is no value in the base range of its type
with the given position number, Constraint_Error is raised.

For every static discrete subtype S for which there exists at least one value belonging to S that
satisfies any predicate of S, the following attributes are defined:
S'First_Valid
S'First Valid denotes the smallest value that belongs to S and satisfies the predicate of S.
The value of this attribute is of the type of S.

S'Last Valid
S'Last Valid denotes the largest value that belongs to S and satisfies the predicate of S.
The value of this attribute is of the type of S.

First Valid and Last_Valid attribute_references are always static expressions. Any explicit predicate
of S can only have been specified by a Static Predicate aspect.

Implementation Advice

For the evaluation of a call on S'Pos for an enumeration subtype, if the value of the operand does not
correspond to the internal code for any enumeration literal of its type (perhaps due to an uninitialized
variable), then the implementation should raise Program Error. This is particularly important for
enumeration types with noncontiguous internal codes specified by an enumeration_representation_-
clause.

NOTES

33 Indexing and loop iteration use values of discrete types.

34 The predefined operations of a discrete type include the assignment operation, qualification, the membership tests,
and the relational operators; for a boolean type they include the short-circuit control forms and the logical operators; for
an integer type they include type conversion to and from other numeric types, as well as the binary and unary adding
operators — and +, the multiplying operators, the unary operator abs, and the exponentiation operator. The assignment
operation is described in 5.2. The other predefined operations are described in Section 4.

35 As for all types, objects of a discrete type have Size and Address attributes (see 13.3).

36 For a subtype of a discrete type, the result delivered by the attribute Val might not belong to the subtype; similarly,
the actual parameter of the attribute Pos need not belong to the subtype. The following relations are satisfied (in the
absence of an exception) by these attributes:

S'val(S'Pos (X))

X
S'Pos (S'Val (N)) N

Examples

Examples of attributes of discrete subtypes:
- - For the types and subtypes declared in subclause 3.5.1 the following hold:

-- Color'First = White, Color'Last = Black
-- Rainbow'First = Red, Rainbow'Last = Blue
-- Color'Succ(Blue) = Rainbow'Succ (Blue) = Brown
-- Color'Pos(Blue) = Rainbow'Pos(Blue) = 4

-- Color'val(0) = Rainbow'Val (0) = White

3.5.6 Real Types

Real types provide approximations to the real numbers, with relative bounds on errors for floating
point types, and with absolute bounds for fixed point types.

45 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Syntax

real_type_definition ::=
floating_point_definition | fixed_point_definition

Static Semantics

A type defined by a real_type_definition is implicitly derived from root real, an anonymous
predefined (specific) real type. Hence, all real types, whether floating point or fixed point, are in the
derivation class rooted at root_real.

Real literals are all of the type universal real, the universal type (see 3.4.1) for the class rooted at
root_real, allowing their use with the operations of any real type. Certain multiplying operators have
a result type of umiversal fixed (see 4.5.5), the universal type for the class of fixed point types,
allowing the result of the multiplication or division to be used where any specific fixed point type is
expected.

Dynamic Semantics

The elaboration of a real_type_definition consists of the elaboration of the floating_point_definition
or the fixed_point_definition.

Implementation Requirements

An implementation shall perform the run-time evaluation of a use of a predefined operator of
root real with an accuracy at least as great as that of any floating point type definable by a
floating_point_definition.

Implementation Permissions

For the execution of a predefined operation of a real type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is
produced, or the Machine Overflows attribute of the type is False (see G.2).

An implementation may provide nonstandard real types, descendants of root real that are declared
outside of the specification of package Standard, which need not have all the standard characteristics
of a type defined by a real_type_definition. For example, a nonstandard real type might have an
asymmetric or unsigned base range, or its predefined operations might wrap around or “saturate”
rather than overflow (modular or saturating arithmetic), or it might not conform to the accuracy model
(see G.2). Any type descended from a nonstandard real type is also nonstandard. An implementation
may place arbitrary restrictions on the use of such types; it is implementation defined whether
operators that are predefined for “any real type” are defined for a particular nonstandard real type. In
any case, such types are not permitted as explicit_generic_actual_parameters for formal scalar types
—see 12.5.2.

NOTES

37 As stated, real literals are of the anonymous predefined real type universal real. Other real types have no literals.
However, the overload resolution rules (see 8.6) allow expressions of the type universal real whenever a real type is
expected.

3.5.7 Floating Point Types
For floating point types, the error bound is specified as a relative precision by giving the required
minimum number of significant decimal digits.

Syntax

floating_point_definition ::=
digits static_expression [real_range_specification]

real_range_specification ::=
range static_simple_expression .. static_simple_expression

© ISO/IEC 2012 — All rights reserved 46

ISO/IEC 8652:DIS

Name Resolution Rules

The requested decimal precision, which is the minimum number of significant decimal digits required
for the floating point type, is specified by the value of the expression given after the reserved word
digits. This expression is expected to be of any integer type.

Each simple_expression of a real_range_specification is expected to be of any real type; the types
need not be the same.

Legality Rules

The requested decimal precision shall be specified by a static expression whose value is positive and
no greater than System.Max Base Digits. Each simple_expression of a real_range_specification
shall also be static. If the real_range_specification is omitted, the requested decimal precision shall
be no greater than System.Max_Digits.

A floating_point_definition is illegal if the implementation does not support a floating point type that
satisfies the requested decimal precision and range.

Static Semantics

The set of values for a floating point type is the (infinite) set of rational numbers. The machine
numbers of a floating point type are the values of the type that can be represented exactly in every
unconstrained variable of the type. The base range (see 3.5) of a floating point type is symmetric
around zero, except that it can include some extra negative values in some implementations.

The base decimal precision of a floating point type is the number of decimal digits of precision
representable in objects of the type. The safe range of a floating point type is that part of its base
range for which the accuracy corresponding to the base decimal precision is preserved by all
predefined operations.

A floating_point_definition defines a floating point type whose base decimal precision is no less than
the requested decimal precision. If a real_range_specification is given, the safe range of the floating
point type (and hence, also its base range) includes at least the values of the simple expressions given
in the real_range_specification. If a real_range_specification is not given, the safe (and base) range
of the type includes at least the values of the range —10.0**(4*D) .. +10.0**(4*D) where D is the
requested decimal precision. The safe range might include other values as well. The attributes
Safe First and Safe Last give the actual bounds of the safe range.

A floating_point_definition also defines a first subtype of the type. If a real_range_specification is
given, then the subtype is constrained to a range whose bounds are given by a conversion of the
values of the simple_expressions of the real_range_specification to the type being defined.
Otherwise, the subtype is unconstrained.

There is a predefined, unconstrained, floating point subtype named Float, declared in the visible part
of package Standard.

Dynamic Semantics

The elaboration of a floating_point_definition creates the floating point type and its first subtype.

Implementation Requirements

In an implementation that supports floating point types with 6 or more digits of precision, the
requested decimal precision for Float shall be at least 6.

If Long_Float is predefined for an implementation, then its requested decimal precision shall be at
least 11.

47 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Implementation Permissions

An implementation is allowed to provide additional predefined floating point types, declared in the
visible part of Standard, whose (unconstrained) first subtypes have names of the form Short Float,
Long_Float, Short_Short Float, Long Long Float, etc. Different predefined floating point types are
allowed to have the same base decimal precision. However, the precision of Float should be no greater
than that of Long Float. Similarly, the precision of Short Float (if provided) should be no greater
than Float. Corresponding recommendations apply to any other predefined floating point types. There
need not be a named floating point type corresponding to each distinct base decimal precision
supported by an implementation.

Implementation Advice

An implementation should support Long Float in addition to Float if the target machine supports 11
or more digits of precision. No other named floating point subtypes are recommended for package
Standard. Instead, appropriate named floating point subtypes should be provided in the library
package Interfaces (see B.2).

NOTES
38 If a floating point subtype is unconstrained, then assignments to variables of the subtype involve only
Overflow Checks, never Range Checks.

Examples

Examples of floating point types and subtypes:
type Coefficient is digits 10 range -1.0 .. 1.0;

type Real is digits 8;
type Mass is digits 7 range 0.0 .. 1.0E35;

subtype Probability is Real range 0.0 .. 1.0; - - asubtype with a smaller range

3.5.8 Operations of Floating Point Types

Static Semantics

The following attribute is defined for every floating point subtype S:

S'Digits S'Digits denotes the requested decimal precision for the subtype S. The value of this
attribute is of the type universal integer. The requested decimal precision of the base
subtype of a floating point type 7T is defined to be the largest value of d for which
ceiling(d * log(10) / log(T'Machine Radix)) + g <= T'Model Mantissa
where g is 0 if Machine Radix is a positive power of 10 and 1 otherwise.

NOTES
39 The predefined operations of a floating point type include the assignment operation, qualification, the membership
tests, and explicit conversion to and from other numeric types. They also include the relational operators and the

following predefined arithmetic operators: the binary and unary adding operators — and +, certain multiplying
operators, the unary operator abs, and the exponentiation operator.

40 As for all types, objects of a floating point type have Size and Address attributes (see 13.3). Other attributes of
floating point types are defined in A.5.3.

3.5.9 Fixed Point Types

A fixed point type is either an ordinary fixed point type, or a decimal fixed point type. The error
bound of a fixed point type is specified as an absolute value, called the delfa of the fixed point type.
Syntax
fixed_point_definition ::= ordinary_fixed_point_definition | decimal_fixed_point_definition

ordinary_fixed_point_definition ::=
delta static_expression real_range_specification

© ISO/IEC 2012 — All rights reserved 48

ISO/IEC 8652:DIS

decimal_fixed_point_definition ::=

delta static_expression digits static_expression [real_range_specification]
digits_constraint ::=

digits static_expression [range_constraint]

Name Resolution Rules

For a type defined by a fixed_point_definition, the delta of the type is specified by the value of the
expression given after the reserved word delta; this expression is expected to be of any real type.
For a type defined by a decimal_fixed_point_definition (a decimal fixed point type), the number of
significant decimal digits for its first subtype (the digits of the first subtype) is specified by the
expression given after the reserved word digits; this expression is expected to be of any integer type.

Legality Rules

In a fixed_point_definition or digits_constraint, the expressions given after the reserved words delta
and digits shall be static; their values shall be positive.

The set of values of a fixed point type comprise the integral multiples of a number called the small of
the type. The machine numbers of a fixed point type are the values of the type that can be represented
exactly in every unconstrained variable of the type. For a type defined by an
ordinary_fixed_point_definition (an ordinary fixed point type), the small may be specified by an
attribute_definition_clause (see 13.3); if so specified, it shall be no greater than the delta of the type.
If not specified, the small of an ordinary fixed point type is an implementation-defined power of two
less than or equal to the delta.

For a decimal fixed point type, the small equals the delta; the delta shall be a power of 10. If a
real_range_specification is given, both bounds of the range shall be in the range —(10**digits—
D*delta .. +(10**digits—1)*delta.

A fixed_point_definition is illegal if the implementation does not support a fixed point type with the
given small and specified range or digits.

For a subtype_indication with a digits_constraint, the subtype_mark shall denote a decimal fixed
point subtype.

Static Semantics

The base range (see 3.5) of a fixed point type is symmetric around zero, except possibly for an extra
negative value in some implementations.

An ordinary_fixed_point_definition defines an ordinary fixed point type whose base range includes at
least all multiples of small that are between the bounds specified in the real_range_specification. The
base range of the type does not necessarily include the specified bounds themselves. An ordinary_-
fixed_point_definition also defines a constrained first subtype of the type, with each bound of its
range given by the closer to zero of:

e the value of the conversion to the fixed point type of the corresponding expression of the
real_range_specification;

e the corresponding bound of the base range.

A decimal_fixed_point_definition defines a decimal fixed point type whose base range includes at
least the range —(10**digits—1)*delta .. +(10**digits—1)*delta. A decimal_fixed_point_definition also
defines a constrained first subtype of the type. If a real_range_specification is given, the bounds of
the first subtype are given by a conversion of the values of the expressions of the
real_range_specification. Otherwise, the range of the first subtype is —(10**digits—1)*delta ..
+(10**digits—1)*delta.

49 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Dynamic Semantics
The elaboration of a fixed_point_definition creates the fixed point type and its first subtype.

For a digits_constraint on a decimal fixed point subtype with a given delta, if it does not have a
range_constraint, then it specifies an implicit range —(10**D-1)*delta .. +(10¥*D-1)*delta, where D
is the value of the expression. A digits_constraint is compatible with a decimal fixed point subtype if
the value of the expression is no greater than the digits of the subtype, and if it specifies (explicitly or
implicitly) a range that is compatible with the subtype.

The elaboration of a digits_constraint consists of the elaboration of the range_constraint, if any. If a
range_constraint is given, a check is made that the bounds of the range are both in the range —
(10**D-1)*delta .. +(10**D—1)*delta, where D is the value of the (static) expression given after the
reserved word digits. If this check fails, Constraint Error is raised.

Implementation Requirements

The implementation shall support at least 24 bits of precision (including the sign bit) for fixed point
types.

Implementation Permissions

Implementations are permitted to support only smalls that are a power of two. In particular, all
decimal fixed point type declarations can be disallowed. Note however that conformance with the
Information Systems Annex requires support for decimal smalls, and decimal fixed point type
declarations with digits up to at least 18.

NOTES

41 The base range of an ordinary fixed point type need not include the specified bounds themselves so that the range
specification can be given in a natural way, such as:

type Fraction is delta 2.0**(-15) range -1.0 .. 1.0;

With 2's complement hardware, such a type could have a signed 16-bit representation, using 1 bit for the sign and 15
bits for fraction, resulting in a base range of —1.0 .. 1.0-2.0**(-15).

Examples
Examples of fixed point types and subtypes:
type Volt is delta 0.125 range 0.0 .. 255.0;

- - A pure fraction which requires all the available
- - space in a word can be declared as the type Fraction:

type Fraction is delta System.Fine Delta range -1.0 .. 1.0;
-- Fraction'Last = 1.0 — System.Fine_Delta

type Money is delta 0.01 digits 15; -- decimal fixed point
subtype Salary is Money digits 10;
-- Money'Last = 10.0%*13 — 0.01, Salary'Last = 10.0%**8 — 0.01

3.5.10 Operations of Fixed Point Types

Static Semantics

The following attributes are defined for every fixed point subtype S:

S'Small S'Small denotes the small of the type of S. The value of this attribute is of the type
universal_real. Small may be specified for nonderived ordinary fixed point types via an
attribute_definition_clause (see 13.3); the expression of such a clause shall be static.

S'Delta S'Delta denotes the delta of the fixed point subtype S. The value of this attribute is of the
type universal real.

S'Fore S'Fore yields the minimum number of characters needed before the decimal point for the
decimal representation of any value of the subtype S, assuming that the representation
does not include an exponent, but includes a one-character prefix that is either a minus

© ISO/IEC 2012 — All rights reserved 50

ISO/IEC 8652:DIS

sign or a space. (This minimum number does not include superfluous zeros or underlines,
and is at least 2.) The value of this attribute is of the type universal integer.

S'Aft S'Aft yields the number of decimal digits needed after the decimal point to accommodate

the delta of the subtype S, unless the delta of the subtype S is greater than 0.1, in which
case the attribute yields the value one. (S'Aft is the smallest positive integer N for which
(10**N)*S'Delta is greater than or equal to one.) The value of this attribute is of the type
universal_integer.

The following additional attributes are defined for every decimal fixed point subtype S:

S'Digits S'Digits denotes the digits of the decimal fixed point subtype S, which corresponds to the

number of decimal digits that are representable in objects of the subtype. The value of this
attribute is of the type universal _integer. Its value is determined as follows:

e For a first subtype or a subtype defined by a subtype_indication with a
digits_constraint, the digits is the value of the expression given after the reserved
word digits;

e For a subtype defined by a subtype_indication without a digits_constraint, the
digits of the subtype is the same as that of the subtype denoted by the
subtype_mark in the subtype_indication.

e The digits of a base subtype is the largest integer D such that the range —(10**D—
1)y*delta .. +(10%*D—1)*delta is included in the base range of the type.

S'Scale S'Scale denotes the scale of the subtype S, defined as the value N such that S'Delta =

10.0**(—N). The scale indicates the position of the point relative to the rightmost
significant digits of values of subtype S. The value of this attribute is of the type
universal_integer.

S'Round S'Round denotes a function with the following specification:

function S'Round (X : universal real)
return S'Base

The function returns the value obtained by rounding X (away from 0, if X is midway
between two values of the type of S).

NOTES
42 All subtypes of a fixed point type will have the same value for the Delta attribute, in the absence of
delta_constraints (see J.3).

43 S'Scale is not always the same as S'Aft for a decimal subtype; for example, if S'Delta = 1.0 then S'Aft is 1 while
S'Scale is 0.

44 The predefined operations of a fixed point type include the assignment operation, qualification, the membership
tests, and explicit conversion to and from other numeric types. They also include the relational operators and the
following predefined arithmetic operators: the binary and unary adding operators — and +, multiplying operators, and
the unary operator abs.

45 As for all types, objects of a fixed point type have Size and Address attributes (see 13.3). Other attributes of fixed
point types are defined in A.5.4.

3.6 Array Types

An array object is a composite object consisting of components which all have the same subtype. The
name for a component of an array uses one or more index values belonging to specified discrete types.
The value of an array object is a composite value consisting of the values of the components.

51

Syntax

array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

unconstrained_array_definition ::=
array(index_subtype_definition {, index_subtype_definition}) of component_definition

index_subtype_definition ::= subtype_mark range <>

© ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

constrained_array_definition ::=
array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition

discrete_subtype_definition ::= discrete_subtype_indication | range
component_definition ::=

[aliased] subtype_indication
| [aliased] access_definition

Name Resolution Rules

For a discrete_subtype_definition that is a range, the range shall resolve to be of some specific
discrete type; which discrete type shall be determined without using any context other than the bounds
of the range itself (plus the preference for root_integer — see 8.6).

Legality Rules

Each index_subtype_definition or discrete_subtype_definition in an array_type_definition defines
an index subtype; its type (the index type) shall be discrete.

The subtype defined by the subtype_indication of a component_definition (the component subtype)
shall be a definite subtype.

Static Semantics

An array is characterized by the number of indices (the dimensionality of the array), the type and
position of each index, the lower and upper bounds for each index, and the subtype of the
components. The order of the indices is significant.

A one-dimensional array has a distinct component for each possible index value. A multidimensional
array has a distinct component for each possible sequence of index values that can be formed by
selecting one value for each index position (in the given order). The possible values for a given index
are all the values between the lower and upper bounds, inclusive; this range of values is called the
index range. The bounds of an array are the bounds of its index ranges. The length of a dimension of
an array is the number of values of the index range of the dimension (zero for a null range). The
length of a one-dimensional array is the length of its only dimension.

An array_type_definition defines an array type and its first subtype. For each object of this array type,
the number of indices, the type and position of each index, and the subtype of the components are as
in the type definition; the values of the lower and upper bounds for each index belong to the
corresponding index subtype of its type, except for null arrays (see 3.6.1).

An unconstrained_array_definition defines an array type with an unconstrained first subtype. Each
index_subtype_definition defines the corresponding index subtype to be the subtype denoted by the
subtype_mark. The compound delimiter <> (called a box) of an index_subtype_definition stands for
an undefined range (different objects of the type need not have the same bounds).

A constrained_array_definition defines an array type with a constrained first subtype. Each
discrete_subtype_definition defines the corresponding index subtype, as well as the corresponding
index range for the constrained first subtype. The constraint of the first subtype consists of the bounds
of the index ranges.

The discrete subtype defined by a discrete_subtype_definition is either that defined by the subtype_-
indication, or a subtype determined by the range as follows:

e If the type of the range resolves to root integer, then the discrete_subtype_definition
defines a subtype of the predefined type Integer with bounds given by a conversion to Integer
of the bounds of the range;

e Otherwise, the discrete_subtype_definition defines a subtype of the type of the range, with
the bounds given by the range.

© ISO/IEC 2012 — All rights reserved 52

ISO/IEC 8652:DIS

The component_definition of an array_type definition defines the nominal subtype of the
components. If the reserved word aliased appears in the component_definition, then each component
of the array is aliased (see 3.10).

Dynamic Semantics

The elaboration of an array_type_definition creates the array type and its first subtype, and consists of
the elaboration of any discrete_subtype_definitions and the component_definition.

The elaboration of a discrete_subtype_definition that does not contain any per-object expressions
creates the discrete subtype, and consists of the elaboration of the subtype indication or the
evaluation of the range. The elaboration of a discrete_subtype_definition that contains one or more
per-object expressions is defined in 3.8. The elaboration of a component_definition in an array_-
type_definition consists of the elaboration of the subtype indication or access_definition. The
elaboration of any discrete_subtype_definitions and the elaboration of the component_definition are
performed in an arbitrary order.

Static Semantics

For an array type with a scalar component type, the following language-defined representation aspect
may be specified with an aspect_specification (see 13.1.1):
Default Component Value

This aspect shall be specified by a static expression, and that expression shall be explicit,

even if the aspect has a boolean type. Default Component Value shall be specified only
on a full_type_declaration.

If a derived type with no primitive subprograms inherits a boolean Default Component Value aspect,
the aspect may be specified to have any value for the derived type.

Name Resolution Rules

The expected type for the expression specified for the Default Component Value aspect is the
component type of the array type defined by the full_type_declaration on which it appears.

NOTES
46 All components of an array have the same subtype. In particular, for an array of components that are one-
dimensional arrays, this means that all components have the same bounds and hence the same length.

47 Each elaboration of an array_type_definition creates a distinct array type. A consequence of this is that each object
whose object_declaration contains an array_type_definition is of its own unique type.

Examples

Examples of type declarations with unconstrained array definitions:

type Vector is array(Integer range <>) of Real;

type Matrix is array(Integer range <>, Integer range <>) of Real;
type Bit Vector is array(Integer range <>) of Boolean;

type Roman is array(Positive range <>) of Roman Digit; --see3.5.2

Examples of type declarations with constrained array definitions:

type Table is array(l .. 10) of Integer;
type Schedule is array(Day) of Boolean;
type Line is array(l1 .. Max Line Size) of Character;

Examples of object declarations with array type definitions:

Grid : array(l .. 80, 1 .. 100) of Boolean;
Mix : array (Color range Red .. Green) of Boolean;
Msg Table : constant array(Error Code) of access constant String :=
(Too Big => new String' ("Result too big"), Too Small => ...);
Page : array(Positive range <>) of Line := -- anarrayof arrays
(1L | 50 => Line'(l | Line'Last => '+', others => '-'), --see433
2 .. 49 => Line'(l | Line'lLast => '|', others => ' '));

- - Page is constrained by its initial value to (1..50)

53 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

3.6.1 Index Constraints and Discrete Ranges

An index_constraint determines the range of possible values for every index of an array subtype, and
thereby the corresponding array bounds.

Syntax
index_constraint ::= (discrete_range {, discrete_range})
discrete_range ::= discrete_subtype_indication | range

Name Resolution Rules

The type of a discrete_range is the type of the subtype defined by the subtype_indication, or the
type of the range. For an index_constraint, each discrete_range shall resolve to be of the type of the
corresponding index.

Legality Rules

An index_constraint shall appear only in a subtype_indication whose subtype_mark denotes either
an unconstrained array subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained array subtype; in either case, the index_constraint shall provide a discrete_range for
each index of the array type.

Static Semantics

A discrete_range defines a range whose bounds are given by the range, or by the range of the
subtype defined by the subtype_indication.

Dynamic Semantics

An index_constraint is compatible with an unconstrained array subtype if and only if the index range
defined by each discrete_range is compatible (see 3.5) with the corresponding index subtype. If any
of the discrete_ranges defines a null range, any array thus constrained is a null array, having no
components. An array value satisfies an index_constraint if at each index position the array value and
the index_constraint have the same index bounds.

The elaboration of an index_constraint consists of the evaluation of the discrete_range(s), in an
arbitrary order. The evaluation of a discrete_range consists of the elaboration of the
subtype_indication or the evaluation of the range.

NOTES

48 The elaboration of a subtype_indication consisting of a subtype_mark followed by an index_constraint checks the
compatibility of the index_constraint with the subtype_mark (see 3.2.2).

49 Even if an array value does not satisfy the index constraint of an array subtype, Constraint Error is not raised on
conversion to the array subtype, so long as the length of each dimension of the array value and the array subtype match.
See 4.6.

Examples

Examples of array declarations including an index constraint:

Board : Matrix(1 .. 8, 1 .. 8); -- see3.6
Rectangle : Matrix(1 .. 20, 1 .. 30);

Inverse : Matrix(1 .. N, 1 .. N); -- Nneednotbe static
Filter : Bit Vector (0 .. 31);

Example of array declaration with a constrained array subtype:
My Schedule : Schedule; -- all arrays of type Schedule have the same bounds

© ISO/IEC 2012 — All rights reserved 54

ISO/IEC 8652:DIS

Example of record type with a component that is an array:

type Var Line(Length : Natural) is
record
Image : String(l .. Length);
end record;

Null Line : Var Line(0); -- Null Line.Image is a null array

3.6.2 Operations of Array Types

Legality Rules

The argument N used in the attribute_designators for the N-th dimension of an array shall be a static
expression of some integer type. The value of N shall be positive (nonzero) and no greater than the
dimensionality of the array.

Static Semantics

The following attributes are defined for a prefix A that is of an array type (after any implicit
dereference), or denotes a constrained array subtype:

A'First A'First denotes the lower bound of the first index range; its type is the corresponding
index type.

A'First(N)
A'First(N) denotes the lower bound of the N-th index range; its type is the corresponding
index type.

A'Last A'Last denotes the upper bound of the first index range; its type is the corresponding
index type.

A'Last(N) A'Last(N) denotes the upper bound of the N-th index range; its type is the corresponding
index type.

A'Range A'Range is equivalent to the range A'First .. A'Last, except that the prefix A is only
evaluated once.

A'Range(N)
A'Range(N) is equivalent to the range A'First(N) .. A'Last(N), except that the prefix A is
only evaluated once.

A'Length A'Length denotes the number of values of the first index range (zero for a null range); its
type is universal _integer.

A'Length(N)
A'Length(N) denotes the number of values of the N-th index range (zero for a null range);
its type is universal_integer.

Implementation Advice

An implementation should normally represent multidimensional arrays in row-major order, consistent
with the notation used for multidimensional array aggregates (see 4.3.3). However, if convention
Fortran is specified for a multidimensional array type, then column-major order should be used
instead (see B.5, “Interfacing with Fortran”).

NOTES

50 The attribute_references A'First and A'First(1) denote the same value. A similar relation exists for the

attribute_references A'Last, A'Range, and A'Length. The following relation is satisfied (except for a null array) by the
above attributes if the index type is an integer type:

A'Length(N) = A'Last(N) - A'First(N) + 1
51 An array type is limited if its component type is limited (see 7.5).

52 The predefined operations of an array type include the membership tests, qualification, and explicit conversion. If
the array type is not limited, they also include assignment and the predefined equality operators. For a one-dimensional
array type, they include the predefined concatenation operators (if nonlimited) and, if the component type is discrete,
the predefined relational operators; if the component type is boolean, the predefined logical operators are also included.

55 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

53 A component of an array can be named with an indexed_component. A value of an array type can be specified
with an array_aggregate. For a one-dimensional array type, a slice of the array can be named; also, string literals are
defined if the component type is a character type.

Examples

Examples (using arrays declared in the examples of subclause 3.6.1):

31 Filter'Length = 32
30

0 Filter'Last
20 Rectangle'Last (2)

-- Filter'First
-- Rectangle'Last (1)

3.6.3 String Types

Static Semantics
A one-dimensional array type whose component type is a character type is called a string type.

There are three predefined string types, String, Wide String, and Wide Wide String, each indexed by
values of the predefined subtype Positive; these are declared in the visible part of package Standard:

subtype Positive is Integer range 1 .. Integer'Last;

type String is array(Positive range <>) of Character;
type Wide String is array(Positive range <>) of Wide Character;
type Wide Wide String is array(Positive range <>) of Wide Wide Character;

NOTES

54 String literals (see 2.6 and 4.2) are defined for all string types. The concatenation operator & is predefined for string
types, as for all nonlimited one-dimensional array types. The ordering operators <, <=, >, and >= are predefined for
string types, as for all one-dimensional discrete array types; these ordering operators correspond to lexicographic order

(see 4.5.2).
Examples
Examples of string objects:

Stars : String(1l .. 120) = (1 .. 120 => '"*');
Question : constant String := "How many characters?";

- - Question'First = 1, Question'Last = 20

- - Question'Length = 20 (the number of characters)
Ask Twice : String := Question & Question; - - constrained to (1..40)
Ninety Six : constant Roman := "XCVI"; --see3.5.2and3.6

3.7 Discriminants

A composite type (other than an array or interface type) can have discriminants, which parameterize
the type. A known_discriminant_part specifies the discriminants of a composite type. A discriminant
of an object is a component of the object, and is either of a discrete type or an access type. An
unknown_discriminant_part in the declaration of a view of a type specifies that the discriminants of
the type are unknown for the given view; all subtypes of such a view are indefinite subtypes.

Syntax
discriminant_part ::= unknown_discriminant_part | known_discriminant_part
unknown_discriminant_part ::= (<>)

known_discriminant_part ::=
(discriminant_specification {; discriminant_specification})

discriminant_specification ::=
defining_identifier_list : [null_exclusion] subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]

default_expression ::= expression

© ISO/IEC 2012 — All rights reserved 56

ISO/IEC 8652:DIS

Name Resolution Rules

The expected type for the default_expression of a discriminant_specification is that of the
corresponding discriminant.

Legality Rules

A discriminant_part is only permitted in a declaration for a composite type that is not an array or
interface type (this includes generic formal types). A type declared with a known_discriminant_part
is called a discriminated type, as is a type that inherits (known) discriminants.

The subtype of a discriminant may be defined by an optional null_exclusion and a subtype_mark, in
which case the subtype_mark shall denote a discrete or access subtype, or it may be defined by an
access_definition. A discriminant that is defined by an access_definition is called an access
discriminant and is of an anonymous access type.

Default_expressions shall be provided either for all or for none of the discriminants of a known_-
discriminant_part. No default_expressions are permitted in a known_discriminant_part in a
declaration of a nonlimited tagged type or a generic formal type.

A discriminant_specification for an access discriminant may have a default_expression only in the
declaration for an immutably limited type (see 7.5). In addition to the places where Legality Rules
normally apply (see 12.3), this rule applies also in the private part of an instance of a generic unit.

For a type defined by a derived_type_definition, if a known_discriminant_part is provided in its
declaration, then:

e The parent subtype shall be constrained;

e If the parent type is not a tagged type, then each discriminant of the derived type shall be used
in the constraint defining the parent subtype;

e If a discriminant is used in the constraint defining the parent subtype, the subtype of the
discriminant shall be statically compatible (see 4.9.1) with the subtype of the corresponding
parent discriminant.

Static Semantics

A discriminant_specification declares a discriminant; the subtype mark denotes its subtype unless it
is an access discriminant, in which case the discriminant's subtype is the anonymous access-to-
variable subtype defined by the access_definition.

For a type defined by a derived_type_definition, each discriminant of the parent type is either
inherited, constrained to equal some new discriminant of the derived type, or constrained to the value
of an expression. When inherited or constrained to equal some new discriminant, the parent
discriminant and the discriminant of the derived type are said to correspond. Two discriminants also
correspond if there is some common discriminant to which they both correspond. A discriminant
corresponds to itself as well. If a discriminant of a parent type is constrained to a specific value by a
derived_type_definition, then that discriminant is said to be specified by that
derived_type_definition.

A constraint that appears within the definition of a discriminated type depends on a discriminant of
the type if it names the discriminant as a bound or discriminant value. A component_definition
depends on a discriminant if its constraint depends on the discriminant, or on a discriminant that
corresponds to it.

A component depends on a discriminant if:
e Its component_definition depends on the discriminant; or
e Itis declared in a variant_part that is governed by the discriminant; or

e It is a component inherited as part of a derived_type_definition, and the constraint of the
parent_subtype_indication depends on the discriminant; or

57 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

e [tis a subcomponent of a component that depends on the discriminant.

Each value of a discriminated type includes a value for each component of the type that does not
depend on a discriminant; this includes the discriminants themselves. The values of discriminants
determine which other component values are present in the value of the discriminated type.

A type declared with a known_discriminant_part is said to have known discriminants; its first
subtype is unconstrained. A type declared with an unknown_discriminant_part is said to have
unknown discriminants. A type declared without a discriminant_part has no discriminants, unless it is
a derived type; if derived, such a type has the same sort of discriminants (known, unknown, or none)
as its parent (or ancestor) type. A tagged class-wide type also has unknown discriminants. Any
subtype of a type with unknown discriminants is an unconstrained and indefinite subtype (see 3.2 and
3.3).

Dynamic Semantics

For an access discriminant, its access_definition is elaborated when the value of the access
discriminant is defined: by evaluation of its default_expression, by elaboration of a
discriminant_constraint, or by an assignment that initializes the enclosing object.

NOTES

55 If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the type are
permitted, and the values of the discriminants can be changed by an assignment to such a variable. If defaults are not
provided for the discriminants, then all variables of the type are constrained, either by explicit constraint or by their
initial value; the values of the discriminants of such a variable cannot be changed after initialization.

56 The default_expression for a discriminant of a type is evaluated when an object of an unconstrained subtype of the
type is created.

57 Assignment to a discriminant of an object (after its initialization) is not allowed, since the name of a discriminant is
a constant; neither assignment_statements nor assignments inherent in passing as an in out or out parameter are
allowed. Note however that the value of a discriminant can be changed by assigning to the enclosing object, presuming
it is an unconstrained variable.

58 A discriminant that is of a named access type is not called an access discriminant; that term is used only for
discriminants defined by an access_definition.

Examples
Examples of discriminated types:
type Buffer(Size : Buffer Size := 100) is --see3.5.4
record
Pos : Buffer Size := 0;
Value : String(l .. Size);

end record;

type Matrix Rec (Rows, Columns : Integer) is
record
Mat : Matrix(l1 .. Rows, 1 .. Columns); -- see 3.6
end record;

type Square (Side : Integer) is new
Matrix Rec(Rows => Side, Columns => Side);

type Double Square (Number : Integer) is
record
Left : Square (Number) ;
Right : Square (Number) ;
end record;

task type Worker (Prio : System.Priority; Buf : access Buffer)
with Priority => Prio is --seeD.I
- - discriminants used to parameterize the task type (see 9.1)
entry Fill;

entry Drain;
end Worker;

© ISO/IEC 2012 — All rights reserved 58

ISO/IEC 8652:DIS

3.7.1 Discriminant Constraints

A discriminant_constraint specifies the values of the discriminants for a given discriminated type.

Syntax

discriminant_constraint ::=
(discriminant_association {, discriminant_association})

discriminant_association ::=
[discriminant_selector_name {| discriminant selector_name} =>] expression

A discriminant_association is said to be named if it has one or more
discriminant_selector_names; it is otherwise said to be positional. In a discriminant_constraint,
any positional associations shall precede any named associations.

Name Resolution Rules

Each selector_name of a named discriminant_association shall resolve to denote a discriminant of
the subtype being constrained; the discriminants so named are the associated discriminants of the
named association. For a positional association, the associated discriminant is the one whose
discriminant_specification occurred in the corresponding position in the known_discriminant_part
that defined the discriminants of the subtype being constrained.

The expected type for the expression in a discriminant_association is that of the associated
discriminant(s).

Legality Rules

A discriminant_constraint is only allowed in a subtype_indication whose subtype_mark denotes
either an unconstrained discriminated subtype, or an unconstrained access subtype whose designated
subtype is an unconstrained discriminated subtype. However, in the case of an access subtype, a
discriminant_constraint is legal only if any dereference of a value of the access type is known to be
constrained (see 3.3). In addition to the places where Legality Rules normally apply (see 12.3), these
rules apply also in the private part of an instance of a generic unit.

A named discriminant_association with more than one selector_name is allowed only if the named
discriminants are all of the same type. A discriminant_constraint shall provide exactly one value for
each discriminant of the subtype being constrained.

Dynamic Semantics

A discriminant_constraint is compatible with an unconstrained discriminated subtype if each
discriminant value belongs to the subtype of the corresponding discriminant.

A composite value satisfies a discriminant constraint if and only if each discriminant of the composite
value has the value imposed by the discriminant constraint.

For the elaboration of a discriminant_constraint, the expressions in the discriminant_associations
are evaluated in an arbitrary order and converted to the type of the associated discriminant (which
might raise Constraint Error — see 4.6); the expression of a named association is evaluated (and
converted) once for each associated discriminant. The result of each evaluation and conversion is the
value imposed by the constraint for the associated discriminant.

NOTES

59 The rules of the language ensure that a discriminant of an object always has a value, either from explicit or implicit
initialization.

59 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Examples

Examples (using types declared above in clause 3.7):

Large : Buffer(200); -- constrained, always 200 characters
- - (explicit discriminant value)
Message : Buffer; - - unconstrained, initially 100 characters
- - (default discriminant value)
Basis : Square (5) ; - - constrained, always 5 by 5
Illegal : Square; - - illegal, a Square has to be constrained

3.7.2 Operations of Discriminated Types

If a discriminated type has default_expressions for its discriminants, then unconstrained variables of
the type are permitted, and the discriminants of such a variable can be changed by assignment to the
variable. For a formal parameter of such a type, an attribute is provided to determine whether the
corresponding actual parameter is constrained or unconstrained.

Static Semantics

For a prefix A that is of a discriminated type (after any implicit dereference), the following attribute is
defined:

A'Constrained
Yields the value True if A denotes a constant, a value, a tagged object, or a constrained
variable, and False otherwise.

Erroneous Execution

The execution of a construct is erroneous if the construct has a constituent that is a name denoting a
subcomponent that depends on discriminants, and the value of any of these discriminants is changed
by this execution between evaluating the name and the last use (within this execution) of the
subcomponent denoted by the name.

3.8 Record Types

A record object is a composite object consisting of named components. The value of a record object is
a composite value consisting of the values of the components.

Syntax
record_type_definition ::= [[abstract] tagged] [limited] record_definition

record_definition ::=
record
component_list
end record
| null record

component_list ::=
component_item {component_item}
| {component_item} variant_part
| null;

component_item ::= component_declaration | aspect_clause

component_declaration ::=
defining_identifier_list : component_definition [:= default_expression]
[aspect_specification];

Name Resolution Rules

The expected type for the default_expression, if any, in a component_declaration is the type of the
component.

© ISO/IEC 2012 — All rights reserved 60

ISO/IEC 8652:DIS

Legality Rules

Each component_declaration declares a component of the record type. Besides components declared
by component_declarations, the components of a record type include any components declared by
discriminant_specifications of the record type declaration. The identifiers of all components of a
record type shall be distinct.

Within a type_declaration, a name that denotes a component, protected subprogram, or entry of the
type is allowed only in the following cases:

e A name that denotes any component, protected subprogram, or entry is allowed within an
aspect_specification, an operational item, or a representation item that occurs within the
declaration of the composite type.

e A name that denotes a noninherited discriminant is allowed within the declaration of the type,
but not within the discriminant_part. If the discriminant is used to define the constraint of a
component, the bounds of an entry family, or the constraint of the parent subtype in a
derived_type_definition, then its name shall appear alone as a direct_name (not as part of a
larger expression or expanded name). A discriminant shall not be used to define the constraint
of a scalar component.

If the name of the current instance of a type (see 8.6) is used to define the constraint of a component,
then it shall appear as a direct_name that is the prefix of an attribute_reference whose result is of an
access type, and the attribute_reference shall appear alone.

Static Semantics

If a record_type_definition includes the reserved word limited, the type is called an explicitly limited
record type.

The component_definition of a component_declaration defines the (nominal) subtype of the
component. If the reserved word aliased appears in the component_definition, then the component is
aliased (see 3.10).

If the component_list of a record type is defined by the reserved word null and there are no
discriminants, then the record type has no components and all records of the type are null records. A
record_definition of null record is equivalent to record null; end record.

Dynamic Semantics

The elaboration of a record_type_definition creates the record type and its first subtype, and consists
of the elaboration of the record_definition. The elaboration of a record_definition consists of the
elaboration of its component_list, if any.

The elaboration of a component_list consists of the elaboration of the component_items and
variant_part, if any, in the order in which they appear. The elaboration of a component_declaration
consists of the elaboration of the component_definition.

Within the definition of a composite type, if a component_definition or discrete_subtype_definition
(see 9.5.2) includes a name that denotes a discriminant of the type, or that is an attribute_reference
whose prefix denotes the current instance of the type, the expression containing the name is called a
per-object expression, and the constraint or range being defined is called a per-object constraint. For
the elaboration of a component_definition of a component_declaration or the discrete_subtype -
definition of an entry_declaration for an entry family (see 9.5.2), if the component subtype is defined
by an access_definition or if the constraint or range of the subtype_indication or discrete_-
subtype_definition is not a per-object constraint, then the access_definition, subtype_indication, or
discrete_subtype_definition is elaborated. On the other hand, if the constraint or range is a per-
object constraint, then the elaboration consists of the evaluation of any included expression that is not
part of a per-object expression. Each such expression is evaluated once unless it is part of a named
association in a discriminant constraint, in which case it is evaluated once for each associated
discriminant.

61 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

When a per-object constraint is elaborated (as part of creating an object), each per-object expression
of the constraint is evaluated. For other expressions, the values determined during the elaboration of
the component_definition or entry_declaration are used. Any checks associated with the enclosing
subtype_indication or discrete_subtype_definition are performed, including the subtype
compatibility check (see 3.2.2), and the associated subtype is created.

NOTES

60 A component_declaration with several identifiers is equivalent to a sequence of single component_declarations,
as explained in 3.3.1.

61 The default_expression of a record component is only evaluated upon the creation of a default-initialized object of
the record type (presuming the object has the component, if it is in a variant_part — see 3.3.1).

62 The subtype defined by a component_definition (see 3.6) has to be a definite subtype.
63 If a record type does not have a variant_part, then the same components are present in all values of the type.

64 A record type is limited if it has the reserved word limited in its definition, or if any of its components are limited
(see 7.5).

65 The predefined operations of a record type include membership tests, qualification, and explicit conversion. If the
record type is nonlimited, they also include assignment and the predefined equality operators.

66 A component of a record can be named with a selected_component. A value of a record can be specified with a
record_aggregate.

Examples
Examples of record type declarations:
type Date is
record
Day : Integer range 1 .. 31;
Month : Month Name;
Year : Integer range 0 .. 4000;

end record;

type Complex is

record
Re : Real := 0.0;
Im : Real := 0.0;

end record;

Examples of record variables:

Tomorrow, Yesterday : Date;
A, B, C : Complex;

- - both components of A, B, and C are implicitly initialized to zero

3.8.1 Variant Parts and Discrete Choices

A record type with a variant_part specifies alternative lists of components. Each variant defines the
components for the value or values of the discriminant covered by its discrete_choice_list.

Syntax

variant_part ::=
case discriminant_direct_name is
variant
{variant}
end case;

variant ::=
when discrete_choice_list=>
component_list

discrete_choice_list ::= discrete_choice {| discrete_choice}
discrete_choice ::= choice_expression | discrete_subtype_indication | range | others

© ISO/IEC 2012 — All rights reserved 62

ISO/IEC 8652:DIS

Name Resolution Rules

The discriminant_direct_name shall resolve to denote a discriminant (called the discriminant of the
variant_part) specified in the known_discriminant_part of the full_type_declaration that contains the
variant_part. The expected type for each discrete_choice in a variant is the type of the discriminant
of the variant_part.

Legality Rules
The discriminant of the variant_part shall be of a discrete type.

The choice_expressions, subtype_indications, and ranges given as discrete_choices in a
variant_part shall be static. The discrete_choice others shall appear alone in a discrete_choice_list,
and such a discrete_choice_list, if it appears, shall be the last one in the enclosing construct.

A discrete_choice is defined to cover a value in the following cases:

e A discrete_choice that is a choice_expression covers a value if the value equals the value of
the choice_expression converted to the expected type.

e A discrete_choice that is a subtype_indication covers all values (possibly none) that belong
to the subtype and that satisfy the static predicate of the subtype (see 3.2.4).

e A discrete_choice that is a range covers all values (possibly none) that belong to the range.

e The discrete_choice others covers all values of its expected type that are not covered by
previous discrete_choice_lists of the same construct.

A discrete_choice_list covers a value if one of its discrete _choices covers the value.

The possible values of the discriminant of a variant_part shall be covered as follows:

e If the discriminant is of a static constrained scalar subtype then, except within an instance of a
generic unit, each non-others discrete_choice shall cover only values in that subtype that
satisfy its predicate, and each value of that subtype that satisfies its predicate shall be covered
by some discrete_choice (either explicitly or by others);

o If the type of the discriminant is a descendant of a generic formal scalar type, then the
variant_part shall have an others discrete_choice;

e Otherwise, each value of the base range of the type of the discriminant shall be covered
(either explicitly or by others).

Two distinct discrete_choices of a variant_part shall not cover the same value.

Static Semantics
If the component_list of a variant is specified by null, the variant has no components.

The discriminant of a variant_part is said to govern the variant_part and its variants. In addition, the
discriminant of a derived type governs a variant_part and its variants if it corresponds (see 3.7) to the
discriminant of the variant_part.

Dynamic Semantics

A record value contains the values of the components of a particular variant only if the value of the
discriminant governing the variant is covered by the discrete_choice_list of the variant. This rule
applies in turn to any further variant that is, itself, included in the component_list of the given
variant.

When an object of a discriminated type T is initialized by default, Constraint Error is raised if no
discrete_choice_list of any variant of a variant_part of T covers the value of the discriminant that
governs the variant_part. When a variant_part appears in the component_list of another variant V,
this test is only applied if the value of the discriminant governing V is covered by the
discrete_choice_list of V.

63 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

The elaboration of a variant_part consists of the elaboration of the component_list of each variant in
the order in which they appear.

Examples

Example of record type with a variant part:

type Device is (Printer, Disk, Drum) ;
type State 1is (Open, Closed);

type Peripheral (Unit : Device := Disk) is
record
Status : State;
case Unit is
when Printer =>

Line_Count : Integer range 1 .. Page_Size;
when others =>

Cylinder : Cylinder Index;

Track : Track Number;
end case;

end record;

Examples of record subtypes:

subtype Drum Unit is Peripheral (Drum) ;
subtype Disk Unit is Peripheral (Disk) ;

Examples of constrained record variables:

Writer : Peripheral (Unit => Printer);
Archive : Disk Unit;

3.9 Tagged Types and Type Extensions

Tagged types and type extensions support object-oriented programming, based on inheritance with
extension and run-time polymorphism via dispatching operations.

Static Semantics

A record type or private type that has the reserved word tagged in its declaration is called a tagged
type. In addition, an interface type is a tagged type, as is a task or protected type derived from an
interface (see 3.9.4). When deriving from a tagged type, as for any derived type, additional primitive
subprograms may be defined, and inherited primitive subprograms may be overridden. The derived
type is called an extension of its ancestor types, or simply a type extension.

Every type extension is also a tagged type, and is a record extension or a private extension of some
other tagged type, or a noninterface synchronized tagged type (see 3.9.4). A record extension is
defined by a derived_type_definition with a record_extension_part (see 3.9.1), which may include
the definition of additional components. A private extension, which is a partial view of a record
extension or of a synchronized tagged type, can be declared in the visible part of a package (see 7.3)
or in a generic formal part (see 12.5.1).

An object of a tagged type has an associated (run-time) fag that identifies the specific tagged type
used to create the object originally. The tag of an operand of a class-wide tagged type T'Class controls
which subprogram body is to be executed when a primitive subprogram of type T is applied to the
operand (see 3.9.2); using a tag to control which body to execute is called dispatching.

The tag of a specific tagged type identifies the full_type_declaration of the type, and for a type
extension, is sufficient to uniquely identify the type among all descendants of the same ancestor. If a
declaration for a tagged type occurs within a generic_package_declaration, then the corresponding
type declarations in distinct instances of the generic package are associated with distinct tags. For a
tagged type that is local to a generic package body and with all of its ancestors (if any) also local to
the generic body, the language does not specify whether repeated instantiations of the generic body
result in distinct tags.

© ISO/IEC 2012 — All rights reserved 64

ISO/IEC 8652:DIS

The following language-defined library package exists:

package Ada.Tags is
pragma Preelaborate (Tags) ;
type Tag is private;
pragma Preelaborable Initialization(Tag) ;
No Tag : constant Tag;

function Expanded Name (T : Tag) return String;

function Wide Expanded Name (T : Tag) return Wide String;

function Wide Wide Expanded Name (T : Tag) return Wide Wide String;
function External Tag(T : Tag) return String;

function Internal Tag(External : String) return Tag;

function Descendant Tag(External : String; Ancestor : Tag) return Tag;
function Is Descendant At Same Level (Descendant, Ancestor : Tag)
return Boolean;

function Parent Tag (T : Tag) return Tag;

type Tag Array is array (Positive range <>) of Tag;

function Interface Ancestor Tags (T : Tag) return Tag Array;
function Is Abstract (T : Tag) return Boolean;

Tag Error : exception;

private
. - - not specified by the language
end Ada.Tags;

No_Tag is the default initial value of type Tag.

The function Wide_Wide Expanded Name returns the full expanded name of the first subtype of the
specific type identified by the tag, in upper case, starting with a root library unit. The result is
implementation defined if the type is declared within an unnamed block_statement.

The function Expanded Name (respectively, Wide Expanded Name) returns the same sequence of
graphic characters as that defined for Wide Wide Expanded Name, if all the graphic characters are
defined in Character (respectively, Wide Character); otherwise, the sequence of characters is
implementation defined, but no shorter than that returned by Wide Wide Expanded Name for the
same value of the argument.

The function External Tag returns a string to be used in an external representation for the given tag.
The call External Tag(S'Tag) is equivalent to the attribute_reference S'External Tag (see 13.3).

The string returned by the functions Expanded Name, Wide Expanded Name, Wide Wide -
Expanded Name, and External Tag has lower bound 1.

The function Internal Tag returns a tag that corresponds to the given external tag, or raises Tag_ Error
if the given string is not the external tag for any specific type of the partition. Tag_Error is also raised
if the specific type identified is a library-level type whose tag has not yet been created (see 13.14).

The function Descendant Tag returns the (internal) tag for the type that corresponds to the given
external tag and is both a descendant of the type identified by the Ancestor tag and has the same
accessibility level as the identified ancestor. Tag_Error is raised if External is not the external tag for
such a type. Tag_Error is also raised if the specific type identified is a library-level type whose tag has
not yet been created, or if the given external tag identifies more than one type that has the appropriate
Ancestor and accessibility level.

The function Is Descendant At Same Level returns True if the Descendant tag identifies a type that
is both a descendant of the type identified by Ancestor and at the same accessibility level. If not, it
returns False.

For the purposes of the dynamic semantics of functions Descendant Tag and
Is Descendant At Same Level, a tagged type T2 is a descendant of a type T1 if it is the same as T1,
or if its parent type or one of its progenitor types is a descendant of type T1 by this rule, even if at the
point of the declaration of T2, one of the derivations in the chain is not visible.

65 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

The function Parent Tag returns the tag of the parent type of the type whose tag is T. If the type does
not have a parent type (that is, it was not declared by a derived type declaration), then No Tag is
returned.

The function Interface_Ancestor Tags returns an array containing the tag of each interface ancestor
type of the type whose tag is T, other than T itself. The lower bound of the returned array is 1, and the
order of the returned tags is unspecified. Each tag appears in the result exactly once. If the type whose
tag is T has no interface ancestors, a null array is returned.

The function Is_Abstract returns True if the type whose tag is T is abstract, and False otherwise.
For every subtype S of a tagged type T (specific or class-wide), the following attributes are defined:

S'Class S'Class denotes a subtype of the class-wide type (called 7'Class in this International
Standard) for the class rooted at T (or if S already denotes a class-wide subtype, then
S'Class is the same as S).

S'Class is unconstrained. However, if S is constrained, then the values of S'Class are only
those that when converted to the type 7 belong to S.

S'Tag S'Tag denotes the tag of the type T (or if T is class-wide, the tag of the root type of the
corresponding class). The value of this attribute is of type Tag.

Given a prefix X that is of a class-wide tagged type (after any implicit dereference), the following
attribute is defined:

X'Tag X'Tag denotes the tag of X. The value of this attribute is of type Tag.

The following language-defined generic function exists:

generic
type T (<>) is abstract tagged limited private;
type Parameters (<>) is limited private;
with function Constructor (Params : not null access Parameters)
return T is abstract;
function Ada.Tags.Generic Dispatching Constructor
(The Tag : Tag;
Params : not null access Parameters) return T'Class
with Convention => Intrinsic;
pragma Preelaborate (Generic Dispatching Constructor) ;
Tags.Generic_Dispatching_Constructor provides a mechanism to create an object of an appropriate
type from just a tag value. The function Constructor is expected to create the object given a reference

to an object of type Parameters.

Dynamic Semantics

The tag associated with an object of a tagged type is determined as follows:

e The tag of a stand-alone object, a component, or an aggregate of a specific tagged type T
identifies 7.

e The tag of an object created by an allocator for an access type with a specific designated
tagged type T, identifies 7.

e The tag of an object of a class-wide tagged type is that of its initialization expression.

e The tag of the result returned by a function whose result type is a specific tagged type T
identifies 7.

e The tag of the result returned by a function with a class-wide result type is that of the return
object.

The tag is preserved by type conversion and by parameter passing. The tag of a value is the tag of the
associated object (see 6.2).

© ISO/IEC 2012 — All rights reserved 66

ISO/IEC 8652:DIS

Tag Error is raised by a call of Descendant Tag, Expanded Name, External Tag, Interface -
Ancestor Tags, [s_Abstract, s Descendant At Same Level, Parent Tag, Wide Expanded Name, or
Wide Wide Expanded Name if any tag passed is No_Tag.

An instance of Tags.Generic Dispatching Constructor raises Tag Error if The Tag does not
represent a concrete descendant of T or if the innermost master (see 7.6.1) of this descendant is not
also a master of the instance. Otherwise, it dispatches to the primitive function denoted by the formal
Constructor for the type identified by The Tag, passing Params, and returns the result. Any exception
raised by the function is propagated.

Erroneous Execution

If an internal tag provided to an instance of Tags.Generic Dispatching Constructor or to any
subprogram declared in package Tags identifies either a type that is not library-level and whose tag
has not been created (see 13.14), or a type that does not exist in the partition at the time of the call,
then execution is erroneous.

Implementation Permissions

The implementation of Internal Tag and Descendant Tag may raise Tag Error if no specific type
corresponding to the string External passed as a parameter exists in the partition at the time the
function is called, or if there is no such type whose innermost master is a master of the point of the
function call.

Implementation Advice

Internal_Tag should return the tag of a type, if one exists, whose innermost master is a master of the
point of the function call.

NOTES
67 A type declared with the reserved word tagged should normally be declared in a package_specification, so that
new primitive subprograms can be declared for it.

68 Once an object has been created, its tag never changes.

69 Class-wide types are defined to have unknown discriminants (see 3.7). This means that objects of a class-wide type
have to be explicitly initialized (whether created by an object_declaration or an allocator), and that aggregates have to
be explicitly qualified with a specific type when their expected type is class-wide.

70 The capability provided by Tags.Generic_Dispatching Constructor is sometimes known as a factory.

Examples

Examples of tagged record types:

type Point is tagged
record
X, Y : Real := 0.0;
end record;

type Expression is tagged null record;
- - Components will be added by each extension

3.9.1 Type Extensions
Every type extension is a tagged type, and is a record extension or a private extension of some other
tagged type, or a noninterface synchronized tagged type.

Syntax

record_extension_part ::= with record_definition

Legality Rules

The parent type of a record extension shall not be a class-wide type nor shall it be a synchronized
tagged type (see 3.9.4). If the parent type or any progenitor is nonlimited, then each of the
components of the record_extension_part shall be nonlimited. In addition to the places where

67 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Legality Rules normally apply (see 12.3), these rules apply also in the private part of an instance of a
generic unit.

Within the body of a generic unit, or the body of any of its descendant library units, a tagged type
shall not be declared as a descendant of a formal type declared within the formal part of the generic
unit.

Static Semantics

A record extension is a null extension if its declaration has no known_discriminant_part and its
record_extension_part includes no component_declarations.

Dynamic Semantics

The elaboration of a record_extension_part consists of the elaboration of the record_definition.

NOTES
71 The term “type extension” refers to a type as a whole. The term “extension part” refers to the piece of text that
defines the additional components (if any) the type extension has relative to its specified ancestor type.

72 When an extension is declared immediately within a body, primitive subprograms are inherited and are overridable,
but new primitive subprograms cannot be added.

73 A name that denotes a component (including a discriminant) of the parent type is not allowed within the
record_extension_part. Similarly, a name that denotes a component defined within the record_extension_part is not
allowed within the record_extension_part. It is permissible to use a name that denotes a discriminant of the record
extension, providing there is a new known_discriminant_part in the enclosing type declaration. (The full rule is given
in 3.8.)

74 Each visible component of a record extension has to have a unique name, whether the component is (visibly)
inherited from the parent type or declared in the record_extension_part (see 8.3).

Examples

Examples of record extensions (of types defined above in 3.9):

type Painted Point is new Point with
record
Paint : Color := White;
end record;
- - Components X and Y are inherited

Origin : constant Painted Point := (X | Y => 0.0, Paint => Black);

type Literal is new Expression with
record - - a leaf'in an Expression tree
Value : Real;
end record;

type Expr Ptr is access all Expression'Class;
--see 3.10

type Binary Operation is new Expression with
record - - an internal node in an Expression tree
Left, Right : Expr Ptr;
end record;

type Addition is new Binary Operation with null record;
type Subtraction is new Binary Operation with null record;
- - No additional components needed for these extensions

Tree : Expr Ptr := - - A tree representation of “5.0 + (13.0-7.0)”
new Addition' (
Left => new Literal' (Value => 5.0),
Right => new Subtraction' (
Left => new Literal' (Value => 13.0),
Right => new Literal' (Value => 7.0)));

3.9.2 Dispatching Operations of Tagged Types

The primitive subprograms of a tagged type, the subprograms declared by formal_abstract_-
subprogram_declarations, and the stream attributes of a specific tagged type that are available (see
13.13.2) at the end of the declaration list where the type is declared are called dispatching operations.

© ISO/IEC 2012 — All rights reserved 68

ISO/IEC 8652:DIS

A dispatching operation can be called using a statically determined controlling tag, in which case the
body to be executed is determined at compile time. Alternatively, the controlling tag can be
dynamically determined, in which case the call dispatches to a body that is determined at run time;
such a call is termed a dispatching call. As explained below, the properties of the operands and the
context of a particular call on a dispatching operation determine how the controlling tag is
determined, and hence whether or not the call is a dispatching call. Run-time polymorphism is
achieved when a dispatching operation is called by a dispatching call.

Static Semantics

A call on a dispatching operation is a call whose name or prefix denotes the declaration of a
dispatching operation. A controlling operand in a call on a dispatching operation of a tagged type 7 is
one whose corresponding formal parameter is of type T or is of an anonymous access type with
designated type T; the corresponding formal parameter is called a controlling formal parameter. If the
controlling formal parameter is an access parameter, the controlling operand is the object designated
by the actual parameter, rather than the actual parameter itself. If the call is to a (primitive) function
with result type T (a function with a controlling resulf), then the call has a controlling result — the
context of the call can control the dispatching. Similarly, if the call is to a function with an access
result type designating T (a function with a controlling access resulf), then the call has a controlling
access result, and the context can similarly control dispatching.

A name or expression of a tagged type is either statically tagged, dynamically tagged, or tag
indeterminate, according to whether, when used as a controlling operand, the tag that controls
dispatching is determined statically by the operand's (specific) type, dynamically by its tag at run
time, or from context. A qualified_expression or parenthesized expression is statically, dynamically,
or indeterminately tagged according to its operand. For other kinds of names and expressions, this is
determined as follows:

e The name or expression is statically tagged if it is of a specific tagged type and, if it is a call
with a controlling result or controlling access result, it has at least one statically tagged
controlling operand;

e The name or expression is dynamically tagged if it is of a class-wide type, or it is a call with
a controlling result or controlling access result and at least one dynamically tagged controlling
operand;

e The name or expression is tag indeterminate if it is a call with a controlling result or
controlling access result, all of whose controlling operands (if any) are tag indeterminate.

A type_conversion is statically or dynamically tagged according to whether the type determined by
the subtype_mark is specific or class-wide, respectively. For an object that is designated by an
expression whose expected type is an anonymous access-to-specific tagged type, the object is
dynamically tagged if the expression, ignoring enclosing parentheses, is of the form X'Access, where
X is of a class-wide type, or is of the form new T'(...), where T denotes a class-wide subtype.
Otherwise, the object is statically or dynamically tagged according to whether the designated type of
the type of the expression is specific or class-wide, respectively.

Legality Rules

A call on a dispatching operation shall not have both dynamically tagged and statically tagged
controlling operands.

If the expected type for an expression or name is some specific tagged type, then the expression or
name shall not be dynamically tagged unless it is a controlling operand in a call on a dispatching
operation. Similarly, if the expected type for an expression is an anonymous access-to-specific tagged
type, then the object designated by the expression shall not be dynamically tagged unless it is a
controlling operand in a call on a dispatching operation.

In the declaration of a dispatching operation of a tagged type, everywhere a subtype of the tagged type
appears as a subtype of the profile (see 6.1), it shall statically match the first subtype of the tagged

69 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

type. If the dispatching operation overrides an inherited subprogram, it shall be subtype conformant
with the inherited subprogram. The convention of an inherited dispatching operation is the convention
of the corresponding primitive operation of the parent or progenitor type. The default convention of a
dispatching operation that overrides an inherited primitive operation is the convention of the inherited
operation; if the operation overrides multiple inherited operations, then they shall all have the same
convention. An explicitly declared dispatching operation shall not be of convention Intrinsic.

The default_expression for a controlling formal parameter of a dispatching operation shall be tag
indeterminate.

If a dispatching operation is defined by a subprogram_renaming_declaration or the instantiation of a
generic subprogram, any access parameter of the renamed subprogram or the generic subprogram that
corresponds to a controlling access parameter of the dispatching operation, shall have a subtype that
excludes null.

A given subprogram shall not be a dispatching operation of two or more distinct tagged types.

The explicit declaration of a primitive subprogram of a tagged type shall occur before the type is
frozen (see 13.14). For example, new dispatching operations cannot be added after objects or values
of the type exist, nor after deriving a record extension from it, nor after a body.

Dynamic Semantics

For the execution of a call on a dispatching operation of a type T, the controlling tag value determines
which subprogram body is executed. The controlling tag value is defined as follows:

e If one or more controlling operands are statically tagged, then the controlling tag value is
statically determined to be the tag of T.

e If one or more controlling operands are dynamically tagged, then the controlling tag value is
not statically determined, but is rather determined by the tags of the controlling operands. If
there is more than one dynamically tagged controlling operand, a check is made that they all
have the same tag. If this check fails, Constraint Error is raised unless the call is a
function_call whose name denotes the declaration of an equality operator (predefined or user
defined) that returns Boolean, in which case the result of the call is defined to indicate
inequality, and no subprogram_body is executed. This check is performed prior to evaluating
any tag-indeterminate controlling operands.

e Ifall of the controlling operands (if any) are tag-indeterminate, then:

o If the call has a controlling result or controlling access result and is itself, or designates, a
(possibly parenthesized or qualified) controlling operand of an enclosing call on a
dispatching operation of a descendant of type 7, then its controlling tag value is
determined by the controlling tag value of this enclosing call;

o I[f the call has a controlling result or controlling access result and (possibly parenthesized,
qualified, or dereferenced) is the expression of an assignment_statement whose target is
of a class-wide type, then its controlling tag value is determined by the target;

o Otherwise, the controlling tag value is statically determined to be the tag of type 7.

For the execution of a call on a dispatching operation, the action performed is determined by the
properties of the corresponding dispatching operation of the specific type identified by the controlling
tag value:

e if the corresponding operation is explicitly declared for this type, even if the declaration
occurs in a private part, then the action comprises an invocation of the explicit body for the
operation;

e if the corresponding operation is implicitly declared for this type and is implemented by an
entry or protected subprogram (see 9.1 and 9.4), then the action comprises a call on this entry
or protected subprogram, with the target object being given by the first actual parameter of
the call, and the actual parameters of the entry or protected subprogram being given by the
remaining actual parameters of the call, if any;

© ISO/IEC 2012 — All rights reserved 70

ISO/IEC 8652:DIS

e if the corresponding operation is a predefined operator then the action comprises an
invocation of that operator;

e otherwise, the action is the same as the action for the corresponding operation of the parent
type or progenitor type from which the operation was inherited except that additional
invariant checks (see 7.3.2) and class-wide postcondition checks (see 6.1.1) may apply. If
there is more than one such corresponding operation, the action is that for the operation that is
not a null procedure, if any; otherwise, the action is that of an arbitrary one of the operations.
NOTES
75 The body to be executed for a call on a dispatching operation is determined by the tag; it does not matter whether

that tag is determined statically or dynamically, and it does not matter whether the subprogram's declaration is visible
at the place of the call.

76 This subclause covers calls on dispatching subprograms of a tagged type. Rules for tagged type membership tests
are described in 4.5.2. Controlling tag determination for an assignment_statement is described in 5.2.

77 A dispatching call can dispatch to a body whose declaration is not visible at the place of the call.

78 A call through an access-to-subprogram value is never a dispatching call, even if the access value designates a
dispatching operation. Similarly a call whose prefix denotes a subprogram_renaming_declaration cannot be a
dispatching call unless the renaming itself is the declaration of a primitive subprogram.

3.9.3 Abstract Types and Subprograms

An abstract type is a tagged type intended for use as an ancestor of other types, but which is not
allowed to have objects of its own. An abstract subprogram is a subprogram that has no body, but is
intended to be overridden at some point when inherited. Because objects of an abstract type cannot be
created, a dispatching call to an abstract subprogram always dispatches to some overriding body.

Syntax

abstract_subprogram_declaration ::=
[overriding_indicator]
subprogram_specification is abstract
[aspect_specification];

Static Semantics

Interface types (see 3.9.4) are abstract types. In addition, a tagged type that has the reserved word
abstract in its declaration is an abstract type. The class-wide type (see 3.4.1) rooted at an abstract
type is not itself an abstract type.

Legality Rules
Only a tagged type shall have the reserved word abstract in its declaration.

A subprogram declared by an abstract_subprogram_declaration or a formal_abstract_-
subprogram_declaration (see 12.6) is an abstract subprogram. If it is a primitive subprogram of a
tagged type, then the tagged type shall be abstract.

If a type has an implicitly declared primitive subprogram that is inherited or is a predefined operator,
and the corresponding primitive subprogram of the parent or ancestor type is abstract or is a function
with a controlling access result, or if a type other than a nonabstract null extension inherits a function
with a controlling result, then:

e If the type is abstract or untagged, the implicitly declared subprogram is abstract.

e Otherwise, the subprogram shall be overridden with a nonabstract subprogram or, in the case
of a private extension inheriting a function with a controlling result, have a full type that is a
null extension; for a type declared in the visible part of a package, the overriding may be
either in the visible or the private part. Such a subprogram is said to require overriding.
However, if the type is a generic formal type, the subprogram need not be overridden for the
formal type itself; a nonabstract version will necessarily be provided by the actual type.

71 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

A call on an abstract subprogram shall be a dispatching call; nondispatching calls to an abstract
subprogram are not allowed.

The type of an aggregate, or of an object created by an object declaration or an allocator, or a
generic formal object of mode in, shall not be abstract. The type of the target of an assignment
operation (see 5.2) shall not be abstract. The type of a component shall not be abstract. If the result
type of a function is abstract, then the function shall be abstract. If a function has an access result type
designating an abstract type, then the function shall be abstract. The type denoted by a
return_subtype_indication (see 6.5) shall not be abstract. A generic function shall not have an
abstract result type or an access result type designating an abstract type.

If a partial view is not abstract, the corresponding full view shall not be abstract. If a generic formal
type is abstract, then for each primitive subprogram of the formal that is not abstract, the
corresponding primitive subprogram of the actual shall not be abstract.

For an abstract type declared in a visible part, an abstract primitive subprogram shall not be declared
in the private part, unless it is overriding an abstract subprogram implicitly declared in the visible
part. For a tagged type declared in a visible part, a primitive function with a controlling result or a
controlling access result shall not be declared in the private part, unless it is overriding a function
implicitly declared in the visible part.

A generic actual subprogram shall not be an abstract subprogram unless the generic formal
subprogram is declared by a formal_abstract_subprogram_declaration. The prefix of an
attribute_reference for the Access, Unchecked Access, or Address attributes shall not denote an
abstract subprogram.

Dynamic Semantics
The elaboration of an abstract_subprogram_declaration has no effect.

NOTES
79 Abstractness is not inherited; to declare an abstract type, the reserved word abstract has to be used in the
declaration of the type extension.

80 A class-wide type is never abstract. Even if a class is rooted at an abstract type, the class-wide type for the class is
not abstract, and an object of the class-wide type can be created; the tag of such an object will identify some
nonabstract type in the class.

Examples

Example of an abstract type representing a set of natural numbers:

package Sets is
subtype Element Type is Natural;
type Set is abstract tagged null record;
function Empty return Set is abstract;
function Union(Left, Right : Set) return Set is abstract;

function Intersection(Left, Right : Set) return Set is abstract;
function Unit Set (Element : Element Type) return Set is abstract;
procedure Take (Element : out Element Type;
From : in out Set) is abstract;
end Sets;
NOTES

81 Notes on the example: Given the above abstract type, one could then derive various (nonabstract) extensions of the
type, representing alternative implementations of a set. One might use a bit vector, but impose an upper bound on the
largest element representable, while another might use a hash table, trading off space for flexibility.

3.9.4 Interface Types

An interface type is an abstract tagged type that provides a restricted form of multiple inheritance. A
tagged type, task type, or protected type may have one or more interface types as ancestors.

© ISO/IEC 2012 — All rights reserved 72

ISO/IEC 8652:DIS

Syntax
interface_type_definition ::=
[limited | task | protected | synchronized] interface [and interface_list]
interface_list ::= interface_subtype_mark {and interface subtype_mark}

Static Semantics

An interface type (also called an interface) is a specific abstract tagged type that is defined by an
interface_type_definition.

An interface with the reserved word limited, task, protected, or synchronized in its definition is
termed, respectively, a limited interface, a task interface, a protected interface, or a synchronized
interface. In addition, all task and protected interfaces are synchronized interfaces, and all
synchronized interfaces are limited interfaces.

A task or protected type derived from an interface is a tagged type. Such a tagged type is called a
synchronized tagged type, as are synchronized interfaces and private extensions whose declaration
includes the reserved word synchronized.

A task interface is an abstract task type. A protected interface is an abstract protected type.
An interface type has no components.

An interface _subtype_mark in an interface_list names a progenitor subtype; its type is the
progenitor type. An interface type inherits user-defined primitive subprograms from each progenitor
type in the same way that a derived type inherits user-defined primitive subprograms from its
progenitor types (see 3.4).

Legality Rules

All user-defined primitive subprograms of an interface type shall be abstract subprograms or null
procedures.

The type of a subtype named in an interface_list shall be an interface type.
A type derived from a nonlimited interface shall be nonlimited.

An interface derived from a task interface shall include the reserved word task in its definition; any
other type derived from a task interface shall be a private extension or a task type declared by a task
declaration (see 9.1).

An interface derived from a protected interface shall include the reserved word protected in its
definition; any other type derived from a protected interface shall be a private extension or a protected
type declared by a protected declaration (see 9.4).

An interface derived from a synchronized interface shall include one of the reserved words task,
protected, or synchronized in its definition; any other type derived from a synchronized interface
shall be a private extension, a task type declared by a task declaration, or a protected type declared by
a protected declaration.

No type shall be derived from both a task interface and a protected interface.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Dynamic Semantics
The elaboration of an interface_type_definition creates the interface type and its first subtype.

NOTES

82 Nonlimited interface types have predefined nonabstract equality operators. These may be overridden with user-
defined abstract equality operators. Such operators will then require an explicit overriding for any nonabstract
descendant of the interface.

73 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Examples

Example of a limited interface and a synchronized interface extending it:

type Queue is limited interface;
procedure Append(Q : in out Queue; Person : in Person Name) is abstract;
procedure Remove First (Q : in out Queue;
Person : out Person Name) is abstract;
function Cur Count (Q : in Queue) return Natural is abstract;
function Max Count (Q : in Queue) return Natural is abstract;
-- See 3.10.1 for Person_Name.

Queue Error : exception;
- - Append raises Queue_Error if Cur_Count(Q) = Max_Count(Q)
- - Remove_First raises Queue_Error if Cur_Count(Q) = 0

type Synchronized Queue is synchronized interface and Queue; --see9./]
procedure Append Wait (Q : in out Synchronized Queue;

Person : in Person Name) is abstract;
procedure Remove First Wait (Q : in out Synchronized Queue;

Person : out Person Name) is abstract;

procedure Transfer (From : in out Queue'Class;
To : in out Queue'Class;
Number : in Natural := 1) is
Person : Person Name;
begin

for I in 1..Number loop
Remove First (From, Person) ;
Append (To, Person) ;
end loop;
end Transfer;
This defines a Queue interface defining a queue of people. (A similar design could be created to
define any kind of queue simply by replacing Person Name by an appropriate type.) The Queue
interface has four dispatching operations, Append, Remove First, Cur_Count, and Max_Count. The
body of a class-wide operation, Transfer is also shown. Every nonabstract extension of Queue must
provide implementations for at least its four dispatching operations, as they are abstract. Any object of
a type derived from Queue may be passed to Transfer as either the From or the To operand. The two
operands need not be of the same type in any given call.

The Synchronized Queue interface inherits the four dispatching operations from Queue and adds two
additional dispatching operations, which wait if necessary rather than raising the Queue Error
exception. This synchronized interface may only be implemented by a task or protected type, and as
such ensures safe concurrent access.

Example use of the interface:

type Fast Food Queue is new Queue with record ...;

procedure Append(Q : in out Fast Food Queue; Person : in Person_ Name) ;
procedure Remove First(Q : in out Fast Food Queue; Person : out Person Name) ;
function Cur_ Count (Q : in Fast Food Queue) return Natural;

function Max Count (Q : in Fast Food Queue) return Natural;

Cashier, Counter : Fast Food Queue;

-- Add George (see 3.10.1) to the cashier's queue:

Append (Cashier, George) ;

- - After payment, move George to the sandwich counter queue:
Transfer (Cashier, Counter) ;

An interface such as Queue can be used directly as the parent of a new type (as shown here), or can be
used as a progenitor when a type is derived. In either case, the primitive operations of the interface are
inherited. For Queue, the implementation of the four inherited routines must be provided. Inside the
call of Transfer, calls will dispatch to the implementations of Append and Remove First for type
Fast Food Queue.

© ISO/IEC 2012 — All rights reserved 74

ISO/IEC 8652:DIS

Example of a task interface:

type Serial Device is task interface; --see9.]
procedure Read (Dev : in Serial Device; C : out Character) is abstract;
procedure Write(Dev : in Serial Device; C : in Character) is abstract;

The Serial Device interface has two dispatching operations which are intended to be implemented by
task entries (see 9.1).

3.10 Access Types

A value of an access type (an access value) provides indirect access to the object or subprogram it
designates. Depending on its type, an access value can designate either subprograms, objects created
by allocators (see 4.8), or more generally aliased objects of an appropriate type.

Syntax

access_type_definition ::=
[null_exclusion] access_to_object_definition
| [null_exclusion] access_to_subprogram_definition
access_to_object_definition ::=
access [general_access_maodifier] subtype_indication

general_access_modifier ::= all | constant
access_to_subprogram_definition ::=

access [protected] procedure parameter_profile
| access [protected] function parameter_and_result_profile

null_exclusion ::= not null
access_definition ::=
[null_exclusion] access [constant] subtype mark

| [null_exclusion] access [protected] procedure parameter_profile
| [null_exclusion] access [protected] function parameter_and_result_profile

Static Semantics

There are two kinds of access types, access-to-object types, whose values designate objects, and
access-to-subprogram types, whose values designate subprograms. Associated with an access-to-
object type is a storage pool; several access types may share the same storage pool. All descendants of
an access type share the same storage pool. A storage pool is an area of storage used to hold
dynamically allocated objects (called pool elements) created by allocators; storage pools are described
further in 13.11, “Storage Management”.

Access-to-object types are further subdivided into pool-specific access types, whose values can
designate only the elements of their associated storage pool, and general access types, whose values
can designate the elements of any storage pool, as well as aliased objects created by declarations
rather than allocators, and aliased subcomponents of other objects.

A view of an object is defined to be aliased if it is defined by an object_declaration, component_-
definition, parameter_specification, or extended_return_object_declaration with the reserved word
aliased, or by a renaming of an aliased view. In addition, the dereference of an access-to-object value
denotes an aliased view, as does a view conversion (see 4.6) of an aliased view. The current instance
of an immutably limited type (see 7.5) is defined to be aliased. Finally, a formal parameter or generic
formal object of a tagged type is defined to be aliased. Aliased views are the ones that can be
designated by an access value.

An access_to_object_definition defines an access-to-object type and its first subtype; the subtype_-
indication defines the designated subtype of the access type. If a general_access_modifier appears,
then the access type is a general access type. If the modifier is the reserved word constant, then the
type is an access-to-constant type; a designated object cannot be updated through a value of such a

75 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

type. If the modifier is the reserved word all, then the type is an access-to-variable type; a designated
object can be both read and updated through a value of such a type. If no general_access_modifier
appears in the access_to_object_definition, the access type is a pool-specific access-to-variable type.

An access_to_subprogram_definition defines an access-to-subprogram type and its first subtype; the
parameter_profile or parameter_and_result_profile defines the designated profile of the access type.
There is a calling convention associated with the designated profile; only subprograms with this
calling convention can be designated by values of the access type. By default, the calling convention
is “protected” if the reserved word protected appears, and “Ada” otherwise. See Annex B for how to
override this default.

An access_definition defines an anonymous general access type or an anonymous access-to-
subprogram type. For a general access type, the subtype_mark denotes its designated subtype; if the
general_access_modifier constant appears, the type is an access-to-constant type; otherwise, it is an
access-to-variable type. For an access-to-subprogram type, the parameter_profile or parameter_-
and_result_profile denotes its designated profile.

For each access type, there is a null access value designating no entity at all, which can be obtained by
(implicitly) converting the literal null to the access type. The null value of an access type is the
default initial value of the type. Nonnull values of an access-to-object type are obtained by evaluating
an allocator, which returns an access value designating a newly created object (see 3.10.2), or in the
case of a general access-to-object type, evaluating an attribute reference for the Access or
Unchecked Access attribute of an aliased view of an object. Nonnull values of an access-to-
subprogram type are obtained by evaluating an attribute_reference for the Access attribute of a
nonintrinsic subprogram.

A null_exclusion in a construct specifies that the null value does not belong to the access subtype
defined by the construct, that is, the access subtype excludes null. In addition, the anonymous access
subtype defined by the access_definition for a controlling access parameter (see 3.9.2) excludes null.
Finally, for a subtype indication without a null_exclusion, the subtype denoted by the
subtype_indication excludes null if and only if the subtype denoted by the subtype mark in the
subtype_indication excludes null.

All subtypes of an access-to-subprogram type are constrained. The first subtype of a type defined by
an access_definition or an access_to_object_definition is unconstrained if the designated subtype is
an unconstrained array or discriminated subtype; otherwise, it is constrained.

Legality Rules

If a subtype_indication, discriminant_specification, parameter_specification, parameter_and_-
result_profile, object_renaming_declaration, or formal_object_declaration has a null_exclusion, the
subtype_mark in that construct shall denote an access subtype that does not exclude null.

Dynamic Semantics

A composite_constraint is compatible with an unconstrained access subtype if it is compatible with
the designated subtype. A null_exclusion is compatible with any access subtype that does not exclude
null. An access value satisfies a composite_constraint of an access subtype if it equals the null value
of its type or if it designates an object whose value satisfies the constraint. An access value satisfies an
exclusion of the null value if it does not equal the null value of its type.

The elaboration of an access_type_definition creates the access type and its first subtype. For an
access-to-object type, this elaboration includes the elaboration of the subtype_indication, which
creates the designated subtype.

The elaboration of an access_definition creates an anonymous access type.

NOTES
83 Access values are called “pointers” or “references” in some other languages.

© ISO/IEC 2012 — All rights reserved 76

ISO/IEC 8652:DIS

84 Each access-to-object type has an associated storage pool; several access types can share the same pool. An object
can be created in the storage pool of an access type by an allocator (see 4.8) for the access type. A storage pool
(roughly) corresponds to what some other languages call a “heap.” See 13.11 for a discussion of pools.

85 Only index_constraints and discriminant_constraints can be applied to access types (see 3.6.1 and 3.7.1).

Examples

Examples of access-to-object types:

type Peripheral Ref is not null access Peripheral; -- see3.8./
type Binop Ptr is access all Binary Operation'Class;
- - general access-to-class-wide, see 3.9.1

Example of an access subtype:
subtype Drum Ref is Peripheral Ref (Drum); -- see3.8./

Example of an access-to-subprogram type:

type Message Procedure is access procedure (M : in String := "Error!");
procedure Default Message Procedure(M : in String) ;
Give Message : Message Procedure := Default Message Procedure'Access;

procedure Other Procedure(M : in String) ;

Give Message := Other Procedure'Access;
Give Message ("File not found."); -- call with parameter (.all is optional)
Give Message.all; - - call with no parameters

3.10.1 Incomplete Type Declarations

There are no particular limitations on the designated type of an access type. In particular, the type of a
component of the designated type can be another access type, or even the same access type. This
permits mutually dependent and recursive access types. An incomplete_type_declaration can be used
to introduce a type to be used as a designated type, while deferring its full definition to a subsequent
full_type_declaration.

Syntax

incomplete_type declaration ::= type defining_identifier [discriminant_part] [is tagged];
Static Semantics

An incomplete_type declaration declares an incomplete view of a type and its first subtype; the first
subtype is unconstrained if a discriminant_part appears. If the incomplete_type_declaration includes
the reserved word tagged, it declares a tagged incomplete view. An incomplete view of a type is a
limited view of the type (see 7.5).

Given an access type 4 whose designated type 7 is an incomplete view, a dereference of a value of
type A also has this incomplete view except when:

e it occurs within the immediate scope of the completion of 7, or

e it occurs within the scope of a nonlimited_with_clause that mentions a library package in
whose visible part the completion of 7 is declared, or

e it occurs within the scope of the completion of 7 and 7T is an incomplete view declared by an
incomplete_type_declaration.

In these cases, the dereference has the view of 7 visible at the point of the dereference.

Similarly, if a subtype _mark denotes a subtype_declaration defining a subtype of an incomplete
view T, the subtype_mark denotes an incomplete view except under the same three circumstances
given above, in which case it denotes the view of T visible at the point of the subtype_mark.

77 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Legality Rules

An incomplete_type_declaration requires a completion, which shall be a type_declaration other than
an incomplete_type_declaration. If the incomplete_type declaration occurs immediately within
either the visible part of a package_specification or a declarative_part, then the type declaration
shall occur later and immediately within this visible part or declarative_part. If the incomplete_-
type_declaration occurs immediately within the private part of a given package_specification, then
the type_declaration shall occur later and immediately within either the private part itself, or the
declarative_part of the corresponding package_body.

If an incomplete_type_declaration includes the reserved word tagged, then a type_declaration that
completes it shall declare a tagged type. If an incomplete_type declaration has a known_-
discriminant_part, then a type_declaration that completes it shall have a fully conforming (explicit)
known_discriminant_part (see 6.3.1). If an incomplete_type_declaration has no discriminant_part
(or an unknown_discriminant_part), then a corresponding type_declaration is nevertheless allowed
to have discriminants, either explicitly, or inherited via derivation.

A name that denotes an incomplete view of a type may be used as follows:
e as the subtype_mark in the subtype_indication of an access_to_object_definition; the only

form of constraint allowed in this subtype_indication is a discriminant_constraint (a
null_exclusion is not allowed);

e as the subtype mark in the subtype indication of a subtype declaration; the subtype -
indication shall not have a null_exclusion or a constraint;

e as the subtype_mark in an access_definition for an access-to-object type;

e as the subtype_mark defining the subtype of a parameter or result in a profile occurring
within a basic_declaration;

e as a generic actual parameter whose corresponding generic formal parameter is a formal
incomplete type (see 12.5.1).

If such a name denotes a tagged incomplete view, it may also be used:

e as the subtype_mark defining the subtype of a parameter in the profile for a
subprogram_body, entry_body, or accept_statement;

e as the prefix of an attribute_reference whose attribute_designator is Class; such an
attribute_reference is restricted to the uses allowed here; it denotes a tagged incomplete
view.

If any of the above uses occurs as part of the declaration of a primitive subprogram of the incomplete
view, and the declaration occurs immediately within the private part of a package, then the completion
of the incomplete view shall also occur immediately within the private part; it shall not be deferred to
the package body.

No other uses of a name that denotes an incomplete view of a type are allowed.

A prefix that denotes an object shall not be of an incomplete view. An actual parameter in a call shall
not be of an untagged incomplete view. The result object of a function call shall not be of an
incomplete view. A prefix shall not denote a subprogram having a formal parameter of an untagged
incomplete view, nor a return type that is an incomplete view.

Dynamic Semantics
The elaboration of an incomplete _type declaration has no effect.

NOTES

86 Within a declarative_part, an incomplete_type_declaration and a corresponding full_type_declaration cannot be
separated by an intervening body. This is because a type has to be completely defined before it is frozen, and a body
freezes all types declared prior to it in the same declarative_part (see 13.14).

87 A name that denotes an object of an incomplete view is defined to be of a limited type. Hence, the target of an
assignment statement cannot be of an incomplete view.

© ISO/IEC 2012 — All rights reserved 78

ISO/IEC 8652:DIS

Examples

Example of a recursive type:

type Cell; -- incomplete type declaration
type Link is access Cell;

type Cell is

record
Value : Integer;
Succ : Link;
Pred : Link;

end record;

Head : Link = new Cell' (0, null, null);
Next : Link := Head.Succ;

Examples of mutually dependent access types:

type Person(<>); - - incomplete type declaration
type Car is tagged; -- incomplete type declaration
type Person Name is access Person;
type Car Name is access all Car'Class;
type Car is tagged
record
Number : Integer;
Owner : Person Name;

end record;

type Person(Sex : Gender) is

record
Name : String(1l .. 20);
Birth : Date;
Age : Integer range 0 .. 130;
Vehicle : Car_Name;
case Sex is
when M => Wife : Person Name (Sex => F);
when F => Husband : Person Name (Sex => M) ;
end case;
end record;
My Car, Your Car, Next Car : Car_ Name := new Car; --see4.8
George : Person Name := new Person (M) ;
George.Vehicle := Your Car;

3.10.2 Operations of Access Types

The attribute Access is used to create access values designating aliased objects and nonintrinsic
subprograms. The “accessibility” rules prevent dangling references (in the absence of uses of certain
unchecked features — see Section 13).

Name Resolution Rules

For an attribute_reference with attribute_designator Access (or Unchecked Access — see 13.10),
the expected type shall be a single access type 4 such that:

e A is an access-to-object type with designated type D and the type of the prefix is D'Class or is
covered by D, or

e A is an access-to-subprogram type whose designated profile is type conformant with that of
the prefix.

The prefix of such an attribute_reference is never interpreted as an implicit_dereference or a
parameterless function_call (see 4.1.4). The designated type or profile of the expected type of the
attribute_reference is the expected type or profile for the prefix.

Static Semantics

The accessibility rules, which prevent dangling references, are written in terms of accessibility levels,
which reflect the run-time nesting of masters. As explained in 7.6.1, a master is the execution of a

79 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

certain construct, such as a subprogram_body. An accessibility level is deeper than another if it is
more deeply nested at run time. For example, an object declared local to a called subprogram has a
deeper accessibility level than an object declared local to the calling subprogram. The accessibility
rules for access types require that the accessibility level of an object designated by an access value be
no deeper than that of the access type. This ensures that the object will live at least as long as the
access type, which in turn ensures that the access value cannot later designate an object that no longer
exists. The Unchecked Access attribute may be used to circumvent the accessibility rules.

A given accessibility level is said to be statically deeper than another if the given level is known at
compile time (as defined below) to be deeper than the other for all possible executions. In most cases,
accessibility is enforced at compile time by Legality Rules. Run-time accessibility checks are also
used, since the Legality Rules do not cover certain cases involving access parameters and generic
packages.

Each master, and each entity and view created by it, has an accessibility level:

e The accessibility level of a given master is deeper than that of each dynamically enclosing
master, and deeper than that of each master upon which the task executing the given master
directly depends (see 9.3).

e An entity or view defined by a declaration and created as part of its elaboration has the same
accessibility level as the innermost master of the declaration except in the cases of renaming
and derived access types described below. Other than for an explicitly aliased parameter, a
formal parameter of a callable entity has the same accessibility level as the master
representing the invocation of the entity.

e The accessibility level of a view of an object or subprogram defined by a
renaming_declaration is the same as that of the renamed view.

e The accessibility level of a view conversion, qualified_expression, or parenthesized
expression, is the same as that of the operand.

e The accessibility level of a conditional_expression is the accessibility level of the evaluated
dependent_expression.

e The accessibility level of an aggregate that is used (in its entirety) to directly initialize part of
an object is that of the object being initialized. In other contexts, the accessibility level of an
aggregate is that of the innermost master that evaluates the aggregate.

e The accessibility level of the result of a function call is that of the master of the function call,
which is determined by the point of call as follows:

o Ifthe result is used (in its entirety) to directly initialize part of an object, the master is that
of the object being initialized. In the case where the initialized object is a coextension (see
below) that becomes a coextension of another object, the master is that of the eventual
object to which the coextension will be transferred.

o If the result is of an anonymous access type and is the operand of an explicit conversion,
the master is that of the target type of the conversion;

o If the result is of an anonymous access type and defines an access discriminant, the master
is the same as that for an object created by an anonymous allocator that defines an access
discriminant (even if the access result is of an access-to-subprogram type).

o If the call itself defines the result of a function to which one of the above rules applies,
these rules are applied recursively;

e In other cases, the master of the call is that of the innermost master that evaluates the
function call.

In the case of a call to a function whose result type is an anonymous access type, the
accessibility level of the type of the result of the function call is also determined by the point
of call as described above.

© ISO/IEC 2012 — All rights reserved 80

ISO/IEC 8652:DIS

Within a return statement, the accessibility level of the return object is that of the execution of
the return statement. If the return statement completes normally by returning from the
function, then prior to leaving the function, the accessibility level of the return object changes
to be a level determined by the point of call, as does the level of any coextensions (see below)
of the return object.

The accessibility level of a derived access type is the same as that of its ultimate ancestor.

The accessibility level of the anonymous access type defined by an access_definition of an
object_renaming_declaration is the same as that of the renamed view.

The accessibility level of the anonymous access type of an access discriminant in the
subtype_indication or qualified_expression of an allocator, or in the expression or return_-
subtype_indication of a return statement is determined as follows:

o If the value of the access discriminant is determined by a discriminant_association in a
subtype_indication, the accessibility level of the object or subprogram designated by the
associated value (or library level if the value is null);

o If the value of the access discriminant is determined by a default_expression in the
declaration of the discriminant, the level of the object or subprogram designated by the
associated value (or library level if null);

o If the wvalue of the access discriminant is determined by a
record_component_association in an aggregate, the accessibility level of the object or
subprogram designated by the associated value (or library level if the value is null);

o In other cases, where the value of the access discriminant is determined by an object with
an unconstrained nominal subtype, the accessibility level of the object.

The accessibility level of the anonymous access type of an access discriminant in any other
context is that of the enclosing object.

The accessibility level of the anonymous access type of an access parameter specifying an
access-to-object type is the same as that of the view designated by the actual (or library-level
if the actual is null).

The accessibility level of the anonymous access type of an access parameter specifying an
access-to-subprogram type is deeper than that of any master; all such anonymous access types
have this same level.

The accessibility level of the type of a stand-alone object of an anonymous access-to-object
type is the same as the accessibility level of the type of the access value most recently
assigned to the object; accessibility checks ensure that this is never deeper than that of the
declaration of the stand-alone object.

The accessibility level of an explicitly aliased (see 6.1) formal parameter in a function body is
determined by the point of call; it is the same level that the return object ultimately will have.

The accessibility level of an object created by an allocator is the same as that of the access
type, except for an allocator of an anonymous access type (an anonymous allocator) in
certain contexts, as follows: For an anonymous allocator that defines the result of a function
with an access result, the accessibility level is determined as though the allocator were in
place of the call of the function; in the special case of a call that is the operand of a type
conversion, the level is that of the target access type of the conversion. For an anonymous
allocator defining the value of an access parameter, the accessibility level is that of the
innermost master of the call. For an anonymous allocator whose type is that of a stand-alone
object of an anonymous access-to-object type, the accessibility level is that of the declaration
of the stand-alone object. For one defining an access discriminant, the accessibility level is
determined as follows:

o for an allocator used to define the discriminant of an object, the level of the object;

o for an allocator used to define the constraint in a subtype_indication in any other context,
the level of the master that elaborates the subtype_indication.

© ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

In the first case, the allocated object is said to be a coextension of the object whose
discriminant designates it, as well as of any object of which the discriminated object is itself a
coextension or subcomponent. If the allocated object is a coextension of an anonymous object
representing the result of an aggregate or function call that is used (in its entirety) to directly
initialize a part of an object, after the result is assigned, the coextension becomes a
coextension of the object being initialized and is no longer considered a coextension of the
anonymous object. All coextensions of an object (which have not thus been transfered by
such an initialization) are finalized when the object is finalized (see 7.6.1).

e Within a return statement, the accessibility level of the anonymous access type of an access
result is that of the master of the call.

e The accessibility level of a view of an object or subprogram designated by an access value is
the same as that of the access type.

e The accessibility level of a component, protected subprogram, or entry of (a view of) a
composite object is the same as that of (the view of) the composite object.

In the above rules, the operand of a view conversion, parenthesized expression or
qualified_expression is considered to be used in a context if the view conversion, parenthesized
expression or qualified_expression itself is used in that context. Similarly, a dependent expression
of a conditional_expression is considered to be used in a context if the conditional_expression itself
is used in that context.

One accessibility level is defined to be statically deeper than another in the following cases:

e For a master that is statically nested within another master, the accessibility level of the inner
master is statically deeper than that of the outer master.

e The accessibility level of the anonymous access type of an access parameter specifying an
access-to-subprogram type is statically deeper than that of any master; all such anonymous
access types have this same level.

e The statically deeper relationship does not apply to the accessibility level of the anonymous
type of an access parameter specifying an access-to-object type nor does it apply to a
descendant of a generic formal type; that is, such an accessibility level is not considered to be
statically deeper, nor statically shallower, than any other.

e The statically deeper relationship does not apply to the accessibility level of the type of a
stand-alone object of an anonymous access-to-object type; that is, such an accessibility level
is not considered to be statically deeper, nor statically shallower, than any other.

e Inside a return statement that applies to a function F, when determining whether the
accessibility level of an explicitly aliased parameter of F is statically deeper than the level of
the return object of £, the level of the return object is considered to be the same as that of the
level of the explicitly aliased parameter; for statically comparing with the level of other
entities, an explicitly aliased parameter of ' is considered to have the accessibility level of the
body of F.

e For determining whether a level is statically deeper than the level of the anonymous access
type of an access result of a function, when within a return statement that applies to the
function, the level of the master of the call is presumed to be the same as that of the level of
the master that elaborated the function body.

e For determining whether one level is statically deeper than another when within a generic
package body, the generic package is presumed to be instantiated at the same level as where it
was declared; run-time checks are needed in the case of more deeply nested instantiations.

e For determining whether one level is statically deeper than another when within the
declarative region of a type_declaration, the current instance of the type is presumed to be an
object created at a deeper level than that of the type.

The accessibility level of all library units is called the /ibrary level; a library-level declaration or
entity is one whose accessibility level is the library level.

© ISO/IEC 2012 — All rights reserved 82

ISO/IEC 8652:DIS

The following attribute is defined for a prefix X that denotes an aliased view of an object:

X'Access

X'Access yields an access value that designates the object denoted by X. The type of
X'Access is an access-to-object type, as determined by the expected type. The expected
type shall be a general access type. X shall denote an aliased view of an object, including
possibly the current instance (see 8.6) of a limited type within its definition, or a formal
parameter or generic formal object of a tagged type. The view denoted by the prefix X
shall satisfy the following additional requirements, presuming the expected type for
X'Access is the general access type 4 with designated type D:

e If 4 is an access-to-variable type, then the view shall be a variable; on the other
hand, if 4 is an access-to-constant type, the view may be either a constant or a
variable.

e The view shall not be a subcomponent that depends on discriminants of an object
unless the object is known to be constrained.

e If 4 is a named access type and D is a tagged type, then the type of the view shall
be covered by D; if 4 is anonymous and D is tagged, then the type of the view
shall be either D'Class or a type covered by D; if D is untagged, then the type of
the view shall be D, and either:

o the designated subtype of 4 shall statically match the nominal subtype of the
View; or

e D shall be discriminated in its full view and unconstrained in any partial
view, and the designated subtype of A shall be unconstrained. For the
purposes of determining within a generic body whether D is unconstrained in
any partial view, a discriminated subtype is considered to have a constrained
partial view if it is a descendant of an untagged generic formal private or
derived type.

e The accessibility level of the view shall not be statically deeper than that of the
access type 4.

In addition to the places where Legality Rules normally apply (see 12.3), these
requirements apply also in the private part of an instance of a generic unit.

A check is made that the accessibility level of X is not deeper than that of the access type
A. If this check fails, Program_Error is raised.

If the nominal subtype of X does not statically match the designated subtype of 4, a view
conversion of X to the designated subtype is evaluated (which might raise
Constraint_Error — see 4.6) and the value of X'Access designates that view.

The following attribute is defined for a prefix P that denotes a subprogram:

P'Access

P'Access yields an access value that designates the subprogram denoted by P. The type of
P'Access is an access-to-subprogram type (S), as determined by the expected type. The
accessibility level of P shall not be statically deeper than that of S. In addition to the
places where Legality Rules normally apply (see 12.3), this rule applies also in the private
part of an instance of a generic unit. The profile of P shall be subtype conformant with the
designated profile of S, and shall not be Intrinsic. If the subprogram denoted by P is
declared within a generic unit, and the expression P'Access occurs within the body of that
generic unit or within the body of a generic unit declared within the declarative region of
the generic unit, then the ultimate ancestor of S shall be either a nonformal type declared
within the generic unit or an anonymous access type of an access parameter.

Legality Rules

An expression is said to have distributed accessibility if it is

¢ a conditional_expression (see 4.5.7); or

e a view conversion, qualified_expression, or parenthesized expression whose operand has
distributed accessibility.

83

© ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

The statically deeper relationship does not apply to the accessibility level of an expression having
distributed accessibility; that is, such an accessibility level is not considered to be statically deeper,
nor statically shallower, than any other.

Any static accessibility requirement that is imposed on an expression that has distributed accessibility
(or on its type) is instead imposed on the dependent expressions of the underlying
conditional_expression. This rule is applied recursively if a dependent expression also has
distributed accessibility.

NOTES

88 The Unchecked Access attribute yields the same result as the Access attribute for objects, but has fewer restrictions
(see 13.10). There are other predefined operations that yield access values: an allocator can be used to create an object,
and return an access value that designates it (see 4.8); evaluating the literal null yields a null access value that
designates no entity at all (see 4.2).

89 The predefined operations of an access type also include the assignment operation, qualification, and membership
tests. Explicit conversion is allowed between general access types with matching designated subtypes; explicit
conversion is allowed between access-to-subprogram types with subtype conformant profiles (see 4.6). Named access
types have predefined equality operators; anonymous access types do not, but they can use the predefined equality
operators for universal access (see 4.5.2).

90 The object or subprogram designated by an access value can be named with a dereference, either an explicit_-
dereference or an implicit_dereference. See 4.1.

91 A call through the dereference of an access-to-subprogram value is never a dispatching call.

92 The Access attribute for subprograms and parameters of an anonymous access-to-subprogram type may together be
used to implement “downward closures” — that is, to pass a more-nested subprogram as a parameter to a less-nested
subprogram, as might be appropriate for an iterator abstraction or numerical integration. Downward closures can also
be implemented using generic formal subprograms (see 12.6). Note that Unchecked Access is not allowed for
subprograms.

93 Note that using an access-to-class-wide tagged type with a dispatching operation is a potentially more structured
alternative to using an access-to-subprogram type.

94 An implementation may consider two access-to-subprogram values to be unequal, even though they designate the
same subprogram. This might be because one points directly to the subprogram, while the other points to a special
prologue that performs an Elaboration Check and then jumps to the subprogram. See 4.5.2.

Examples
Example of use of the Access attribute:
Martha : Person Name := new Person(F); --see 3.10.1
Cars : array (1..2) of aliased Car;

Martha.Vehicle := Cars(1l) 'Access;
George.Vehicle Cars (2) 'Access;

© ISO/IEC 2012 — All rights reserved 84

ISO/IEC 8652:DIS

3.11 Declarative Parts

A declarative_part contains declarative_items (possibly none).

Syntax
declarative_part ::= {declarative_item}

declarative_item ::=
basic_declarative_item | body

basic_declarative_item ::=
basic_declaration | aspect_clause | use_clause

body ::= proper_body | body_stub

proper_body ::=
subprogram_body | package_body | task_body | protected_body

Static Semantics

The list of declarative items of a declarative part is called the declaration list of the
declarative_part.

Dynamic Semantics

The elaboration of a declarative_part consists of the elaboration of the declarative_items, if any, in
the order in which they are given in the declarative_part.

An elaborable construct is in the elaborated state after the normal completion of its elaboration. Prior
to that, it is not yet elaborated.

For a construct that attempts to use a body, a check (Elaboration_Check) is performed, as follows:

e For a call to a (non-protected) subprogram that has an explicit body, a check is made that the
body is already elaborated. This check and the evaluations of any actual parameters of the call
are done in an arbitrary order.

e For a call to a protected operation of a protected type (that has a body — no check is
performed if the protected type is imported — see B.1), a check is made that the
protected_body is already elaborated. This check and the evaluations of any actual
parameters of the call are done in an arbitrary order.

e For the activation of a task, a check is made by the activator that the task_body is already
elaborated. If two or more tasks are being activated together (see 9.2), as the result of the
elaboration of a declarative_part or the initialization for the object created by an allocator,
this check is done for all of them before activating any of them.

e For the instantiation of a generic unit that has a body, a check is made that this body is
already elaborated. This check and the evaluation of any explicit_generic_actual_parameters
of the instantiation are done in an arbitrary order.

The exception Program_Error is raised if any of these checks fails.

3.11.1 Completions of Declarations

Declarations sometimes come in two parts. A declaration that requires a second part is said to require
completion. The second part is called the completion of the declaration (and of the entity declared),
and is either another declaration, a body, or a pragma. A body is a body, an entry body, a
null_procedure_declaration or an expression_function_declaration that completes another
declaration, or a renaming-as-body (see 8.5.4).

85 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules

A construct that can be a completion is interpreted as the completion of a prior declaration only if:
e The declaration and the completion occur immediately within the same declarative region;

e The defining name or defining_program_unit_name in the completion is the same as in the
declaration, or in the case of a pragma, the pragma applies to the declaration;

o If the declaration is overloadable, then the completion either has a type-conformant profile, or
is a pragma.

Legality Rules

An implicit declaration shall not have a completion. For any explicit declaration that is specified to
require completion, there shall be a corresponding explicit completion, unless the declared entity is
imported (see B.1).

At most one completion is allowed for a given declaration. Additional requirements on completions
appear where each kind of completion is defined.

A type is completely defined at a place that is after its full type definition (if it has one) and after all of
its subcomponent types are completely defined. A type shall be completely defined before it is frozen
(see 13.14 and 7.3).

NOTES

95 Completions are in principle allowed for any kind of explicit declaration. However, for some kinds of declaration,
the only allowed completion is an implementation-defined pragma, and implementations are not required to have any
such pragmas.

96 There are rules that prevent premature uses of declarations that have a corresponding completion. The
Elaboration_Checks of 3.11 prevent such uses at run time for subprograms, protected operations, tasks, and generic
units. The rules of 13.14, “Freezing Rules” prevent, at compile time, premature uses of other entities such as private
types and deferred constants.

© ISO/IEC 2012 — All rights reserved 86

ISO/IEC 8652:DIS

Section 4: Names and Expressions

The rules applicable to the different forms of hame and expression, and to their evaluation, are given
in this section.

4.1 Names

Names can denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can
also denote objects or subprograms designated by access values; the results of type_conversions or
function_calls; subcomponents and slices of objects and values; protected subprograms, single entries,
entry families, and entries in families of entries. Finally, names can denote attributes of any of the
foregoing.

Syntax

name ::=
direct_name | explicit_dereference
| indexed_component | slice
| selected_component | attribute_reference
| type_conversion | function_call
| character_literal | qualified_expression
| generalized_reference | generalized_indexing

direct_name ::= identifier | operator_symbol
prefix ::= name | implicit_dereference
explicit_dereference ::= name.all

implicit_dereference ::= name

Certain forms of name (indexed_components, selected_components, slices, and
attribute_references) include a prefix that is either itself a name that denotes some related entity, or
an implicit_dereference of an access value that designates some related entity.

Name Resolution Rules

The name in a dereference (either an implicit_dereference or an explicit_dereference) is expected to
be of any access type.

Static Semantics

If the type of the name in a dereference is some access-to-object type 7, then the dereference denotes
a view of an object, the nominal subtype of the view being the designated subtype of 7. If the
designated subtype has unconstrained discriminants, the (actual) subtype of the view is constrained by
the values of the discriminants of the designated object, except when there is a partial view of the type
of the designated subtype that does not have discriminants, in which case the dereference is not
constrained by its discriminant values.

If the type of the name in a dereference is some access-to-subprogram type S, then the dereference
denotes a view of a subprogram, the profile of the view being the designated profile of S.
Dynamic Semantics

The evaluation of a name determines the entity denoted by the name. This evaluation has no other
effect for a name that is a direct_name or a character_literal.

The evaluation of a name that has a prefix includes the evaluation of the prefix. The evaluation of a
prefix consists of the evaluation of the name or the implicit_dereference. The prefix denotes the
entity denoted by the name or the implicit_dereference.

87 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

The evaluation of a dereference consists of the evaluation of the name and the determination of the
object or subprogram that is designated by the value of the name. A check is made that the value of
the name is not the null access value. Constraint Error is raised if this check fails. The dereference
denotes the object or subprogram designated by the value of the name.

Examples
Examples of direct names:
Pi -- the direct name of a number (see 3.3.2)
Limit -- the direct name of a constant (see 3.3.1)
Count -- the direct name of a scalar variable (see 3.3.1)
Board -- the direct name of an array variable (see 3.6.1)
Matrix -- the direct name of a type (see 3.6)
Random -- the direct name of a function (see 6.1)
Error -- the direct name of an exception (see 11.1)
Examples of dereferences:
Next Car.all - - explicit dereference denoting the object designated by
- - the access variable Next_Car (see 3.10.1)
Next Car.Owner -- selected component with implicit dereference;

-- same as Next_Car.all. Owner

4.1.1 Indexed Components

An indexed_component denotes either a component of an array or an entry in a family of entries.

Syntax

indexed_component ::= prefix(expression {, expression})

Name Resolution Rules

The prefix of an indexed_component with a given number of expressions shall resolve to denote an
array (after any implicit dereference) with the corresponding number of index positions, or shall
resolve to denote an entry family of a task or protected object (in which case there shall be only one
expression).

The expected type for each expression is the corresponding index type.

Static Semantics

When the prefix denotes an array, the indexed_component denotes the component of the array with
the specified index value(s). The nominal subtype of the indexed_component is the component
subtype of the array type.

When the prefix denotes an entry family, the indexed_component denotes the individual entry of the
entry family with the specified index value.

Dynamic Semantics

For the evaluation of an indexed component, the prefix and the expressions are evaluated in an
arbitrary order. The value of each expression is converted to the corresponding index type. A check
is made that each index value belongs to the corresponding index range of the array or entry family
denoted by the prefix. Constraint Error is raised if this check fails.

Examples
Examples of indexed components:
My Schedule (Sat) - - a component of a one-dimensional array (see 3.6.1)
Page (10) - - a component of a one-dimensional array (see 3.6)
Board(M, J + 1) - - a component of a two-dimensional array (see 3.6.1)
Page (10) (20) - - a component of a component (see 3.6)
Request (Medium) - - an entry in a family of entries (see 9.1)
Next Frame (L) (M, N) -- acomponent of a function call (see 6.1)

© ISO/IEC 2012 — All rights reserved 88

ISO/IEC 8652:DIS

NOTES

1 Notes on the examples: Distinct notations are used for components of multidimensional arrays (such as Board) and
arrays of arrays (such as Page). The components of an array of arrays are arrays and can therefore be indexed. Thus
Page(10)(20) denotes the 20th component of Page(10). In the last example Next Frame(L) is a function call returning
an access value that designates a two-dimensional array.

4.1.2 Slices

A slice denotes a one-dimensional array formed by a sequence of consecutive components of a one-
dimensional array. A slice of a variable is a variable; a slice of a constant is a constant; a slice of a
value is a value.

Syntax
slice ::= prefix(discrete_range)
Name Resolution Rules
The prefix of a slice shall resolve to denote a one-dimensional array (after any implicit dereference).

The expected type for the discrete_range of a slice is the index type of the array type.

Static Semantics

A slice denotes a one-dimensional array formed by the sequence of consecutive components of the
array denoted by the prefix, corresponding to the range of values of the index given by the
discrete_range.

The type of the slice is that of the prefix. Its bounds are those defined by the discrete_range.

Dynamic Semantics

For the evaluation of a slice, the prefix and the discrete_range are evaluated in an arbitrary order. If
the slice is not a null slice (a slice where the discrete_range is a null range), then a check is made
that the bounds of the discrete_range belong to the index range of the array denoted by the prefix.
Constraint_Error is raised if this check fails.

NOTES

2 A slice is not permitted as the prefix of an Access attribute_reference, even if the components or the array as a
whole are aliased. See 3.10.2.

3 For a one-dimensional array A, the slice A(N .. N) denotes an array that has only one component; its type is the type
of A. On the other hand, A(N) denotes a component of the array A and has the corresponding component type.

Examples
Examples of slices:

Stars(l .. 15) -- aslice of 15 characters (see 3.6.3)

Page (10 .. 10 + Size) -- asliceof]l + Size components (see 3.6)

Page (L) (A .. B) -- aslice of the array Page(L) (see 3.6)

Stars (1l .. 0) - - anull slice (see 3.6.3)

My Schedule (Weekday) -- bounds given by subtype (see 3.6.1 and 3.5.1)
Stars (5 .. 15) (K) - - same as Stars(K) (see 3.6.3)

-- providedthatKisin5 .. 15

4.1.3 Selected Components

Selected_components are used to denote components (including discriminants), entries, entry
families, and protected subprograms; they are also used as expanded names as described below.

Syntax
selected _component ::= prefix . selector_name
selector_name ::= identifier | character_literal | operator_symbol

89 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules

A selected_component is called an expanded name if, according to the visibility rules, at least one
possible interpretation of its prefix denotes a package or an enclosing named construct (directly, not
through a subprogram_renaming_declaration or generic_renaming_declaration).

A selected_component that is not an expanded name shall resolve to denote one of the following:
e A component (including a discriminant):

The prefix shall resolve to denote an object or value of some non-array composite type (after
any implicit dereference). The selector_ name shall resolve to denote a
discriminant_specification of the type, or, unless the type is a protected type, a
component_declaration of the type. The selected_component denotes the corresponding
component of the object or value.

e A single entry, an entry family, or a protected subprogram:

The prefix shall resolve to denote an object or value of some task or protected type (after any
implicit dereference). The selector_name shall resolve to denote an entry_declaration or
subprogram_declaration occurring (implicitly or explicitly) within the visible part of that
type. The selected_component denotes the corresponding entry, entry family, or protected
subprogram.

e A view of a subprogram whose first formal parameter is of a tagged type or is an access
parameter whose designated type is tagged:

The prefix (after any implicit dereference) shall resolve to denote an object or value of a
specific tagged type T or class-wide type 7T'Class. The selector_name shall resolve to denote
a view of a subprogram declared immediately within the declarative region in which an
ancestor of the type T is declared. The first formal parameter of the subprogram shall be of
type T, or a class-wide type that covers 7, or an access parameter designating one of these
types. The designator of the subprogram shall not be the same as that of a component of the
tagged type visible at the point of the selected_component. The subprogram shall not be an
implicitly declared primitive operation of type T that overrides an inherited subprogram
implemented by an entry or protected subprogram visible at the point of the
selected_component. The selected_component denotes a view of this subprogram that
omits the first formal parameter. This view is called a prefixed view of the subprogram, and
the prefix of the selected_component (after any implicit dereference) is called the prefix of
the prefixed view.

An expanded name shall resolve to denote a declaration that occurs immediately within a named
declarative region, as follows:

e The prefix shall resolve to denote either a package (including the current instance of a generic
package, or a rename of a package), or an enclosing named construct.

e The selector_name shall resolve to denote a declaration that occurs immediately within the
declarative region of the package or enclosing construct (the declaration shall be visible at the
place of the expanded name — see 8.3). The expanded name denotes that declaration.

o If the prefix does not denote a package, then it shall be a direct_name or an expanded name,
and it shall resolve to denote a program unit (other than a package), the current instance of a
type, a block_statement, a loop_statement, or an accept_statement (in the case of an
accept_statement or entry_body, no family index is allowed); the expanded name shall
occur within the declarative region of this construct. Further, if this construct is a callable
construct and the prefix denotes more than one such enclosing callable construct, then the
expanded name is ambiguous, independently of the selector_name.

Legality Rules

For a subprogram whose first parameter is an access parameter, the prefix of any prefixed view shall
denote an aliased view of an object.

© ISO/IEC 2012 — All rights reserved 90

ISO/IEC 8652:DIS

For a subprogram whose first parameter is of mode in out or out, or of an anonymous access-to-
variable type, the prefix of any prefixed view shall denote a variable.
Dynamic Semantics

The evaluation of a selected_component includes the evaluation of the prefix.

For a selected_component that denotes a component of a variant, a check is made that the values of
the discriminants are such that the value or object denoted by the prefix has this component. The
exception Constraint_Error is raised if this check fails.

Examples
Examples of selected components:
Tomorrow.Month -- arecord component (see 3.8)
Next Car.Owner - - arecord component (see 3.10.1)
Next Car.Owner.Age -- arecord component (see 3.10.1)
- - the previous two lines involve implicit dereferences
Writer.Unit - - arecord component (a discriminant) (see 3.8.1)
Min Cell (H) .Value -- arecord component of the result (see 6.1)
- - of the function call Min_Cell(H)
Cashier.Append - - a prefixed view of a procedure (see 3.9.4)
Control.Seize - - an entry of a protected object (see 9.4)
Pool (K) .Write - - an entry of the task Pool(K) (see 9.4)
Examples of expanded names:
Key Manager.'"<" - - an operator of the visible part of a package (see 7.3.1)
Dot Product.Sum - - avariable declared in a function body (see 6.1)
Buffer.Pool - - avariable declared in a protected unit (see 9.11)
Buffer.Read - - an entry of a protected unit (see 9.11)
Swap . Temp - - avariable declared in a block statement (see 5.6)
Standard.Boolean - - the name of a predefined type (see A.1)

4.1.4 Attributes

An attribute is a characteristic of an entity that can be queried via an attribute_reference or a range_-
attribute_reference.

Syntax
attribute_reference ::= prefix'attribute_designator

attribute_designator ::=
identifier[(static_expression)]
| Access | Delta | Digits | Mod

range_attribute_reference ::= prefix'range_attribute designator
range_attribute_designator ::= Range[(static_expression)]

Name Resolution Rules

In an attribute_reference, if the attribute_designator is for an attribute defined for (at least some)
objects of an access type, then the prefix is never interpreted as an implicit_dereference; otherwise
(and for all range_attribute_references), if the type of the name within the prefix is of an access
type, the prefix is interpreted as an implicit_dereference. Similarly, if the attribute_designator is for
an attribute defined for (at least some) functions, then the prefix is never interpreted as a parameterless
function_call; otherwise (and for all range_attribute_references), if the prefix consists of a name
that denotes a function, it is interpreted as a parameterless function_call.

The expression, if any, in an attribute_designator or range_attribute_designator is expected to be
of any integer type.

91 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Legality Rules

The expression, if any, in an attribute_designator or range_attribute_designator shall be static.

Static Semantics

An attribute_reference denotes a value, an object, a subprogram, or some other kind of program
entity. For an attribute_reference that denotes a value or an object, if its type is scalar, then its
nominal subtype is the base subtype of the type; if its type is tagged, its nominal subtype is the first
subtype of the type; otherwise, its nominal subtype is a subtype of the type without any constraint or
null_exclusion. Similarly, unless explicitly specified otherwise, for an attribute_reference that
denotes a function, when its result type is scalar, its result subtype is the base subtype of the type,
when its result type is tagged, the result subtype is the first subtype of the type, and when the result
type is some other type, the result subtype is a subtype of the type without any constraint or
null_exclusion.

A range_attribute_reference X'Range(N) is equivalent to the range X'First(N) .. X'Last(N), except
that the prefix is only evaluated once. Similarly, X'Range is equivalent to X'First .. X'Last, except that
the prefix is only evaluated once.

Dynamic Semantics

The evaluation of an attribute_reference (or range_attribute_reference) consists of the evaluation of
the prefix.

Implementation Permissions

An implementation may provide implementation-defined attributes; the identifier for an
implementation-defined attribute shall differ from those of the language-defined attributes unless
supplied for compatibility with a previous edition of this International Standard.

NOTES
4 Attributes are defined throughout this International Standard, and are summarized in K.2.

5 In general, the name in a prefix of an attribute_reference (or a range_attribute_reference) has to be resolved
without using any context. However, in the case of the Access attribute, the expected type for the attribute_reference
has to be a single access type, and the resolution of the name can use the fact that the type of the object or the profile of
the callable entity denoted by the prefix has to match the designated type or be type conformant with the designated
profile of the access type.

Examples
Examples of attributes:
Color'First - - minimum value of the enumeration type Color (see 3.5.1)
Rainbow'Base'First -- same as Color'First (see 3.5.1)
Real'Digits - - precision of the type Real (see 3.5.7)
Board'Last (2) - - upper bound of the second dimension of Board (see 3.6.1)
Board'Range (1) - - index range of the first dimension of Board (see 3.6.1)
Pool (K) 'Terminated -- True if task Pool(K) is terminated (see 9.1)
Date'Size - - number of bits for records of type Date (see 3.8)
Message'Address - - address of the record variable Message (see 3.7.1)

4.1.5 User-Defined References

Static Semantics

Given a discriminated type 7, the following type-related operational aspect may be specified:

Implicit Dereference
This aspect is specified by a name that denotes an access discriminant declared for the
type T.

A (view of a) type with a specified Implicit Dereference aspect is a reference type. A reference object
is an object of a reference type. The discriminant named by the Implicit Dereference aspect is the
reference discriminant of the reference type or reference object. A generalized_reference is a name

© ISO/IEC 2012 — All rights reserved 92

ISO/IEC 8652:DIS

that identifies a reference object, and denotes the object or subprogram designated by the reference
discriminant of the reference object.

Syntax

generalized_reference ::= reference_object name

Name Resolution Rules

The expected type for the reference object name in a generalized_reference is any reference type.

Static Semantics

A generalized_reference denotes a view equivalent to that of a dereference of the reference
discriminant of the reference object.

Given a reference type T, the Implicit_Dereference aspect is inherited by descendants of type 7 if not
overridden. If a descendant type constrains the value of the reference discriminant of 7 by a new
discriminant, that new discriminant is the reference discriminant of the descendant. If the descendant
type constrains the value of the reference discriminant of 7 by an expression other than the name of
a new discriminant, a generalized_reference that identifies an object of the descendant type denotes
the object or subprogram designated by the value of this constraining expression.

Dynamic Semantics

The evaluation of a generalized_reference consists of the evaluation of the reference object name
and a determination of the object or subprogram designated by the reference discriminant of the
named reference object. A check is made that the value of the reference discriminant is not the null
access value. Constraint Error is raised if this check fails. The generalized_reference denotes the
object or subprogram designated by the value of the reference discriminant of the named reference
object.

Examples
type Barrel is tagged ... -- holds objects of type Element
B: aliased Barrel;

type Ref Element (Data : access Element) is
new Ada.Finalization.Limited Controlled with private
with Implicit Dereference => Data;
- - This Ref Element type is a "reference" type.
-- "Data" is its reference discriminant.

function Find (B : aliased in out Barrel; Key : String) return Ref Element;
- - Return a reference to an element of a barrel.

Find (B, "grape") := Element'(...); -- Assignthrough a reference.

- - This is equivalent to:
Find (B, "grape") .Data.all := Element'(...);

4.1.6 User-Defined Indexing

Static Semantics

Given a tagged type T, the following type-related, operational aspects may be specified:

Constant_Indexing
This aspect shall be specified by a nhame that denotes one or more functions declared
immediately within the same declaration list in which 7 is declared. All such functions
shall have at least two parameters, the first of which is of type T or T'Class, or is an
access-to-constant parameter with designated type T or T'Class.

93 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Variable Indexing
This aspect shall be specified by a name that denotes one or more functions declared
immediately within the same declaration list in which 7 is declared. All such functions
shall have at least two parameters, the first of which is of type T or T'Class, or is an access
parameter with designated type T or T'Class. All such functions shall have a return type
that is a reference type (see 4.1.5), whose reference discriminant is of an access-to-
variable type.

These aspects are inherited by descendants of 7T (including the class-wide type T'Class). The aspects
shall not be overridden, but the functions they denote may be.

An indexable container type is (a view of) a tagged type with at least one of the aspects
Constant Indexing or Variable Indexing specified. An indexable container object is an object of an
indexable container type. A generalized_indexing is a name that denotes the result of calling a
function named by a Constant Indexing or Variable Indexing aspect.

Legality Rules
The Constant_Indexing or Variable Indexing aspect shall not be specified:
e on a derived type if the parent type has the corresponding aspect specified or inherited; or
e on a full_type_declaration if the type has a tagged partial view.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Syntax

generalized_indexing ::= indexable container object prefix actual_parameter_part

Name Resolution Rules

The expected type for the indexable container object prefix of a generalized_indexing is any
indexable container type.

If the Constant_Indexing aspect is specified for the type of the indexable container object prefix of a
generalized_indexing, then the generalized_indexing is interpreted as a constant indexing under the
following circumstances:

e when the Variable Indexing aspect is not specified for the type of the
indexable container object prefix;

e when the indexable container object prefix denotes a constant;

e when the generalized_indexing is used within a primary where a name denoting a constant
is permitted.

Otherwise, the generalized_indexing is interpreted as a variable indexing.

When a generalized_indexing is interpreted as a constant (or variable) indexing, it is equivalent to a
call on a prefixed view of one of the functions named by the Constant Indexing (or
Variable Indexing) aspect of the type of the indexable container object prefix with the given
actual_parameter_part, and with the indexable container object prefix as the prefix of the prefixed
view.

Examples

type Indexed Barrel is tagged ...
with Variable Indexing => Find;
-- Indexed Barrel is an indexable container type,
- - Find is the generalized indexing operation.

function Find (B : aliased in out Indexed Barrel; Key : String) return
Ref Element;
- - Return a reference to an element of a barrel (see 4.1.5).

IB: aliased Indexed Barrel;

© ISO/IEC 2012 — All rights reserved 94

ISO/IEC 8652:DIS

- - All of the following calls are then equivalent:

Find (IB, "pear") .Data.all := Element' (...); -- Traditional call

IB.Find ("pear") .Data.all := Element'(...); -- Call of prefixed view

IB.Find ("pear") = Element' (...); -- Implicit dereference (see 4.1.5)
IB ("pear") = Element' (...); -- Implicitindexing and dereference
IB ("pear") .Data.all := Element'(...); -- Implicitindexing only

4.2 Literals

A literal represents a value literally, that is, by means of notation suited to its kind. A literal is either a
numeric_literal, a character_literal, the literal null, or a string_literal.

Name Resolution Rules

For a name that consists of a character_literal, either its expected type shall be a single character
type, in which case it is interpreted as a parameterless function_call that yields the corresponding
value of the character type, or its expected profile shall correspond to a parameterless function with a
character result type, in which case it is interpreted as the name of the corresponding parameterless
function declared as part of the character type's definition (see 3.5.1). In either case, the
character _literal denotes the enumeration_literal_specification.

The expected type for a primary that is a string_literal shall be a single string type.

Legality Rules

A character_literal that is a name shall correspond to a defining_character_literal of the expected
type, or of the result type of the expected profile.

For each character of a string_literal with a given expected string type, there shall be a corresponding
defining_character_literal of the component type of the expected string type.

Static Semantics

An integer literal is of type universal integer. A real literal is of type universal real. The literal null
is of type universal_access.

Dynamic Semantics
The evaluation of a numeric literal, or the literal null, yieclds the represented value.

The evaluation of a string_literal that is a primary yields an array value containing the value of each
character of the sequence of characters of the string_literal, as defined in 2.6. The bounds of this array
value are determined according to the rules for positional_array_aggregates (see 4.3.3), except that
for a null string literal, the upper bound is the predecessor of the lower bound.

For the evaluation of a string_literal of type 7, a check is made that the value of each character of the
string_literal belongs to the component subtype of 7. For the evaluation of a null string literal, a check
is made that its lower bound is greater than the lower bound of the base range of the index type. The
exception Constraint_Error is raised if either of these checks fails.

NOTES

6 Enumeration literals that are identifiers rather than character_literals follow the normal rules for identifiers when

used in a name (see 4.1 and 4.1.3). Character_literals used as selector_names follow the normal rules for expanded
names (see 4.1.3).

Examples

Examples of literals:

3.14159 26536 -- aveal literal
1 345 - - an integer literal
‘A" - - a character literal
"Some Text" -- astring literal

95 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

4.3 Aggregates

An aggregate combines component values into a composite value of an array type, record type, or
record extension.

Syntax
aggregate ::= record_aggregate | extension_aggregate | array_aggregate
Name Resolution Rules

The expected type for an aggregate shall be a single array type, record type, or record extension.

Legality Rules

An aggregate shall not be of a class-wide type.

Dynamic Semantics

For the evaluation of an aggregate, an anonymous object is created and values for the components or
ancestor part are obtained (as described in the subsequent subclause for each kind of the aggregate)
and assigned into the corresponding components or ancestor part of the anonymous object. Obtaining
the values and the assignments occur in an arbitrary order. The value of the aggregate is the value of
this object.

If an aggregate is of a tagged type, a check is made that its value belongs to the first subtype of the
type. Constraint_Error is raised if this check fails.

4.3.1 Record Aggregates

In a record_aggregate, a value is specified for each component of the record or record extension
value, using either a named or a positional association.

Syntax
record_aggregate ::= (record_component_association_list)

record_component_association_list ::=
record_component_association {, record_component_association}
| null record

record_component_association ::=
[component_choice_list =>] expression
| component_choice_list => <>
component_choice_list ::=
component_selector_name {| component_selector_name}
| others

A record_component_association is a named component association if it has a
component_choice_list; otherwise, it is a positional component association. Any positional
component associations shall precede any named component associations. If there is a named
association with a component_choice_list of others, it shall come last.

In the record_component_association_list for a record_aggregate, if there is only one
association, it shall be a named association.

Name Resolution Rules
The expected type for a record_aggregate shall be a single record type or record extension.

For the record_component_association_list of a record_aggregate, all components of the
composite value defined by the aggregate are needed; for the association list of an
extension_aggregate, only those components not determined by the ancestor expression or subtype

© ISO/IEC 2012 — All rights reserved 96

ISO/IEC 8652:DIS

are needed (see 4.3.2). Each selector_name in a record_component_association shall denote a
needed component (including possibly a discriminant).

The expected type for the expression of a record_component_association is the type of the
associated component(s); the associated component(s) are as follows:

e For a positional association, the component (including possibly a discriminant) in the
corresponding relative position (in the declarative region of the type), counting only the
needed components;

e For a named association with one or more component selector_names, the named
component(s);

e For a named association with the reserved word others, all needed components that are not
associated with some previous association.

Legality Rules

If the type of a record_aggregate is a record extension, then it shall be a descendant of a record type,
through one or more record extensions (and no private extensions).

The reserved words null record may appear only if there are no components needed in a given
record_component_association_list.

Each record_component_association other than an others choice with a <> shall have at least one
associated component, and each needed component shall be associated with exactly one record_-
component_association. If a record_component_association with an expression has two or more
associated components, all of them shall be of the same type, or all of them shall be of anonymous
access types whose subtypes statically match.

The value of a discriminant that governs a variant_part P shall be given by a static expression, unless
P is nested within a variant V that is not selected by the discriminant value governing the variant_part
enclosing V.

A record_component_association for a discriminant without a default_expression shall have an
expression rather than <>,

Dynamic Semantics

The evaluation of a record_aggregate consists of the evaluation of the record component -
association_list.

For the evaluation of a record_component_association_list, any per-object constraints (see 3.8) for
components specified in the association list are elaborated and any expressions are evaluated and
converted to the subtype of the associated component. Any constraint elaborations and expression
evaluations (and conversions) occur in an arbitrary order, except that the expression for a
discriminant is evaluated (and converted) prior to the elaboration of any per-object constraint that
depends on it, which in turn occurs prior to the evaluation and conversion of the expression for the
component with the per-object constraint.

For a record_component_association with an expression, the expression defines the value for the
associated component(s). For a record_component_association with <>, if the
component_declaration has a default_expression, that default_expression defines the value for the
associated component(s); otherwise, the associated component(s) are initialized by default as for a
stand-alone object of the component subtype (see 3.3.1).

The expression of a record_component_association is evaluated (and converted) once for each
associated component.

NOTES

7 For a record_aggregate with positional associations, expressions specifying discriminant values appear first since

the known_discriminant_part is given first in the declaration of the type; they have to be in the same order as in the
known_discriminant_part.

97 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Examples

Example of a record aggregate with positional associations:
(4, July, 1776) -- see3.8

Examples of record aggregates with named associations:

(Day => 4, Month => July, Year => 1776)
(Month => July, Day => 4, Year => 1776)

(Disk, Closed, Track => 5, Cylinder => 12) -- see3.8.1
(Unit => Disk, Status => Closed, Cylinder => 9, Track => 1)

Examples of component associations with several choices:
(Value => 0, Succ|Pred => new Cell' (0, null, null)) -- see 3.10.1
- - The allocator is evaluated twice: Succ and Pred designate different cells

(Value => 0, Succ|Pred => <>) -- see 3.10.1

- - Succ and Pred will be set to null

Examples of record aggregates for tagged types (see 3.9 and 3.9.1):

Expression' (null record)
Literal' (Value => 0.0)
Painted Point' (0.0, Pi/2.0, Paint => Red)

4.3.2 Extension Aggregates

An extension_aggregate specifies a value for a type that is a record extension by specifying a value
or subtype for an ancestor of the type, followed by associations for any components not determined
by the ancestor_part.

Syntax

extension_aggregate ::=
(ancestor_part with record_component_association_list)

ancestor_part ::= expression | subtype_mark

Name Resolution Rules

The expected type for an extension_aggregate shall be a single type that is a record extension. If the
ancestor_part is an expression, it is expected to be of any tagged type.

Legality Rules

If the ancestor_part is a subtype _mark, it shall denote a specific tagged subtype. If the
ancestor_part is an expression, it shall not be dynamically tagged. The type of the
extension_aggregate shall be a descendant of the type of the ancestor_part (the ancestor type),
through one or more record extensions (and no private extensions). If the ancestor_part is a
subtype_mark, the view of the ancestor type from which the type is descended (see 7.3.1) shall not
have unknown discriminants.

If the type of the ancestor_part is limited and at least one component is needed in the
record_component_association_list, then the ancestor_part shall not be:

e a call to a function with an unconstrained result subtype; nor
e a parenthesized or qualified expression whose operand would violate this rule; nor

e a conditional_expression having at least one dependent expression that would violate this
rule.

© ISO/IEC 2012 — All rights reserved 98

ISO/IEC 8652:DIS

Static Semantics

For the record_component_association_list of an extension_aggregate, the only components
needed are those of the composite value defined by the aggregate that are not inherited from the type
of the ancestor_part, plus any inherited discriminants if the ancestor_part is a subtype_mark that
denotes an unconstrained subtype.

Dynamic Semantics

For the evaluation of an extension_aggregate, the record_component_association_list is evaluated.
If the ancestor_part is an expression, it is also evaluated; if the ancestor_part is a subtype mark,
the components of the value of the aggregate not given by the record_component_association_list
are initialized by default as for an object of the ancestor type. Any implicit initializations or
evaluations are performed in an arbitrary order, except that the expression for a discriminant is
evaluated prior to any other evaluation or initialization that depends on it.

If the type of the ancestor_part has discriminants and the ancestor_part is not a subtype_mark that
denotes an unconstrained subtype, then a check is made that each discriminant determined by the
ancestor_part has the value specified for a corresponding discriminant, if any, either in the record_-
component_association_list, or in the derived_type_definition for some ancestor of the type of the
extension_aggregate. Constraint_Error is raised if this check fails.

NOTES

8 If all components of the value of the extension_aggregate are determined by the ancestor_part, then the record_-
component_association_list is required to be simply null record.

9 If the ancestor_part is a subtype_mark, then its type can be abstract. If its type is controlled, then as the last step of
evaluating the aggregate, the Initialize procedure of the ancestor type is called, unless the Initialize procedure is
abstract (see 7.6).

Examples

Examples of extension aggregates (for types defined in 3.9.1):

Painted Point' (Point with Red)
(Point' (P) with Paint => Black)

(Expression with Left => 1.2, Right => 3.4)
Addition' (Binop with null record)
- - presuming Binop is of type Binary Operation

4.3.3 Array Aggregates

In an array_aggregate, a value is specified for each component of an array, either positionally or by
its index. For a positional_array_aggregate, the components are given in increasing-index order,
with a final others, if any, representing any remaining components. For a named_array_aggregate,
the components are identified by the values covered by the discrete_choices.

Syntax

array_aggregate ::=
positional_array_aggregate | named_array_aggregate

positional_array_aggregate ::=
(expression, expression {, expression})
| (expression {, expression}, others => expression)
| (expression {, expression}, others => <>)

named_array_aggregate ::=
(array_component_association {, array_component_association})

array_component_association ::=
discrete_choice_list => expression
| discrete_choice_list => <>

99 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

An n-dimensional array_aggregate is one that is written as n levels of nested array_aggregates (or
at the bottom level, equivalent string_literals). For the multidimensional case (n >= 2) the
array_aggregates (or equivalent string_literals) at the n—1 lower levels are called subaggregates of
the enclosing n-dimensional array_aggregate. The expressions of the bottom level subaggregates (or
of the array_aggregate itself if one-dimensional) are called the array component expressions of the
enclosing n-dimensional array_aggregate.

Name Resolution Rules

The expected type for an array_aggregate (that is not a subaggregate) shall be a single array type.
The component type of this array type is the expected type for each array component expression of
the array_aggregate.

The expected type for each discrete_choice in any discrete_choice list of a
named_array_aggregate is the type of the corresponding index; the corresponding index for an
array_aggregate that is not a subaggregate is the first index of its type; for an (n—m)-dimensional
subaggregate within an array_aggregate of an n-dimensional type, the corresponding index is the
index in position m+1.

Legality Rules

An array_aggregate of an n-dimensional array type shall be written as an n-dimensional
array_aggregate.

An others choice is allowed for an array_aggregate only if an applicable index constraint applies to
the array_aggregate. An applicable index constraint is a constraint provided by certain contexts
where an array_aggregate is permitted that can be used to determine the bounds of the array value
specified by the aggregate. Each of the following contexts (and none other) defines an applicable
index constraint:

e For an explicit_actual_parameter, an explicit_generic_actual_parameter, the expression of
a return statement, the initialization expression in an object _declaration, or a default_-
expression (for a parameter or a component), when the nominal subtype of the corresponding
formal parameter, generic formal parameter, function return object, object, or component is a
constrained array subtype, the applicable index constraint is the constraint of the subtype;

e For the expression of an assignment_statement where the name denotes an array variable,
the applicable index constraint is the constraint of the array variable;

e For the operand of a qualified_expression whose subtype_mark denotes a constrained array
subtype, the applicable index constraint is the constraint of the subtype;

e For a component expression in an aggregate, if the component's nominal subtype is a
constrained array subtype, the applicable index constraint is the constraint of the subtype;

e For a parenthesized expression, the applicable index constraint is that, if any, defined for the
expression;

e For a conditional_expression, the applicable index constraint for each dependent expression
is that, if any, defined for the conditional_expression.

The applicable index constraint applies to an array_aggregate that appears in such a context, as well
as to any subaggregates thereof. In the case of an explicit_actual_parameter (or default_expression)
for a call on a generic formal subprogram, no applicable index constraint is defined.

The discrete_choice_list of an array_component_association is allowed to have a discrete_choice
that is a nonstatic choice_expression or that is a subtype_indication or range that defines a nonstatic
or null range, only if it is the single discrete_choice of its discrete_choice_list, and there is only one
array_component_association in the array_aggregate.

© ISO/IEC 2012 — All rights reserved 100

ISO/IEC 8652:DIS

In a named_array_aggregate where all discrete_choices are static, no two discrete_choices are
allowed to cover the same value (see 3.8.1); if there is no others choice, the discrete_choices taken
together shall exactly cover a contiguous sequence of values of the corresponding index type.

A bottom level subaggregate of a multidimensional array_aggregate of a given array type is allowed
to be a string_literal only if the component type of the array type is a character type; each character of
such a string_literal shall correspond to a defining_character_literal of the component type.

Static Semantics

A subaggregate that is a string_literal is equivalent to one that is a positional_array_aggregate of the
same length, with each expression being the character_literal for the corresponding character of the
string_literal.

Dynamic Semantics

The evaluation of an array_aggregate of a given array type proceeds in two steps:

1. Any discrete_choices of this aggregate and of its subaggregates are evaluated in an arbitrary
order, and converted to the corresponding index type;

2. The array component expressions of the aggregate are evaluated in an arbitrary order and
their values are converted to the component subtype of the array type; an array component
expression is evaluated once for each associated component.

Each expression in an array_component_association defines the value for the associated
component(s). For an array_component_association with <>, the associated component(s) are
initialized by default as for a stand-alone object of the component subtype (see 3.3.1).

The bounds of the index range of an array_aggregate (including a subaggregate) are determined as
follows:

e For an array_aggregate with an others choice, the bounds are those of the corresponding
index range from the applicable index constraint;

e For a positional_array_aggregate (or equivalent string_literal) without an others choice, the
lower bound is that of the corresponding index range in the applicable index constraint, if
defined, or that of the corresponding index subtype, if not; in either case, the upper bound is
determined from the lower bound and the number of expressions (or the length of the
string_literal);

e For a named_array_aggregate without an others choice, the bounds are determined by the
smallest and largest index values covered by any discrete_choice_list.

For an array_aggregate, a check is made that the index range defined by its bounds is compatible
with the corresponding index subtype.

For an array_aggregate with an others choice, a check is made that no expression or <> is specified
for an index value outside the bounds determined by the applicable index constraint.

For a multidimensional array_aggregate, a check is made that all subaggregates that correspond to
the same index have the same bounds.

The exception Constraint_Error is raised if any of the above checks fail.

NOTES

10 In an array_aggregate, positional notation may only be used with two or more expressions; a single expression in
parentheses is interpreted as a parenthesized expression. A named_array_aggregate, such as (1 => X), may be used to
specify an array with a single component.

Examples

Examples of array aggregates with positional associations:

(7, 9, 5, 1, 3, 2, 4, 8, 6, 0)
Table' (5, 8, 4, 1, others => 0) -- see3.6

101 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Examples of array aggregates with named associations:

(1L .. 5=> (1 .. 8 =>0.0)) - - two-dimensional

(1 .. N => new Cell) -- N new cells, in particular for N = 0
Table'(2 | 4 | 10 => 1, others => 0)

Schedule' (Mon .. Fri => True, others => False) -- see 3.6

Schedule' (Wed | Sun => False, others => True)

Vector' (1 => 2.5) - - single-component vector

Examples of two-dimensional array aggregates:
- - Three aggregates for the same value of subtype Matrix(1..2,1..3) (see 3.6):

((1.2, 1.2, 1.3), (2.1, 2.2, 2.3))
(1 => (1.1, 1.2, 1.3), 2 => (2.1, 2.2, 2.3))
(1 => (1 =>1.1, 2 =>1.2, 3 =>1.3), 2 => (1 =>2.1, 2 => 2.2, 3 => 2.3))

Examples of aggregates as initial values:

A : Table := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); -- A(1)=7, A(10)=0

B : Table := (2 | 4 | 10 => 1, others => 0); -- B(1)=0, B(10)=1

C : comnstant Matrix := (1 .. 5 => (1 .. 8 => 0.0)); -- C'Last(l)=5, C'Last(2)=8
D : Bit Vector(M .. N) := (M .. N => True); --see 3.6

E : Bit Vector(M .. N) := (others => True);

F : String(1 .. 1) := (1 => 'F'); -- aonecomponent aggregate: same as "F"

Example of an array aggregate with defaulted others choice and with an applicable index constraint
provided by an enclosing record aggregate:

Buffer' (Size => 50, Pos => 1, Value => String'('x', others => <>)) --seel.7

4.4 Expressions

An expression is a formula that defines the computation or retrieval of a value. In this International
Standard, the term “expression” refers to a construct of the syntactic category expression or of any of
the following categories: choice_expression, choice_relation, relation, simple_expression, term,
factor, primary, conditional_expression, quantified_expression.

Syntax
expression ::=
relation {and relation} |relation {and then relation}
| relation {or relation} | relation {or else relation}

| relation {xor relation}

choice_expression ::=
choice_relation {and choice_relation}
| choice_relation {or choice_relation}
| choice_relation {xor choice_relation}
| choice_relation {and then choice_relation}
| choice_relation {or else choice_relation}

choice_relation ::=
simple_expression [relational_operator simple_expression]

relation ::=
simple_expression [relational_operator simple_expression]
| simple_expression [not] in membership_choice_list

membership_choice_list ::= membership_choice {| membership_choice}
membership_choice ::= choice_expression | range | subtype_mark
simple_expression ::= [unary_adding_operator] term {binary_adding_operator term}
term ::= factor {multiplying_operator factor}

factor ::= primary [** primary] | abs primary | not primary

© ISO/IEC 2012 — All rights reserved 102

ISO/IEC 8652:DIS

primary ::=
numeric_literal | null | string_literal | aggregate
| name | allocator | (expression)
| (conditional_expression) | (quantified_expression)

Name Resolution Rules

A name used as a primary shall resolve to denote an object or a value.

Static Semantics

Each expression has a type; it specifies the computation or retrieval of a value of that type.

Dynamic Semantics

The value of a primary that is a name denoting an object is the value of the object.

Implementation Permissions

For the evaluation of a primary that is a name denoting an object of an unconstrained numeric
subtype, if the value of the object is outside the base range of its type, the implementation may either
raise Constraint_Error or return the value of the object.

Examples

Examples of primaries:

4.0 - - real literal

Pi - - named number

(1 .. 10 => 0) - - array aggregate

Sum - - variable

Integer'Last - - attribute

Sine (X) - - function call

Color' (Blue) - - qualified expression

Real (M*N) - - conversion

(Line_ Count + 10) - - parenthesized expression
Examples of expressions.

Volume - - primary

not Destroyed - - factor

2*Line_Count -~ term

-4.0 - - simple expression

-4.0 + A - - simple expression

B**2 - 4. 0*A*C - - simple expression

R*3Sin (6) *Cos (o) - - simple expression

Password (1l .. 3) = "Bwv" - - relation

Count in Small Int - - relation

Count not in Small Int - - relation

Index = 0 or Item Hit - - expression

(Cold and Sunny) or Warm - - expression (parentheses are required)

A** (B**C) - - expression (parentheses are required)

4.5 Operators and Expression Evaluation

The language defines the following six categories of operators (given in order of increasing
precedence). The corresponding operator_symbols, and only those, can be used as designators in
declarations of functions for user-defined operators. See 6.6, “Overloading of Operators”.

Syntax

logical_operator ::= and | or | xor
relational_operator ::= = |/=|< |<=|>]|>=
binary_adding_operator ::= + |- | &
unary_adding_operator ::= + |-

103 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

multiplying_operator ::= * |/ | mod | rem
highest_precedence_operator ::= ** | abs | not

Static Semantics

For a sequence of operators of the same precedence level, the operators are associated with their
operands in textual order from left to right. Parentheses can be used to impose specific associations.

For each form of type definition, certain of the above operators are predefined, that is, they are
implicitly declared immediately after the type definition. For each such implicit operator declaration,
the parameters are called Left and Right for binary operators; the single parameter is called Right for
unary operators. An expression of the form X op Y, where op is a binary operator, is equivalent to a
function_call of the form "op"(X, Y). An expression of the form op Y, where op is a unary operator,
is equivalent to a function_call of the form "op"(Y). The predefined operators and their effects are
described in subclauses 4.5.1 through 4.5.6.

Dynamic Semantics

The predefined operations on integer types either yield the mathematically correct result or raise the
exception Constraint Error. For implementations that support the Numerics Annex, the predefined
operations on real types yield results whose accuracy is defined in Annex G, or raise the exception
Constraint_Error.

Implementation Requirements

The implementation of a predefined operator that delivers a result of an integer or fixed point type
may raise Constraint_Error only if the result is outside the base range of the result type.

The implementation of a predefined operator that delivers a result of a floating point type may raise
Constraint_Error only if the result is outside the safe range of the result type.

Implementation Permissions

For a sequence of predefined operators of the same precedence level (and in the absence of
parentheses imposing a specific association), an implementation may impose any association of the
operators with operands so long as the result produced is an allowed result for the left-to-right
association, but ignoring the potential for failure of language-defined checks in either the left-to-right
or chosen order of association.

NOTES

11 The two operands of an expression of the form X op Y, where op is a binary operator, are evaluated in an arbitrary
order, as for any function_call (see 6.4).

Examples
Examples of precedence:
not Sunny or Warm - - same as (not Sunny) or Warm
X >4.0 and Y > 0.0 -- sameas (X>4.0)and (Y > 0.0)
-4 Q*A**2 -- same as —(4.0 * (A**2))
abs(l1 + A) + B -- same as (abs (1 + A)) + B
Yx* (-3) - - parentheses are necessary
A/ B*xC - - same as (A/B)*C
A+ (B + Q) - - evaluate B + C before adding it to A

4.5.1 Logical Operators and Short-circuit Control Forms

Name Resolution Rules

An expression consisting of two relations connected by and then or or else (a short-circuit control
form) shall resolve to be of some boolean type; the expected type for both relations is that same
boolean type.

© ISO/IEC 2012 — All rights reserved 104

ISO/IEC 8652:DIS

Static Semantics

The following logical operators are predefined for every boolean type 7, for every modular type 7,
and for every one-dimensional array type 7 whose component type is a boolean type:

function "and" (Left, Right : 7) return T

function "or" (Left, Right : 7) return T

function "xor" (Left, Right : 7) return T
For boolean types, the predefined logical operators and, or, and xor perform the conventional
operations of conjunction, inclusive disjunction, and exclusive disjunction, respectively.

For modular types, the predefined logical operators are defined on a bit-by-bit basis, using the binary
representation of the value of the operands to yield a binary representation for the result, where zero
represents False and one represents True. If this result is outside the base range of the type, a final
subtraction by the modulus is performed to bring the result into the base range of the type.

The logical operators on arrays are performed on a component-by-component basis on matching
components (as for equality — see 4.5.2), using the predefined logical operator for the component
type. The bounds of the resulting array are those of the left operand.

Dynamic Semantics

The short-circuit control forms and then and or else deliver the same result as the corresponding
predefined and and or operators for boolean types, except that the left operand is always evaluated
first, and the right operand is not evaluated if the value of the left operand determines the result.

For the logical operators on arrays, a check is made that for each component of the left operand there
is a matching component of the right operand, and vice versa. Also, a check is made that each
component of the result belongs to the component subtype. The exception Constraint Error is raised if
either of the above checks fails.

NOTES
12 The conventional meaning of the logical operators is given by the following truth table:
A B (A and B) (A or B) (A xor B)
True True True True False
True False False True True
False True False True True
False False False False False
Examples

Examples of logical operators:

Sunny or Warm
Filter(1 .. 10) and Filter (15 .. 24) -- see3.6.1

Examples of short-circuit control forms:

Next Car.Owner /= null and then Next Car.Owner.Age > 25 -- see3.10.1
N = 0 or else A(N) = Hit Value

4.5.2 Relational Operators and Membership Tests

The equality operators = (equals) and /= (not equals) are predefined for nonlimited types. The other
relational_operators are the ordering operators < (less than), <= (less than or equal), > (greater than),
and >= (greater than or equal). The ordering operators are predefined for scalar types, and for discrete
array types, that is, one-dimensional array types whose components are of a discrete type.

A membership test, using in or not in, determines whether or not a value belongs to any given
subtype or range, is equal to any given value, has a tag that identifies a type that is covered by a given
type, or is convertible to and has an accessibility level appropriate for a given access type.
Membership tests are allowed for all types.

105 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules

The fested type of a membership test is determined by the membership_choices of the
membership_choice_list. Either all membership_choices of the membership_choice_list shall
resolve to the same type, which is the tested type; or each membership_choice shall be of an
elementary type, and the tested type shall be covered by each of these elementary types.

If the tested type is tagged, then the simple_expression shall resolve to be of a type that is
convertible (see 4.6) to the tested type; if untagged, the expected type for the simple_expression is
the tested type. The expected type of a choice_expression in a membership_choice, and of a
simple_expression of a range in a membership_choice, is the tested type of the membership
operation.

Legality Rules

For a membership test, if the simple_expression is of a tagged class-wide type, then the tested type
shall be (visibly) tagged.

If a membership test includes one or more choice_expressions and the tested type of the membership
test is limited, then the tested type of the membership test shall have a visible primitive equality
operator.

Static Semantics
The result type of a membership test is the predefined type Boolean.

The equality operators are predefined for every specific type T that is not limited, and not an
anonymous access type, with the following specifications:

function "=" (Left, Right : 7) return Boolean

function "/="(Left, Right : 7) return Boolean
The following additional equality operators for the wuniversal access type are declared in package
Standard for use with anonymous access types:

function "=" (Left, Right : universal access) return Boolean

function "/="(Left, Right : universal access) return Boolean
The ordering operators are predefined for every specific scalar type 7, and for every discrete array
type 7, with the following specifications:

function "<" (Left, Right : 7) return Boolean
function "<="(Left, Right : 7) return Boolean
function ">" (Left, Right : 7) return Boolean
function ">="(Left, Right : 7) return Boolean

Name Resolution Rules

At least one of the operands of an equality operator for umiversal access shall be of a specific
anonymous access type. Unless the predefined equality operator is identified using an expanded name
with prefix denoting the package Standard, neither operand shall be of an access-to-object type whose
designated type is D or D'Class, where D has a user-defined primitive equality operator such that:

e its result type is Boolean;

e it is declared immediately within the same declaration list as D or any partial or incomplete
view of D; and

e at least one of its operands is an access parameter with designated type D.

Legality Rules

At least one of the operands of the equality operators for wumiversal access shall be of type
universal_access, or both shall be of access-to-object types, or both shall be of access-to-subprogram
types. Further:

© ISO/IEC 2012 — All rights reserved 106

ISO/IEC 8652:DIS

e When both are of access-to-object types, the designated types shall be the same or one shall
cover the other, and if the designated types are elementary or array types, then the designated
subtypes shall statically match;

e When both are of access-to-subprogram types, the designated profiles shall be subtype
conformant.

If the profile of an explicitly declared primitive equality operator of an untagged record type is type
conformant with that of the corresponding predefined equality operator, the declaration shall occur
before the type is frozen. In addition, if the untagged record type has a nonlimited partial view, then
the declaration shall occur in the visible part of the enclosing package. In addition to the places where
Legality Rules normally apply (see 12.3), this rule applies also in the private part of an instance of a
generic unit.

Dynamic Semantics

For discrete types, the predefined relational operators are defined in terms of corresponding
mathematical operations on the position numbers of the values of the operands.

For real types, the predefined relational operators are defined in terms of the corresponding
mathematical operations on the values of the operands, subject to the accuracy of the type.

Two access-to-object values are equal if they designate the same object, or if both are equal to the null
value of the access type.

Two access-to-subprogram values are equal if they are the result of the same evaluation of an Access
attribute_reference, or if both are equal to the null value of the access type. Two access-to-
subprogram values are unequal if they designate different subprograms. It is unspecified whether two
access values that designate the same subprogram but are the result of distinct evaluations of Access
attribute_references are equal or unequal.

For a type extension, predefined equality is defined in terms of the primitive (possibly user-defined)
equals operator for the parent type and for any components that have a record type in the extension
part, and predefined equality for any other components not inherited from the parent type.

For a derived type whose parent is an untagged record type, predefined equality is defined in terms of
the primitive (possibly user-defined) equals operator of the parent type.

For a private type, if its full type is a record type, predefined equality is defined in terms of the
primitive equals operator of the full type; otherwise, predefined equality for the private type is that of
its full type.

For other composite types, the predefined equality operators (and certain other predefined operations
on composite types — see 4.5.1 and 4.6) are defined in terms of the corresponding operation on
matching components, defined as follows:

e For two composite objects or values of the same non-array type, matching components are
those that correspond to the same component_declaration or discriminant_specification;

e For two one-dimensional arrays of the same type, matching components are those (if any)
whose index values match in the following sense: the lower bounds of the index ranges are
defined to match, and the successors of matching indices are defined to match;

e For two multidimensional arrays of the same type, matching components are those whose
index values match in successive index positions.

The analogous definitions apply if the types of the two objects or values are convertible, rather than
being the same.

Given the above definition of matching components, the result of the predefined equals operator for
composite types (other than for those composite types covered earlier) is defined as follows:

e [f there are no components, the result is defined to be True;

107 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

e If there are unmatched components, the result is defined to be False;

e Otherwise, the result is defined in terms of the primitive equals operator for any matching
components that are records, and the predefined equals for any other matching components.

If the primitive equals operator for an untagged record type is abstract, then Program_Error is raised
at the point of any (implicit) call to that abstract subprogram.

For any composite type, the order in which "=" is called for components is unspecified. Furthermore,
if the result can be determined before calling "=" on some components, it is unspecified whether "="
is called on those components.

The predefined "/=" operator gives the complementary result to the predefined "=" operator.

For a discrete array type, the predefined ordering operators correspond to lexicographic order using
the predefined order relation of the component type: A null array is lexicographically less than any
array having at least one component. In the case of nonnull arrays, the left operand is
lexicographically less than the right operand if the first component of the left operand is less than that
of the right; otherwise, the left operand is lexicographically less than the right operand only if their
first components are equal and the tail of the left operand is lexicographically less than that of the
right (the fail consists of the remaining components beyond the first and can be null).

An individual membership test is the membership test of a single membership_choice.

For the evaluation of a membership test using in whose membership_choice_list has a single
membership_choice, the simple_expression and the membership_choice are evaluated in an
arbitrary order; the result is the result of the individual membership test for the membership_choice.

For the evaluation of a membership test using in whose membership_choice_list has more than one
membership_choice, the simple_expression of the membership test is evaluated first and the result
of the operation is equivalent to that of a sequence consisting of an individual membership test on
each membership_choice combined with the short-circuit control form or else.

An individual membership test yields the result True if:

e The membership_choice is a choice_expression, and the simple_expression is equal to the
value of the membership_choice. If the tested type is a record type or a limited type, the test
uses the primitive equality for the type; otherwise, the test uses predefined equality.

e The membership_choice is a range and the value of the simple_expression belongs to the
given range.

e The membership_choice is a subtype_mark, the tested type is scalar, the value of the
simple_expression belongs to the range of the named subtype, and the predicate of the
named subtype evaluates to True.

e The membership_choice is a subtype mark, the tested type is not scalar, the value of the
simple_expression satisfies any constraints of the named subtype, the predicate of the named
subtype evaluates to True, and:

o if the type of the simple_expression is class-wide, the value has a tag that identifies a
type covered by the tested type;

o if the tested type is an access type and the named subtype excludes null, the value of the
simple_expression is not null;

o if the tested type is a general access-to-object type, the type of the simple_expression is
convertible to the tested type and its accessibility level is no deeper than that of the tested
type; further, if the designated type of the tested type is tagged and the
simple_expression is nonnull, the tag of the object designated by the value of the
simple_expression is covered by the designated type of the tested type.

Otherwise, the test yields the result False.

© ISO/IEC 2012 — All rights reserved 108

ISO/IEC 8652:DIS

A membership test using not in gives the complementary result to the corresponding membership test
using in.

Implementation Requirements

For all nonlimited types declared in language-defined packages, the "=" and "/=" operators of the type
shall behave as if they were the predefined equality operators for the purposes of the equality of
composite types and generic formal types.

NOTES

13 If a composite type has components that depend on discriminants, two values of this type have matching

components if and only if their discriminants are equal. Two nonnull arrays have matching components if and only if
the length of each dimension is the same for both.

Examples

Examples of expressions involving relational operators and membership tests:

X /=Y

nn < IIAII and IIAII < llAa n R True

n Aa n < n B n and IIAII < IIA n - True

My Car = null -- True if My _Car has been set to null (see 3.10.1)
My Car = Your Car - - True if we both share the same car
My Car.all = Your Car.all - - True if the two cars are identical

N not in 1 .. 10 - - range membership test

Today in Mon .. Fri - - range membership test

Today in Weekday - - subtype membership test (see 3.5.1)
Card in Clubs | Spades - - list membership test (see 3.5.1)
Archive in Disk Unit - - subtype membership test (see 3.8.1)
Tree.all in Addition'Class -- class membership test (see 3.9.1)

4.5.3 Binary Adding Operators

Static Semantics

The binary adding operators + (addition) and — (subtraction) are predefined for every specific numeric
type T with their conventional meaning. They have the following specifications:

function "+" (Left, Right : 7) return T

function "-"(Left, Right : 7) return T
The concatenation operators & are predefined for every nonlimited, one-dimensional array type T
with component type C. They have the following specifications:

function "&" (Left : T; Right : T) return T
function "&" (Left : T; Right : C) return T
function "&" (Left : C; Right : T) return T
function "&" (Left : C; Right : C) return T

Dynamic Semantics

For the evaluation of a concatenation with result type 7, if both operands are of type 7, the result of
the concatenation is a one-dimensional array whose length is the sum of the lengths of its operands,
and whose components comprise the components of the left operand followed by the components of
the right operand. If the left operand is a null array, the result of the concatenation is the right
operand. Otherwise, the lower bound of the result is determined as follows:

o [f the ultimate ancestor of the array type was defined by a constrained_array_definition, then
the lower bound of the result is that of the index subtype;

e If the ultimate ancestor of the array type was defined by an unconstrained_array_definition,
then the lower bound of the result is that of the left operand.

The upper bound is determined by the lower bound and the length. A check is made that the upper
bound of the result of the concatenation belongs to the range of the index subtype, unless the result is
a null array. Constraint_Error is raised if this check fails.

109 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

If either operand is of the component type C, the result of the concatenation is given by the above
rules, using in place of such an operand an array having this operand as its only component (converted
to the component subtype) and having the lower bound of the index subtype of the array type as its
lower bound.

The result of a concatenation is defined in terms of an assignment to an anonymous object, as for any
function call (see 6.5).

NOTES
14 As for all predefined operators on modular types, the binary adding operators + and — on modular types include a
final reduction modulo the modulus if the result is outside the base range of the type.

Examples

Examples of expressions involving binary adding operators:

Z + 0.1 -- Z has to be of a real type

"A" & "BCD" -- concatenation of two string literals

'A' & "BCD" -- concatenation of a character literal and a string literal
'A' & 'A - - concatenation of two character literals

4.5.4 Unary Adding Operators

Static Semantics

The unary adding operators + (identity) and — (negation) are predefined for every specific numeric
type T with their conventional meaning. They have the following specifications:

function "+" (Right : 7) return T
function "-"(Right : 7) return T

NOTES
15 For modular integer types, the unary adding operator —, when given a nonzero operand, returns the result of
subtracting the value of the operand from the modulus; for a zero operand, the result is zero.

4.5.5 Multiplying Operators

Static Semantics

The multiplying operators * (multiplication), / (division), mod (modulus), and rem (remainder) are
predefined for every specific integer type T

function "*" (Left, Right : 7) return
function "/" (Left, Right : 7T) return
function "mod" (Left, Right : 7) return
function "rem" (Left, Right : 7) return

NSNS

Signed integer multiplication has its conventional meaning.

Signed integer division and remainder are defined by the relation:

A = (A/B)*B + (A rem B)
where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Signed
integer division satisfies the identity:

(-A)/B = -(A/B) = A/(-B)

The signed integer modulus operator is defined such that the result of A mod B is either zero, or has
the sign of B and an absolute value less than the absolute value of B; in addition, for some signed
integer value N, this result satisfies the relation:

A = B*N + (A mod B)

The multiplying operators on modular types are defined in terms of the corresponding signed integer
operators, followed by a reduction modulo the modulus if the result is outside the base range of the
type (which is only possible for the "*" operator).

© ISO/IEC 2012 — All rights reserved 110

ISO/IEC 8652:DIS

Multiplication and division operators are predefined for every specific floating point type 7T:

function "*" (Left, Right : 7) return T

function "/" (Left, Right : T) return T
The following multiplication and division operators, with an operand of the predefined type Integer,
are predefined for every specific fixed point type T:

function "*" (Left : T; Right : Integer) return T

function "*" (Left : Integer; Right : 7) return T

function "/" (Left : T; Right : Integer) return T
All of the above multiplying operators are usable with an operand of an appropriate universal numeric
type. The following additional multiplying operators for root real are predefined, and are usable
when both operands are of an appropriate universal or root numeric type, and the result is allowed to
be of type root real, as in a number_declaration:

function "*" (Left, Right : root real) return root real
function "/" (Left, Right : root real) return root real

function "*" (Left : roof real; Right : root integer) return root real

function "*" (Left : root integer; Right : root real) return root real

function "/" (Left : roof real; Right : root integer) return root real
Multiplication and division between any two fixed point types are provided by the following two
predefined operators:

function "*" (Left, Right : umiversal fixed) return universal fixed
function " /" (Left, Right : umiversal fixed) return universal fixed

Name Resolution Rules

The above two fixed-fixed multiplying operators shall not be used in a context where the expected
type for the result is itself universal fixed — the context has to identify some other numeric type to
which the result is to be converted, either explicitly or implicitly. Unless the predefined universal
operator is identified using an expanded name with prefix denoting the package Standard, an explicit
conversion is required on the result when using the above fixed-fixed multiplication operator if either
operand is of a type having a user-defined primitive multiplication operator such that:

e it is declared immediately within the same declaration list as the type or any partial or
incomplete view thereof; and

e both of its formal parameters are of a fixed-point type.

A corresponding requirement applies to the universal fixed-fixed division operator.

Dynamic Semantics

The multiplication and division operators for real types have their conventional meaning. For floating
point types, the accuracy of the result is determined by the precision of the result type. For decimal
fixed point types, the result is truncated toward zero if the mathematical result is between two
multiples of the small of the specific result type (possibly determined by context); for ordinary fixed
point types, if the mathematical result is between two multiples of the small, it is unspecified which of
the two is the result.

The exception Constraint Error is raised by integer division, rem, and med if the right operand is
zero. Similarly, for a real type 7 with 7T'Machine Overflows True, division by zero raises
Constraint_Error.

NOTES

16 For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The following
relations are satisfied by the rem operator:

A rem (-B)
(-A) rem B

A rem B
- (A rem B)

17 For any signed integer K, the following identity holds:
A mod B = (A + K*B) mod B

111 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

The relations between signed integer division, remainder, and modulus are illustrated by the following table:

A B A/B A rem B A mod B A B A/B A rem B A mod B
10 5 2 0 0 -10 5 -2 0 0
11 5 2 1 1 -11 5 -2 -1 4
12 5 2 2 2 -12 5 -2 -2 3
13 5 2 3 3 -13 5 -2 -3 2
14 5 2 4 4 -14 5 -2 -4 1
A B A/B A rem B A mod B A B A/B A rem B A mod B
10 -5 -2 0 0 -10 -5 2 0 0
11 -5 -2 1 -4 -11 -5 2 -1 -1
12 -5 -2 2 -3 -12 -5 2 -2 -2
13 -5 -2 3 -2 -13 -5 2 -3 -3
14 -5 -2 4 -1 -14 -5 2 -4 -4
Examples

Examples of expressions involving multiplying operators:

I : Integer := 1;

J : Integer := 2;

K : Integer := 3;

X : Real := 1.0; -- see3.5.7

Y : Real := 2.0;

F : Fraction := 0.25; -- seel.b9

G : Fraction := 0.5;

Expression Value Result Type

I*J 2 same as I and J, that is, Integer

K/ 1 same as K and J, that is, Integer

K mod J 1 same as K and J, that is, Integer

XY 0.5 same as X and Y, that is, Real

F2 0.125 same as F, that is, Fraction

3*F 0.75 same as F, that is, Fraction

0.75*G 0.375 universal_fixed, implicitly convertible
to any fixed point type

Fraction(F*G) 0.125 Fraction, as stated by the conversion

Real(N)*Y 4.0 Real, the type of both operands after

conversion of J

4.5.6 Highest Precedence Operators

Static Semantics

The highest precedence unary operator abs (absolute value) is predefined for every specific numeric
type 7, with the following specification:
function "abs" (Right : 7) return T

The highest precedence unary operator not (logical negation) is predefined for every boolean type 7,
every modular type 7, and for every one-dimensional array type 7 whose components are of a boolean
type, with the following specification:

function "not" (Right : 7) return T

The result of the operator not for a modular type is defined as the difference between the high bound
of the base range of the type and the value of the operand. For a binary modulus, this corresponds to a
bit-wise complement of the binary representation of the value of the operand.

The operator not that applies to a one-dimensional array of boolean components yields a one-
dimensional boolean array with the same bounds; each component of the result is obtained by logical
negation of the corresponding component of the operand (that is, the component that has the same
index value). A check is made that each component of the result belongs to the component subtype;
the exception Constraint_Error is raised if this check fails.

© ISO/IEC 2012 — All rights reserved 112

ISO/IEC 8652:DIS

The highest precedence exponentiation operator ** is predefined for every specific integer type T with
the following specification:
function "**" (Left : T; Right : Natural) return T

Exponentiation is also predefined for every specific floating point type as well as root_real, with the
following specification (where T is root_real or the floating point type):

function "**" (Left : T; Right : Integer'Base) return T

The right operand of an exponentiation is the exponent. The value of X**N with the value of the
exponent N positive is the same as the value of X*X*...X (with N—1 multiplications) except that the
multiplications are associated in an arbitrary order. With N equal to zero, the result is one. With the
value of N negative (only defined for a floating point operand), the result is the reciprocal of the result
using the absolute value of N as the exponent.

Implementation Permissions

The implementation of exponentiation for the case of a negative exponent is allowed to raise
Constraint_Error if the intermediate result of the repeated multiplications is outside the safe range of
the type, even though the final result (after taking the reciprocal) would not be. (The best machine
approximation to the final result in this case would generally be 0.0.)

NOTES

18 As implied by the specification given above for exponentiation of an integer type, a check is made that the
exponent is not negative. Constraint_Error is raised if this check fails.

4.5.7 Conditional Expressions

A conditional_expression selects for evaluation at most one of the enclosed dependent expressions,
depending on a decision among the alternatives. One kind of conditional_expression is the
if_expression, which selects for evaluation a dependent expression depending on the value of one or
more corresponding conditions. The other kind of conditional_expression is the case_expression,
which selects for evaluation one of a number of alternative dependent expressions; the chosen
alternative is determined by the value of a selecting _expression.

Syntax
conditional_expression ::= if_expression | case_expression
if _expression ::=

if condition then dependent expression

{elsif condition then dependent expression}
[else dependent expression]

condition ::= boolean_expression

case_expression ::=
case selecting _expression is
case_expression_alternative {,
case_expression_alternative}

case_expression_alternative ::=
when discrete_choice_list =>
dependent_expression

Wherever the Syntax Rules allow an expression, a conditional_expression may be used in place
of the expression, so long as it is immediately surrounded by parentheses.

Name Resolution Rules

If a conditional_expression is expected to be of a type 7, then each dependent expression of the
conditional_expression is expected to be of type 7. Similarly, if a conditional_expression is
expected to be of some class of types, then each dependent expression of the

113 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

conditional_expression is subject to the same expectation. If a conditional_expression shall resolve
to be of a type 7, then each dependent _expression shall resolve to be of type 7.

The possible types of a conditional_expression are further determined as follows:

e If the conditional_expression is the operand of a type conversion, the type of the
conditional_expression is the target type of the conversion; otherwise,

e If all of the dependent expressions are of the same type, the type of the
conditional_expression is that type; otherwise,

e If a dependent _expression is of an elementary type, the type of the conditional_expression
shall be covered by that type; otherwise,

e If the conditional_expression is expected to be of type T or shall resolve to type 7, then the
conditional_expression is of type 7.

A condition is expected to be of any boolean type.

The expected type for the selecting expression and the discrete_choices are as for case statements
(see 5.4).

Legality Rules

All of the dependent expressions shall be convertible (see 4.6) to the type of the
conditional_expression.

If the expected type of a conditional_expression is a specific tagged type, all of the
dependent expressions of the conditional_expression shall be dynamically tagged, or none shall be
dynamically tagged. In this case, the conditional_expression is dynamically tagged if all of the
dependent expressions are dynamically tagged, is tag-indeterminate if all of the
dependent _expressions are tag-indeterminate, and is statically tagged otherwise.

If there is no else dependent expression, the if_expression shall be of a boolean type.

All Legality Rules that apply to the discrete_choices of a case_statement (see 5.4) also apply to the
discrete_choices of a case_expression except within an instance of a generic unit.

Dynamic Semantics

For the evaluation of an if_expression, the condition specified after if, and any conditions specified
after elsif, are evaluated in succession (treating a final else as elsif True then), until one evaluates to
True or all conditions are evaluated and yield False. If a condition evaluates to True, the associated
dependent _expression is evaluated, converted to the type of the if_expression, and the resulting
value is the value of the if_expression. Otherwise (when there is no else clause), the value of the
if_expression is True.

For the evaluation of a case_expression, the selecting expression is first evaluated. If the value of
the selecting expression is covered by the discrete_choice_list of some
case_expression_alternative, then the dependent expression of the case_expression_alternative
is evaluated, converted to the type of the case_expression, and the resulting value is the value of the
case_expression. Otherwise (the value is not covered by any discrete_choice_list, perhaps due to
being outside the base range), Constraint_Error is raised.

4.5.8 Quantified Expressions

Syntax

quantified_expression ::= for quantifier loop _parameter_specification => predicate
| for quantifier iterator_specification => predicate

quantifier ::= all | some
predicate ::= boolean_expression

© ISO/IEC 2012 — All rights reserved 114

ISO/IEC 8652:DIS

Wherever the Syntax Rules allow an expression, a quantified_expression may be used in place
of the expression, so long as it is immediately surrounded by parentheses.

Name Resolution Rules

The expected type of a quantified_expression is any Boolean type. The predicate in a
quantified_expression is expected to be of the same type.

Dynamic Semantics

For the -evaluation of a quantified expression, the loop_parameter_specification or
iterator_specification is first elaborated. The evaluation of a quantified_expression then evaluates
the predicate for each value of the loop parameter. These values are examined in the order specified
by the loop_parameter_specification (see 5.5) or iterator_specification (see 5.5.2).

The value of the quantified_expression is determined as follows:

e If the quantifier is all, the expression is True if the evaluation of the predicate yields True for
each value of the loop parameter. It is False otherwise. Evaluation of the
quantified_expression stops when all values of the domain have been examined, or when the
predicate yields False for a given value. Any exception raised by evaluation of the predicate
is propagated.

o If the quantifier is some, the expression is True if the evaluation of the predicate yields True
for some value of the loop parameter. It is False otherwise. Evaluation of the
quantified_expression stops when all values of the domain have been examined, or when the
predicate yields True for a given value. Any exception raised by evaluation of the predicate
is propagated.

Examples

The postcondition for a sorting routine on an array A with an index subtype T can be written:

Post => (A'Length < 2 or else
(for all I in A'First .. T'Pred(A'Last) => A (I) <= A (T'Succ (I))))

The assertion that a positive number is composite (as opposed to prime) can be written:
pragma Assert (for some X in 2 .. N / 2 => Nmod X = 0);

4.6 Type Conversions

Explicit type conversions, both value conversions and view conversions, are allowed between closely
related types as defined below. This clause also defines rules for value and view conversions to a
particular subtype of a type, both explicit ones and those implicit in other constructs.

Syntax

type_conversion ::=
subtype_mark(expression)
| subtype_mark(name)

The target subtype of a type_conversion is the subtype denoted by the subtype _mark. The operand
of a type_conversion is the expression or name within the parentheses; its type is the operand type.

One type is convertible to a second type if a type_conversion with the first type as operand type and
the second type as target type is legal according to the rules of this clause. Two types are convertible
if each is convertible to the other.

A type_conversion whose operand is the name of an object is called a view conversion if both its
target type and operand type are tagged, or if it appears in a call as an actual parameter of mode out or
in out; other type_conversions are called value conversions.

115 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules
The operand of a type_conversion is expected to be of any type.

The operand of a view conversion is interpreted only as a name; the operand of a value conversion is
interpreted as an expression.
Legality Rules

In a view conversion for an untagged type, the target type shall be convertible (back) to the operand
type.

If there is a type (other than a root numeric type) that is an ancestor of both the target type and the
operand type, or both types are class-wide types, then at least one of the following rules shall apply:

e The target type shall be untagged; or
e The operand type shall be covered by or descended from the target type; or
e The operand type shall be a class-wide type that covers the target type; or

e The operand and target types shall both be class-wide types and the specific type associated
with at least one of them shall be an interface type.

If there is no type (other than a root numeric type) that is the ancestor of both the target type and the
operand type, and they are not both class-wide types, one of the following rules shall apply:

e [f the target type is a numeric type, then the operand type shall be a numeric type.

e If the target type is an array type, then the operand type shall be an array type. Further:
o The types shall have the same dimensionality;
o Corresponding index types shall be convertible;
o The component subtypes shall statically match;

 If the component types are anonymous access types, then the accessibility level of the
operand type shall not be statically deeper than that of the target type;

 Neither the target type nor the operand type shall be limited;
o If the target type of a view conversion has aliased components, then so shall the operand
type; and

e The operand type of a view conversion shall not have a tagged, private, or volatile
subcomponent.

o If the target type is universal access, then the operand type shall be an access type.

o If the target type is a general access-to-object type, then the operand type shall be universal -
access or an access-to-object type. Further, if the operand type is not universal access:

o I[fthe target type is an access-to-variable type, then the operand type shall be an access-to-
variable type;

o If the target designated type is tagged, then the operand designated type shall be
convertible to the target designated type;

o If the target designated type is not tagged, then the designated types shall be the same,
and either:

o the designated subtypes shall statically match; or

o the designated type shall be discriminated in its full view and unconstrained in any
partial view, and one of the designated subtypes shall be unconstrained;

o The accessibility level of the operand type shall not be statically deeper than that of the
target type, unless the target type is an anonymous access type of a stand-alone object. If
the target type is that of such a stand-alone object, the accessibility level of the operand
type shall not be statically deeper than that of the declaration of the stand-alone object. In

© ISO/IEC 2012 — All rights reserved 116

ISO/IEC 8652:DIS

addition to the places where Legality Rules normally apply (see 12.3), this rule applies
also in the private part of an instance of a generic unit.

o If the target type is a pool-specific access-to-object type, then the operand type shall be
universal_access.

o If the target type is an access-to-subprogram type, then the operand type shall be universal -
access or an access-to-subprogram type. Further, if the operand type is not universal access:

o The designated profiles shall be subtype conformant.

o The accessibility level of the operand type shall not be statically deeper than that of the
target type. In addition to the places where Legality Rules normally apply (see 12.3), this
rule applies also in the private part of an instance of a generic unit. If the operand type is
declared within a generic body, the target type shall be declared within the generic body.

Static Semantics

A type_conversion that is a value conversion denotes the value that is the result of converting the
value of the operand to the target subtype.

A type_conversion that is a view conversion denotes a view of the object denoted by the operand.
This view is a variable of the target type if the operand denotes a variable; otherwise, it is a constant
of the target type.

The nominal subtype of a type_conversion is its target subtype.

Dynamic Semantics

For the evaluation of a type_conversion that is a value conversion, the operand is evaluated, and then
the value of the operand is converted to a corresponding value of the target type, if any. If there is no
value of the target type that corresponds to the operand value, Constraint_Error is raised; this can only
happen on conversion to a modular type, and only when the operand value is outside the base range of
the modular type. Additional rules follow:

e Numeric Type Conversion

o I[fthe target and the operand types are both integer types, then the result is the value of the
target type that corresponds to the same mathematical integer as the operand.

o If the target type is a decimal fixed point type, then the result is truncated (toward 0) if the
value of the operand is not a multiple of the small of the target type.

o If the target type is some other real type, then the result is within the accuracy of the
target type (see G.2, “Numeric Performance Requirements”, for implementations that
support the Numerics Annex).

o If the target type is an integer type and the operand type is real, the result is rounded to
the nearest integer (away from zero if exactly halfway between two integers).

e Enumeration Type Conversion

o The result is the value of the target type with the same position number as that of the
operand value.

e Array Type Conversion

o I[fthe target subtype is a constrained array subtype, then a check is made that the length of
each dimension of the value of the operand equals the length of the corresponding
dimension of the target subtype. The bounds of the result are those of the target subtype.

o If the target subtype is an unconstrained array subtype, then the bounds of the result are
obtained by converting each bound of the value of the operand to the corresponding index
type of the target type. For each nonnull index range, a check is made that the bounds of
the range belong to the corresponding index subtype.

e In either array case, the value of each component of the result is that of the matching
component of the operand value (see 4.5.2).

117 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

o If the component types of the array types are anonymous access types, then a check is
made that the accessibility level of the operand type is not deeper than that of the target

type.
e Composite (Non-Array) Type Conversion

e The value of each nondiscriminant component of the result is that of the matching
component of the operand value.

o The tag of the result is that of the operand. If the operand type is class-wide, a check is
made that the tag of the operand identifies a (specific) type that is covered by or
descended from the target type.

o For each discriminant of the target type that corresponds to a discriminant of the operand
type, its value is that of the corresponding discriminant of the operand value; if it
corresponds to more than one discriminant of the operand type, a check is made that all
these discriminants are equal in the operand value.

o For each discriminant of the target type that corresponds to a discriminant that is specified
by the derived_type_definition for some ancestor of the operand type (or if class-wide,
some ancestor of the specific type identified by the tag of the operand), its value in the
result is that specified by the derived_type_definition.

e For each discriminant of the operand type that corresponds to a discriminant that is
specified by the derived_type_definition for some ancestor of the target type, a check is
made that in the operand value it equals the value specified for it.

o For each discriminant of the result, a check is made that its value belongs to its subtype.
e Access Type Conversion

o For an access-to-object type, a check is made that the accessibility level of the operand
type is not deeper than that of the target type, unless the target type is an anonymous
access type of a stand-alone object. If the target type is that of such a stand-alone object, a
check is made that the accessibility level of the operand type is not deeper than that of the
declaration of the stand-alone object; then if the check succeeds, the accessibility level of
the target type becomes that of the operand type.

o I[f'the operand value is null, the result of the conversion is the null value of the target type.

o [f the operand value is not null, then the result designates the same object (or subprogram)
as is designated by the operand value, but viewed as being of the target designated
subtype (or profile); any checks associated with evaluating a conversion to the target
designated subtype are performed.

After conversion of the value to the target type, if the target subtype is constrained, a check is
performed that the value satisfies this constraint. If the target subtype excludes null, then a check is
made that the value is not null. If predicate checks are enabled for the target subtype (see 3.2.4), a
check is performed that the predicate of the target subtype is satisfied for the value.

For the evaluation of a view conversion, the operand name is evaluated, and a new view of the object
denoted by the operand is created, whose type is the target type; if the target type is composite, checks
are performed as above for a value conversion.

The properties of this new view are as follows:

o If the target type is composite, the bounds or discriminants (if any) of the view are as defined
above for a value conversion; each nondiscriminant component of the view denotes the
matching component of the operand object; the subtype of the view is constrained if either the
target subtype or the operand object is constrained, or if the target subtype is indefinite, or if
the operand type is a descendant of the target type and has discriminants that were not
inherited from the target type;

e If the target type is tagged, then an assignment to the view assigns to the corresponding part
of the object denoted by the operand; otherwise, an assignment to the view assigns to the

© ISO/IEC 2012 — All rights reserved 118

If

ISO/IEC 8652:DIS

object, after converting the assigned value to the subtype of the object (which might raise
Constraint_Error);

Reading the value of the view yields the result of converting the value of the operand object
to the target subtype (which might raise Constraint_Error), except if the object is of an access
type and the view conversion is passed as an out parameter; in this latter case, the value of the
operand object is used to initialize the formal parameter without checking against any
constraint of the target subtype (see 6.4.1).

an Accessibility Check fails, Program Error is raised. If a predicate check fails,

Assertions.Assertion_Error is raised. Any other check associated with a conversion raises
Constraint_Error if it fails.

Conversion to a type is the same as conversion to an unconstrained subtype of the type.

NOTES

19 In addition to explicit type_conversions, type conversions are performed implicitly in situations where the
expected type and the actual type of a construct differ, as is permitted by the type resolution rules (see 8.6). For
example, an integer literal is of the type universal integer, and is implicitly converted when assigned to a target of
some specific integer type. Similarly, an actual parameter of a specific tagged type is implicitly converted when the
corresponding formal parameter is of a class-wide type.

Even when the expected and actual types are the same, implicit subtype conversions are performed to adjust the array
bounds (if any) of an operand to match the desired target subtype, or to raise Constraint_Error if the (possibly adjusted)
value does not satisfy the constraints of the target subtype.

20 A ramification of the overload resolution rules is that the operand of an (explicit) type_conversion cannot be an
allocator, an aggregate, a string_literal, a character_literal, or an attribute_reference for an Access or
Unchecked_Access attribute. Similarly, such an expression enclosed by parentheses is not allowed. A
qualified_expression (see 4.7) can be used instead of such a type_conversion.

21 The constraint of the target subtype has no effect for a type_conversion of an elementary type passed as an out
parameter. Hence, it is recommended that the first subtype be specified as the target to minimize confusion (a similar
recommendation applies to renaming and generic formal in out objects).

Examples
Examples of numeric type conversion:
Real (2*7J) -- value is converted to floating point
Integer(1.6) -- value is 2
Integer(-0.4) -- valueis 0

Example of conversion between derived types:

type A Form is new B Form;

X : A Form;
B Form;

Y
X
Y

A Form(Y) ;
B _Form(X); -- thereverse conversion

Examples of conversions between array types:

type Sequence is array (Integer range <>) of Integer;

subtype Dozen is Sequence(l .. 12);

Ledger : array(l .. 100) of Integer;

Sequence (Ledger) -- bounds are those of Ledger
Sequence (Ledger (31 .. 42)) -- bounds are 31 and 42
Dozen (Ledger (31 .. 42)) -- bounds are those of Dozen

4.7 Qualified Expressions

Aq
that

119

ualified_expression is used to state explicitly the type, and to verify the subtype, of an operand
is either an expression or an aggregate.

Syntax

qualified_expression ::=
subtype_mark'(expression) | subtype_mark'aggregate

© ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules

The operand (the expression or aggregate) shall resolve to be of the type determined by the
subtype_mark, or a universal type that covers it.

Static Semantics

If the operand of a qualified_expression denotes an object, the qualified_expression denotes a
constant view of that object. The nominal subtype of a qualified_expression is the subtype denoted
by the subtype mark.

Dynamic Semantics

The evaluation of a qualified_expression evaluates the operand (and if of a universal type, converts it
to the type determined by the subtype_mark) and checks that its value belongs to the subtype denoted
by the subtype_mark. The exception Constraint_Error is raised if this check fails.

NOTES

22 When a given context does not uniquely identify an expected type, a qualified_expression can be used to do so. In

particular, if an overloaded name or aggregate is passed to an overloaded subprogram, it might be necessary to qualify
the operand to resolve its type.

Examples

Examples of disambiguating expressions using qualification:

type Mask is (Fix, Dec, Exp, Signif);
type Code is (Fix, Cla, Dec, Tnz, Sub);

Print (Mask' (Dec)); -- Dec is oftype Mask

Print (Code' (Dec)); -- Decisoftype Code

for J in Code' (Fix) .. Code' (Dec) loop ... --qualification needed for either Fix or Dec
for J in Code range Fix .. Dec loop ... -- qualification unnecessary

for J in Code' (Fix) .. Dec loop ... -- qualification unnecessary for Dec

Dozen'(l | 3 | 5 | 7 => 2, others => 0) --see4.6

4.8 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the object.

Syntax

allocator ::=
new [subpool_specification] subtype_indication
| new [subpool_specification] qualified_expression

subpool_specification ::= (subpool handle_name)

For an allocator with a subtype_indication, the subtype_indication shall not specify a
null_exclusion.

Name Resolution Rules

The expected type for an allocator shall be a single access-to-object type with designated type D such
that either D covers the type determined by the subtype_mark of the subtype indication or
qualified_expression, or the expected type is anonymous and the determined type is D'Class. A
subpool _handle name is expected to be of any type descended from Subpool Handle, which is the
type used to identify a subpool, declared in package System.Storage Pools.Subpools (see 13.11.4).

Legality Rules

An initialized allocator is an allocator with a qualified_expression. An uninitialized allocator is one
with a subtype_indication. In the subtype_indication of an uninitialized allocator, a constraint is
permitted only if the subtype mark denotes an unconstrained composite subtype; if there is no
constraint, then the subtype_mark shall denote a definite subtype.

© ISO/IEC 2012 — All rights reserved 120

ISO/IEC 8652:DIS

If the type of the allocator is an access-to-constant type, the allocator shall be an initialized allocator.

If a subpool_specification is given, the type of the storage pool of the access type shall be a
descendant of Root_Storage Pool With Subpools.

If the designated type of the type of the allocator is class-wide, the accessibility level of the type
determined by the subtype_indication or qualified_expression shall not be statically deeper than that
of the type of the allocator.

If the subtype determined by the subtype_indication or qualified_expression of the allocator has one
or more access discriminants, then the accessibility level of the anonymous access type of each access
discriminant shall not be statically deeper than that of the type of the allocator (see 3.10.2).

An allocator shall not be of an access type for which the Storage Size has been specified by a static
expression with value zero or is defined by the language to be zero.

If the designated type of the type of the allocator is limited, then the allocator shall not be used to
define the value of an access discriminant, unless the discriminated type is immutably limited (see
7.5).

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Static Semantics

If the designated type of the type of the allocator is elementary, then the subtype of the created object
is the designated subtype. If the designated type is composite, then the subtype of the created object is
the designated subtype when the designated subtype is constrained or there is an ancestor of the
designated type that has a constrained partial view; otherwise, the created object is constrained by its
initial value (even if the designated subtype is unconstrained with defaults).

Dynamic Semantics

For the evaluation of an initialized allocator, the evaluation of the qualified_expression is performed
first. An object of the designated type is created and the value of the qualified_expression is
converted to the designated subtype and assigned to the object.

For the evaluation of an uninitialized allocator, the elaboration of the subtype_indication is
performed first. Then:

o If the designated type is elementary, an object of the designated subtype is created and any
implicit initial value is assigned;

o If the designated type is composite, an object of the designated type is created with tag, if any,
determined by the subtype_mark of the subtype_indication. This object is then initialized by
default (see 3.3.1) using the subtype_indication to determine its nominal subtype. A check is
made that the value of the object belongs to the designated subtype. Constraint Error is raised
if this check fails. This check and the initialization of the object are performed in an arbitrary
order.

For any allocator, if the designated type of the type of the allocator is class-wide, then a check is
made that the master of the type determined by the subtype_indication, or by the tag of the value of
the qualified_expression, includes the elaboration of the type of the allocator. If any part of the
subtype determined by the subtype_indication or qualified_expression of the allocator (or by the tag
of the value if the type of the qualified_expression is class-wide) has one or more access
discriminants, then a check is made that the accessibility level of the anonymous access type of each
access discriminant is not deeper than that of the type of the allocator. Program Error is raised if
either such check fails.

If the object to be created by an allocator has a controlled or protected part, and the finalization of the
collection of the type of the allocator (see 7.6.1) has started, Program_Error is raised.

121 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

If the object to be created by an allocator contains any tasks, and the master of the type of the
allocator is completed, and all of the dependent tasks of the master are terminated (see 9.3), then
Program_Error is raised.

If the allocator includes a subpool handle name, Constraint_Error is raised if the subpool handle is
null. Program_Error is raised if the subpool does not belong (see 13.11.4) to the storage pool of the
access type of the allocator.

If the created object contains any tasks, they are activated (see 9.2). Finally, an access value that
designates the created object is returned.

Bounded (Run-Time) Errors

It is a bounded error if the finalization of the collection of the type (see 7.6.1) of the allocator has
started. If the error is detected, Program_Error is raised. Otherwise, the allocation proceeds normally.
NOTES
23 Allocators cannot create objects of an abstract type. See 3.9.3.

24 If any part of the created object is controlled, the initialization includes calls on corresponding Initialize or Adjust
procedures. See 7.6.

25 As explained in 13.11, “Storage Management”, the storage for an object allocated by an allocator comes from a
storage pool (possibly user defined). The exception Storage Error is raised by an allocator if there is not enough
storage. Instances of Unchecked Deallocation may be used to explicitly reclaim storage.

26 Implementations are permitted, but not required, to provide garbage collection.

Examples

Examples of allocators:
new Cell' (0, null, null) -- initialized explicitly, see 3.10.1
new Cell' (Value => 0, Succ => null, Pred => null) --initialized explicitly
new Cell -- not initialized
new Matrix (1 .. 10, 1 .. 20) -- the bounds only are given
new Matrix'(l .. 10 => (1 .. 20 => 0.0)) -- initialized explicitly
new Buffer (100) -- the discriminant only is given
new Buffer' (Size => 80, Pos => 0, Value => (1 .. 80 => 'A')) --initialized explicitly
Expr Ptr' (new Literal) -- allocator for access-to-class-wide type, see 3.9.1
Expr Ptr' (new Literal' (Expression with 3.5)) -- initialized explicitly

4.9 Static Expressions and Static Subtypes

Certain expressions of a scalar or string type are defined to be static. Similarly, certain discrete ranges
are defined to be static, and certain scalar and string subtypes are defined to be static subtypes. Static
means determinable at compile time, using the declared properties or values of the program entities.

A static expression is a scalar or string expression that is one of the following:
e anumeric_literal;
e astring_literal of a static string subtype;
e a name that denotes the declaration of a named number or a static constant;

e a function_call whose function_name or function_ prefix statically denotes a static function,
and whose actual parameters, if any (whether given explicitly or by default), are all static
expressions;

e an attribute_reference that denotes a scalar value, and whose prefix denotes a static scalar
subtype;

e an attribute_reference whose prefix statically denotes a statically constrained array object or
array subtype, and whose attribute_designator is First, Last, or Length, with an optional
dimension;

© ISO/IEC 2012 — All rights reserved 122

ISO/IEC 8652:DIS

e atype conversion whose subtype mark denotes a static scalar subtype, and whose operand
is a static expression;

e a qualified_expression whose subtype mark denotes a static (scalar or string) subtype, and
whose operand is a static expression;

e a membership test whose simple_expression is a static expression, and whose
membership_choice_list consists only of membership_choices that are either static
choice_expressions, static ranges, or subtype_marks that denote a static (scalar or string)
subtype;

e a short-circuit control form both of whose relations are static expressions;

e a conditional_expression all of whose conditions, selecting expressions, and
dependent expressions are static expressions;

e a static expression enclosed in parentheses.

A name statically denotes an entity if it denotes the entity and:

e It is a direct_name, expanded name, or character_literal, and it denotes a declaration other
than a renaming_declaration; or

e It is an attribute_reference whose prefix statically denotes some entity; or
e It denotes a renaming_declaration with a name that statically denotes the renamed entity.

A static function is one of the following:

e a predefined operator whose parameter and result types are all scalar types none of which are
descendants of formal scalar types;

e apredefined concatenation operator whose result type is a string type;
e an enumeration literal;

e a language-defined attribute that is a function, if the prefix denotes a static scalar subtype, and
if the parameter and result types are scalar.

In any case, a generic formal subprogram is not a static function.

A static constant is a constant view declared by a full constant declaration or an object_renaming_-
declaration with a static nominal subtype, having a value defined by a static scalar expression or by a
static string expression whose value has a length not exceeding the maximum length of a string_literal
in the implementation.

A static range is a range whose bounds are static expressions, or a range_attribute_reference that is
equivalent to such a range. A static discrete_range is one that is a static range or is a subtype_-
indication that defines a static scalar subtype. The base range of a scalar type is a static range, unless
the type is a descendant of a formal scalar type.

A static subtype is either a static scalar subtype or a static string subtype. A static scalar subtype is an
unconstrained scalar subtype whose type is not a descendant of a formal type, or a constrained scalar
subtype formed by imposing a compatible static constraint on a static scalar subtype. A static string
subtype is an unconstrained string subtype whose index subtype and component subtype are static, or
a constrained string subtype formed by imposing a compatible static constraint on a static string
subtype. In any case, the subtype of a generic formal object of mode in out, and the result subtype of
a generic formal function, are not static. Also, a subtype is not static if any Dynamic Predicate
specifications apply to it.

The different kinds of static constraint are defined as follows:
e A null constraint is always static;
e A scalar constraint is static if it has no range_constraint, or one with a static range;

e An index constraint is static if each discrete_range is static, and each index subtype of the
corresponding array type is static;

123 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

A discriminant constraint is static if each expression of the constraint is static, and the
subtype of each discriminant is static.

In any case, the constraint of the first subtype of a scalar formal type is neither static nor null.

A subtype is statically constrained if it is constrained, and its constraint is static. An object is
statically constrained if its nominal subtype is statically constrained, or if it is a static string constant.

Legality Rules

An expression is statically unevaluated if it is part of:

the right operand of a static short-circuit control form whose value is determined by its left
operand; or

a dependent _expression of an if_expression whose associated condition is static and equals
False; or

a condition or dependent expression of an if_expression where the condition corresponding
to at least one preceding dependent expression of the if_expression is static and equals
True; or

a dependent_expression of a case_expression whose selecting expression is static and
whose value is not covered by the corresponding discrete_choice_list; or

a choice_expression (or a simple_expression of a range that occurs as a
membership_choice of a membership_choice_list) of a static membership test that is
preceded in the enclosing membership_choice_list by another item whose individual
membership test (see 4.5.2) statically yields True.

A static expression is evaluated at compile time except when it is statically unevaluated. The compile-
time evaluation of a static expression is performed exactly, without performing Overflow_Checks. For
a static expression that is evaluated:

The expression is illegal if its evaluation fails a language-defined check other than
Overflow_Check. For the purposes of this evaluation, the assertion policy is assumed to be
Check.

If the expression is not part of a larger static expression and the expression is expected to be
of a single specific type, then its value shall be within the base range of its expected type.
Otherwise, the value may be arbitrarily large or small.

If the expression is of type universal real and its expected type is a decimal fixed point type,
then its value shall be a multiple of the small of the decimal type. This restriction does not
apply if the expected type is a descendant of a formal scalar type (or a corresponding actual
type in an instance).

In addition to the places where Legality Rules normally apply (see 12.3), the above restrictions also
apply in the private part of an instance of a generic unit.

Implementation Requirements

For a real static expression that is not part of a larger static expression, and whose expected type is not
a descendant of a formal type, the implementation shall round or truncate the value (according to the
Machine Rounds attribute of the expected type) to the nearest machine number of the expected type;
if the value is exactly half-way between two machine numbers, the rounding performed is
implementation-defined. If the expected type is a descendant of a formal type, or if the static
expression appears in the body of an instance of a generic unit and the corresponding expression is
nonstatic in the corresponding generic body, then no special rounding or truncating is required —
normal accuracy rules apply (see Annex G).

© ISO/IEC 2012 — All rights reserved

124

ISO/IEC 8652:DIS

Implementation Advice

For a real static expression that is not part of a larger static expression, and whose expected type is not
a descendant of a formal type, the rounding should be the same as the default rounding for the target
system.

NOTES

27 An expression can be static even if it occurs in a context where staticness is not required.

28 A static (or run-time) type_conversion from a real type to an integer type performs rounding. If the operand value
is exactly half-way between two integers, the rounding is performed away from zero.

Examples

Examples of static expressions:

1+ 1 -2

abs (-10)*3 --30

Kilo : constant := 1000;

Mega : constant := Kilo*Kilo; --1_000_000

Long : constant := Float'Digits*2;

Half Pi : constant := Pi/2; --see 3.3.2

Deg To Rad : constant := Half Pi/90;

Rad_To Deg : constant := 1.0/Deg To Rad; --equivalentto 1.0/((3.14159 26536/2)/90)

4.9.1 Statically Matching Constraints and Subtypes

Static Semantics
A constraint statically matches another constraint if:
e Dboth are null constraints;
e both are static and have equal corresponding bounds or discriminant values;

e both are nonstatic and result from the same elaboration of a constraint of a subtype_-
indication or the same evaluation of a range of a discrete_subtype_definition; or

¢ both are nonstatic and come from the same formal_type_declaration.

A subtype statically matches another subtype of the same type if they have statically matching
constraints, all predicate specifications that apply to them come from the same declarations, and, for
access subtypes, either both or neither exclude null. Two anonymous access-to-object subtypes
statically match if their designated subtypes statically match, and either both or neither exclude null,
and either both or neither are access-to-constant. Two anonymous access-to-subprogram subtypes
statically match if their designated profiles are subtype conformant, and either both or neither exclude
null.

Two ranges of the same type statically match if both result from the same evaluation of a range, or if
both are static and have equal corresponding bounds.

A constraint is statically compatible with a scalar subtype if it statically matches the constraint of the
subtype, or if both are static and the constraint is compatible with the subtype. A constraint is
statically compatible with an access or composite subtype if it statically matches the constraint of the
subtype, or if the subtype is unconstrained.

Two statically matching subtypes are statically compatible with each other. In addition, a subtype S/
is statically compatible with a subtype S2 if:

e the constraint of S/ is statically compatible with S2, and
e if S2 excludes null, so does S/, and

e cither:
« all predicate specifications that apply to S2 apply also to S/, or

125 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

» both subtypes are static, every value that satisfies the predicate of S/ also satisfies the
predicate of S2, and it is not the case that both types each have at least one applicable
predicate specification, predicate checks are enabled (see 11.4.2) for S2, and predicate
checks are not enabled for S/.

© ISO/IEC 2012 — All rights reserved 126

ISO/IEC 8652:DIS

Section 5: Statements

A statement defines an action to be performed upon its execution.

This section describes the general rules applicable to all statements. Some statements are discussed
in later sections: Procedure_call_statements and return statements are described in 6,
“Subprograms”. Entry_call_statements, requeue_statements, delay_statements, accept_-
statements, select statements, and abort statements are described in 9, “Tasks and
Synchronization”. Raise_statements are described in 11, “Exceptions”, and code_statements in 13.
The remaining forms of statements are presented in this section.

5.1 Simple and Compound Statements - Sequences of Statements

A statement is either simple or compound. A simple_statement encloses no other statement. A
compound_statement can enclose simple_statements and other compound_statements.
Syntax
sequence_of_statements ::= statement {statement} {label}

statement ::=
{label} simple_statement | {label} compound_statement

simple_statement ::= null_statement

| assignment_statement | exit_statement

| goto_statement | procedure_call_statement
| simple_return_statement | entry_call_statement

| requeue_statement | delay_statement

| abort_statement | raise_statement

| code_statement
compound_statement ::=

if_statement | case_statement
| loop_statement | block_statement
| extended_return_statement
| accept_statement | select_statement

null_statement ::= null;

label ::= <</abel statement_identifier>>

statement_identifier ::= direct_name

The direct_name of a statement_identifier shall be an identifier (not an operator_symbol).

Name Resolution Rules

The direct_name of a statement_identifier shall resolve to denote its corresponding implicit
declaration (see below).

Legality Rules

Distinct identifiers shall be used for all statement_identifiers that appear in the same body, including
inner block_statements but excluding inner program units.

Static Semantics

For each statement_identifier, there is an implicit declaration (with the specified identifier) at the end
of the declarative_part of the innermost block statement or body that encloses the
statement_identifier. The implicit declarations occur in the same order as the statement_identifiers
occur in the source text. If a usage name denotes such an implicit declaration, the entity it denotes is
the label, loop_statement, or block_statement with the given statement_identifier.

127 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

If one or more labels end a sequence_of_statements, an implicit null_statement follows the labels
before any following constructs.

Dynamic Semantics
The execution of a null_statement has no effect.

A transfer of control is the run-time action of an exit_statement, return statement, goto_statement,
or requeue_statement, selection of a terminate_alternative, raising of an exception, or an abort,
which causes the next action performed to be one other than what would normally be expected from
the other rules of the language. As explained in 7.6.1, a transfer of control can cause the execution of
constructs to be completed and then left, which may trigger finalization.

The execution of a sequence_of statements consists of the execution of the individual statements
in succession until the sequence__ is completed.

NOTES

1 A statement_identifier that appears immediately within the declarative region of a named loop_statement or an
accept_statement is nevertheless implicitly declared immediately within the declarative region of the innermost
enclosing body or block_statement; in other words, the expanded name for a named statement is not affected by
whether the statement occurs inside or outside a named loop or an accept statement — only nesting within
block_statements is relevant to the form of its expanded name.

Examples

Examples of labeled statements:
<<Here>> <<Ici>> <<Aqui>> <<Hier>> null;

<<After>> X := 1;

5.2 Assignment Statements

An assignment_statement replaces the current value of a variable with the result of evaluating an
expression.

Syntax

assignment_statement ::=
variable_name := expression;

The execution of an assignment_statement includes the evaluation of the expression and the
assignment of the value of the expression into the farget. An assignment operation (as opposed to an
assignment_statement) is performed in other contexts as well, including object initialization and by-
copy parameter passing. The farget of an assignment operation is the view of the object to which a
value is being assigned; the target of an assignment_statement is the variable denoted by the
variable_name.

Name Resolution Rules

The variable_name of an assignment_statement is expected to be of any type. The expected type
for the expression is the type of the target.

Legality Rules
The target denoted by the variable name shall be a variable of a nonlimited type.

If the target is of a tagged class-wide type 7T'Class, then the expression shall either be dynamically
tagged, or of type T and tag-indeterminate (see 3.9.2).

Dynamic Semantics

For the execution of an assignment_statement, the variable name and the expression are first
evaluated in an arbitrary order.

© ISO/IEC 2012 — All rights reserved 128

ISO/IEC 8652:DIS

When the type of the target is class-wide:

e If the expression is tag-indeterminate (see 3.9.2), then the controlling tag value for the
expression is the tag of the target;

e Otherwise (the expression is dynamically tagged), a check is made that the tag of the value of
the expression is the same as that of the target; if this check fails, Constraint_Error is raised.

The value of the expression is converted to the subtype of the target. The conversion might raise an
exception (see 4.6).

In cases involving controlled types, the target is finalized, and an anonymous object might be used as
an intermediate in the assignment, as described in 7.6.1, “Completion and Finalization”. In any case,
the converted value of the expression is then assigned to the target, which consists of the following
two steps:

e The value of the target becomes the converted value.

e Ifany part of the target is controlled, its value is adjusted as explained in clause 7.6.

NOTES
2 The tag of an object never changes; in particular, an assignment_statement does not change the tag of the target.

Examples
Examples of assignment statements:
Value := Max Value - 1;
Shade := Blue;
Next Frame(F) (M, N) := 2.5; -- see4.1.1
U := Dot Product (V, W); -- see6.3
Writer := (Status => Open, Unit => Printer, Line Count => 60); --see3.8./
Next Car.all := (72074, null); -- see3.10.1

Examples involving scalar subtype conversions:

I, J : Integer range 1 .. 10 := 5;

K : Integer range 1 .. 20 := 15;

I :=J; -- Iidentical ranges

K := J; -- compatible ranges

J := K; -- will raise Constraint_Error if K > 10

Examples involving array subtype conversions:

A : String(l .. 31);

B : String(3 .. 33);

A := B; -- same number of components

A(l .. 9) = "tar sauce";

A(4 .. 12) := A(1 .. 9); -- A(l..12) = "tartar sauce"
NOTES

3 Notes on the examples: Assignment_statements are allowed even in the case of overlapping slices of the same
array, because the variable_name and expression are both evaluated before copying the value into the variable. In the
above example, an implementation yielding A(1 .. 12) = "tartartartar" would be incorrect.

5.3 If Statements

An if _statement selects for execution at most one of the enclosed sequences of statements,
depending on the (truth) value of one or more corresponding conditions.

129 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Syntax

if _statement ::=
if condition then
sequence_of statements
{elsif condition then
sequence_of statements}
[else
sequence_of statements]
end if;

Dynamic Semantics

For the execution of an if_statement, the condition specified after if, and any conditions specified
after elsif, are evaluated in succession (treating a final else as elsif True then), until one evaluates to
True or all conditions are evaluated and yield False. If a condition evaluates to True, then the
corresponding sequence_of_statements is executed; otherwise, none of them is executed.

Examples

Examples of if statements:
if Month = December and Day = 31 then

Month := January;

Day = 1;

Year = Year + 1;
end if;

if Line Too_Short then
raise Layout Error;
elsif Line Full then
New Line;
Put (Item) ;
else
Put (Item) ;
end if;

if My Car.Owner.Vehicle /= My Car then -- see 3.10.1
Report ("Incorrect data");
end if;

5.4 Case Statements

A case_statement selects for execution one of a number of alternative sequences_of statements;
the chosen alternative is defined by the value of an expression.

Syntax

case_statement ::=
case selecting_expression is
case_statement_alternative
{case_statement_alternative}
end case;

case_statement_alternative ::=
when discrete_choice_list =>
sequence_of statements

Name Resolution Rules

The selecting expression is expected to be of any discrete type. The expected type for each
discrete_choice is the type of the selecting expression.

© ISO/IEC 2012 — All rights reserved 130

ISO/IEC 8652:DIS

Legality Rules

The choice_expressions, subtype_indications, and ranges given as discrete_choices of a
case_statement shall be static. A discrete_choice others, if present, shall appear alone and in the
last discrete_choice_list.

The possible values of the selecting expression shall be covered (see 3.8.1) as follows:

o If the selecting expression is a name (including a type_conversion, qualified_expression,
or function_call) having a static and constrained nominal subtype, then each non-others
discrete_choice shall cover only values in that subtype that satisfy its predicate (see 3.2.4),
and each value of that subtype that satisfies its predicate shall be covered by some
discrete_choice (either explicitly or by others).

o If the type of the selecting expression is root_integer, universal_integer, or a descendant of
a formal scalar type, then the case_statement shall have an others discrete_choice.

e Otherwise, each value of the base range of the type of the selecting expression shall be
covered (either explicitly or by others).

Two distinct discrete_choices of a case_statement shall not cover the same value.

Dynamic Semantics
For the execution of a case_statement the selecting expression is first evaluated.

If the value of the selecting expression is covered by the discrete_choice_list of some case_-
statement_alternative, then the sequence of statements of the _alternative is executed.

Otherwise (the value is not covered by any discrete_choice_list, perhaps due to being outside the
base range), Constraint Error is raised.

NOTES
4 The execution of a case_statement chooses one and only one alternative. Qualification of the expression of a
case_statement by a static subtype can often be used to limit the number of choices that need be given explicitly.

Examples

Examples of case statements:

case Sensor is
when Elevation => Record Elevation(Sensor Value) ;

when Azimuth => Record Azimuth (Sensor Value) ;
when Distance => Record Distance (Sensor Value) ;
when others => null;

end case;

case Today is

when Mon => Compute Initial Balance;
when Fri => Compute Closing Balance;
when Tue .. Thu=> Generate Report (Today) ;
when Sat .. Sun=> null;

end case;

case Bin Number (Count) is

when 1 => Update Bin(1) ;
when 2 => Update Bin(2) ;
when 3 | 4=>

Empty Bin(1);
Empty Bin(2);
when others => raise Error;
end case;

5.5 Loop Statements

A loop_statement includes a sequence_of statements that is to be executed repeatedly, zero or
more times.

131 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Syntax

loop_statement ::=
[loop statement_identifier:]
[iteration_scheme] loop
sequence_of statements
end loop [loop_identifier];

iteration_scheme ::= while condition
| for loop_parameter_specification
| for iterator_specification

loop_parameter_specification ::=
defining_identifier in [reverse] discrete_subtype_definition

If a loop_statement has a loop_statement_identifier, then the identifier shall be repeated after the
end loop; otherwise, there shall not be an identifier after the end loop.

Static Semantics

A loop_parameter_specification declares a loop parameter, which is an object whose subtype is that
defined by the discrete_subtype_definition.

Dynamic Semantics

For the execution of a loop_statement, the sequence_of_statements is executed repeatedly, zero or
more times, until the loop_statement is complete. The loop_statement is complete when a transfer of
control occurs that transfers control out of the loop, or, in the case of an iteration_scheme, as
specified below.

For the execution of a loop_statement with a while iteration_scheme, the condition is evaluated
before each execution of the sequence_of statements; if the value of the condition is True, the
sequence_of_statements is executed; if False, the execution of the loop_statement is complete.

For the execution of a loop_statement with the iteration_scheme being for loop_parameter_-
specification, the loop_parameter_specification is first elaborated. This elaboration creates the loop
parameter and elaborates the discrete_subtype_definition. If the discrete_subtype_definition defines
a subtype with a null range, the execution of the loop_statement is complete. Otherwise, the
sequence_of_statements is executed once for each value of the discrete subtype defined by the
discrete_subtype_definition that satisfies the predicate of the subtype (or until the loop is left as a
consequence of a transfer of control). Prior to each such iteration, the corresponding value of the
discrete subtype is assigned to the loop parameter. These values are assigned in increasing order
unless the reserved word reverse is present, in which case the values are assigned in decreasing order.

For details about the execution of a loop_statement with the iteration_scheme being for
iterator_specification, see 5.5.2.

NOTES
5 A loop parameter is a constant; it cannot be updated within the sequence_of_statements of the loop (see 3.3).

6 An object_declaration should not be given for a loop parameter, since the loop parameter is automatically declared
by the loop_parameter_specification. The scope of a loop parameter extends from the loop_parameter_specification
to the end of the loop_statement, and the visibility rules are such that a loop parameter is only visible within the
sequence_of_statements of the loop.

7 The discrete_subtype_definition of a for loop is elaborated just once. Use of the reserved word reverse does not
alter the discrete subtype defined, so that the following iteration_schemes are not equivalent; the first has a null range.

for J in reverse 1 .. 0
for J in 0 .. 1

© ISO/IEC 2012 — All rights reserved 132

ISO/IEC 8652:DIS

Examples

Example of a loop statement without an iteration scheme:

loop

Get (Current Character) ;

exit when Current Character = '*';
end loop;

Example of a loop statement with a while iteration scheme:

while Bid(N) .Price < Cut Off.Price loop
Record Bid(Bid(N) .Price) ;
N := N+ 1;

end loop;

Example of a loop statement with a for iteration scheme:

for J in Buffer'Range loop - - works even with a null range
if Buffer(J) /= Space then
Put (Buffer (J)) ;
end if;
end loop;

Example of a loop statement with a name:

Summation:
while Next /= Head loop --see 3.10.1
Sum := Sum + Next.Value;
Next := Next.Succ;

end loop Summation;

5.5.1 User-Defined lterator Types

Static Semantics

The following language-defined generic library package exists:

generic

type Cursor;

with function Has Element (Position : Cursor) return Boolean;
package Ada.Iterator Interfaces is

pragma Pure (Iterator Interfaces);

type Forward Iterator is limited interface;
function First (Object : Forward Iterator) return Cursor is abstract;
function Next (Object : Forward Iterator; Position : Cursor)

return Cursor is abstract;

type Reversible Iterator is limited interface and Forward Iterator;

function Last (Object : Reversible Iterator) return Cursor is abstract;

function Previous (Object : Reversible Iterator; Position : Cursor)
return Cursor is abstract;

end Ada.Iterator Interfaces;

An iterator type is a type descended from the Forward Iterator interface from some instance of
Ada.lterator Interfaces. A reversible iterator type is a type descended from the Reversible Iterator
interface from some instance of Ada.lterator Interfaces. An iferator object is an object of an iterator
type. A reversible iterator object is an object of a reversible iterator type. The formal subtype Cursor
from the associated instance of Ada.lterator Interfaces is the iteration cursor subtype for the iterator

type.

The following type-related operational aspects may be specified for an indexable container type 7 (see
4.1.6):

Default _Iterator
This aspect is specified by a name that denotes exactly one function declared
immediately within the same declaration list in which 7 is declared, whose first parameter
is of type 7 or T'Class or an access parameter whose designated type is type T or T'Class,
whose other parameters, if any, have default expressions, and whose result type is an

133 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

iterator type. This function is the default iterator function for T. Its result subtype is the
default iterator subtype for T. The iteration cursor subtype for the default iterator subtype
is the default cursor subtype for T.

Iterator Element
This aspect is specified by a hame that denotes a subtype. This is the default element
subtype for T.

These aspects are inherited by descendants of type T (including 7"Class).

An iterable container type is an indexable container type with specified Default Iterator and
Iterator Element aspects. A reversible iterable container type is an iterable container type with the
default iterator type being a reversible iterator type. An iferable container object is an object of an
iterable container type. A reversible iterable container object is an object of a reversible iterable
container type.

Legality Rules

The Constant_Indexing aspect (if any) of an iterable container type T shall denote exactly one
function with the following properties:

e the result type of the function is covered by the default element type of T or is a reference
type (see 4.1.5) with an access discriminant designating a type covered by the default element
type of T;

o the type of the second parameter of the function covers the default cursor type for 7;
e if there are more than two parameters, the additional parameters all have default expressions.
This function (if any) is the default constant indexing function for T.

The Variable Indexing aspect (if any) of an iterable container type 7 shall denote exactly one
function with the following properties:

o the result type of the function is a reference type (see 4.1.5) with an access discriminant
designating a type covered by the default element type of T;

e the type of the second parameter of the function covers the default cursor type for T;
o if there are more than two parameters, the additional parameters all have default expressions.

This function (if any) is the default variable indexing function for T.

5.5.2 Generalized Loop Iteration

Generalized forms of loop iteration are provided by an iterator_specification.

Syntax

iterator_specification ::=
defining_identifier in [reverse] iterator name
| defining_identifier [: subtype_indication] of [reverse] iterable_name

Name Resolution Rules

For the first form of iterator_specification, called a generalized iterator, the expected type for the
iterator_name is any iterator type. For the second form of iterator_specification, the expected type
for the iterable name is any array or iterable container type. If the iterable_name denotes an array
object, the iterator_specification is called an array component iterator; otherwise it is called a
container element iterator.

Legality Rules

If the reserved word reverse appears, the iterator_specification is a reverse iterator; otherwise it is a
Jforward iterator. In a reverse generalized iterator, the iterator name shall be of a reversible iterator

© ISO/IEC 2012 — All rights reserved 134

ISO/IEC 8652:DIS

type. In a reverse container element iterator, the default iterator type for the type of the iterable name
shall be a reversible iterator type.

The type of the subtype_indication, if any, of an array component iterator shall cover the component
type of the type of the iterable name. The type of the subtype_indication, if any, of a container
element iterator shall cover the default element type for the type of the iterable name.

In a container element iterator whose iterable_ name has type 7, if the iterable name denotes a
constant or the Variable Indexing aspect is not specified for 7, then the Constant Indexing aspect
shall be specified for 7.

Static Semantics

An iterator_specification declares a loop parameter. In a generalized iterator, the nominal subtype of
the loop parameter is the iteration cursor subtype. In an array component iterator or a container
element iterator, if a subtype_indication is present, it determines the nominal subtype of the loop
parameter. In an array component iterator, if a subtype_indication is not present, the nominal subtype
of the loop parameter is the component subtype of the type of the iterable name. In a container
element iterator, if a subtype_indication is not present, the nominal subtype of the loop parameter is
the default element subtype for the type of the iterable name.

In a generalized iterator, the loop parameter is a constant. In an array component iterator, the loop
parameter is a constant if the itferable name denotes a constant; otherwise it denotes a variable. In a
container element iterator, the loop parameter is a constant if the iterable_name denotes a constant, or
if the Variable Indexing aspect is not specified for the type of the iferable_name; otherwise it is a
variable.

Dynamic Semantics

For the execution of a loop_statement with an iterator_specification, the iterator_specification is
first elaborated. This elaboration elaborates the subtype_indication, if any.

For a generalized iterator, the loop parameter is created, the iferator name is evaluated, and the
denoted iterator object becomes the /oop iterator. In a forward generalized iterator, the operation First
of the iterator type is called on the loop iterator, to produce the initial value for the loop parameter. If
the result of calling Has Element on the initial value is False, then the execution of the
loop_statement is complete. Otherwise, the sequence_of statements is executed and then the Next
operation of the iterator type is called with the loop iterator and the current value of the loop
parameter to produce the next value to be assigned to the loop parameter. This repeats until the result
of calling Has Element on the loop parameter is False, or the loop is left as a consequence of a
transfer of control. For a reverse generalized iterator, the operations Last and Previous are called
rather than First and Next.

For an array component iterator, the iterable_name is evaluated and the denoted array object becomes
the array for the loop. If the array for the loop is a null array, then the execution of the
loop_statement is complete. Otherwise, the sequence_of statements is executed with the loop
parameter denoting each component of the array for the loop, using a canonical order of components,
which is last dimension varying fastest (unless the array has convention Fortran, in which case it is
first dimension varying fastest). For a forward array component iterator, the iteration starts with the
component whose index values are each the first in their index range, and continues in the canonical
order. For a reverse array component iterator, the iteration starts with the component whose index
values are each the last in their index range, and continues in the reverse of the canonical order. The
loop iteration proceeds until the sequence_of statements has been executed for each component of
the array for the loop, or until the loop is left as a consequence of a transfer of control.

For a container element iterator, the iterable_name is evaluated and the denoted iterable container
object becomes the iterable container object for the loop. The default iterator function for the type of

135 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

the iterable container object for the loop is called on the iterable container object and the result is the
loop iterator. An object of the default cursor subtype is created (the loop cursor).

For a forward container element iterator, the operation First of the iterator type is called on the loop
iterator, to produce the initial value for the loop cursor. If the result of calling Has Element on the
initial value is False, then the execution of the loop_statement is complete. Otherwise, the
sequence_of_statements is executed with the loop parameter denoting an indexing (see 4.1.6) into
the iterable container object for the loop, with the only parameter to the indexing being the current
value of the loop cursor; then the Next operation of the iterator type is called with the loop iterator
and the loop cursor to produce the next value to be assigned to the loop cursor. This repeats until the
result of calling Has_FElement on the loop cursor is False, or until the loop is left as a consequence of a
transfer of control. For a reverse container element iterator, the operations Last and Previous are
called rather than First and Next. If the loop parameter is a constant (see above), then the indexing
uses the default constant indexing function for the type of the iterable container object for the loop;
otherwise it uses the default variable indexing function.

Examples
- - Array component iterator example:
for Element of Board loop -- See3.6.l.
Element := Element * 2.0; -- Double each element of Board, a two-dimensional array.

end loop;

For examples of use of generalized iterators, see A.18.32 and the corresponding container packages in
A.18.2 and A.18.3.

5.6 Block Statements

A block_statement encloses a handled_sequence_of statements optionally preceded by a
declarative_part.

Syntax

block statement ::=
[block statement_identifier:]
[declare
declarative_part]
begin
handled_sequence_of statements
end [block_identifier];

If a block_statement has a block statement_identifier, then the identifier shall be repeated after
the end; otherwise, there shall not be an identifier after the end.

Static Semantics

A block_statement that has no explicit declarative_part has an implicit empty declarative_part.

Dynamic Semantics

The execution of a block_statement consists of the elaboration of its declarative_part followed by
the execution of its handled_sequence_of statements.

Examples

Example of a block statement with a local variable:

Swap:
declare
Temp : Integer;
begin
Temp := V; V := U; U := Temp;
end Swap;

© ISO/IEC 2012 — All rights reserved 136

ISO/IEC 8652:DIS

5.7 Exit Statements

An exit_statement is used to complete the execution of an enclosing loop_statement; the completion
is conditional if the exit_statement includes a condition.

Syntax

exit_statement ::=
exit [loop name] [when condition];

Name Resolution Rules

The loop_name, if any, in an exit_statement shall resolve to denote a loop_statement.

Legality Rules

Each exit_statement applies to a loop_statement; this is the loop_statement being exited. An exit_-
statement with a name is only allowed within the loop_statement denoted by the name, and applies
to that loop_statement. An exit_statement without a name is only allowed within a loop_statement,
and applies to the innermost enclosing one. An exit_statement that applies to a given loop_-
statement shall not appear within a body or accept_statement, if this construct is itself enclosed by
the given loop_statement.

Dynamic Semantics
For the execution of an exit_statement, the condition, if present, is first evaluated. If the value of the

condition is True, or if there is no condition, a transfer of control is done to complete the loop_-
statement. If the value of the condition is False, no transfer of control takes place.

NOTES
8 Several nested loops can be exited by an exit_statement that names the outer loop.

Examples

Examples of loops with exit statements.

for N in 1 .. Max Num Items loop
Get New Item(New Item) ;
Merge Item(New Item, Storage File);
exit when New Item = Terminal Item;
end loop;

Main Cycle:
loop
- - initial statements
exit Main_Cycle when Found;
- - final statements
end loop Main Cycle;

5.8 Goto Statements

A goto_statement specifies an explicit transfer of control from this statement to a target statement
with a given label.

Syntax

goto_statement ::= goto label name;

Name Resolution Rules

The label_name shall resolve to denote a label; the statement with that label is the target statement.

137 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Legality Rules

The innermost sequence_of statements that encloses the target statement shall also enclose the
goto_statement. Furthermore, if a goto_statement is enclosed by an accept_statement or a body,
then the target statement shall not be outside this enclosing construct.

Dynamic Semantics

The execution of a goto_statement transfers control to the target statement, completing the execution
of any compound_statement that encloses the goto_statement but does not enclose the target.

NOTES

9 The above rules allow transfer of control to a statement of an enclosing sequence_of_statements but not the
reverse. Similarly, they prohibit transfers of control such as between alternatives of a case_statement, if_statement, or
select_statement; between exception_handlers; or from an exception_handler of a
handled_sequence_of_statements back to its sequence_of_statements.

Examples

Example of a loop containing a goto statement:

<<Sort>>
for I in 1 .. N-1 loop
if A(I) > A(I+1) then
Exchange (A(I), A(I+1));
goto Sort;
end if;
end loop;

© ISO/IEC 2012 — All rights reserved 138

ISO/IEC 8652:DIS

Section 6: Subprograms

A subprogram is a program unit or intrinsic operation whose execution is invoked by a subprogram
call. There are two forms of subprogram: procedures and functions. A procedure call is a statement; a
function call is an expression and returns a value. The definition of a subprogram can be given in two

part

s: a subprogram declaration defining its interface, and a subprogram_body defining its execution.

Operators and enumeration literals are functions.

A callable entity is a subprogram or entry (see Section 9). A callable entity is invoked by a call; that
is, a subprogram call or entry call. A callable construct is a construct that defines the action of a call
upon a callable entity: a subprogram_body, entry_body, or accept_statement.

6.1

Subprogram Declarations

A subprogram_declaration declares a procedure or function.

139

Syntax

subprogram_declaration ::=
[overriding_indicator]

subprogram_specification

[aspect_specification];

subprogram_specification ::=
procedure_specification
| function_specification

procedure_specification ::= procedure defining_program_unit_name parameter_profile
function_specification ::= function defining_designator parameter_and_result_profile
designator ::= [parent_unit_name . Jidentifier | operator_symbol

defining_designator ::= defining_program_unit_name | defining_operator_symbol
defining_program_unit_name ::= [parent_unit_name .]defining_identifier

The optional parent_unit_name is only allowed for library units (see 10.1.1).
operator_symbol ::= string_literal

The sequence of characters in an operator_symbol shall form a reserved word, a delimiter, or
compound delimiter that corresponds to an operator belonging to one of the six categories of
operators defined in clause 4.5.

defining_operator_symbol ::= operator_symbol

parameter_profile ::= [formal_part]

parameter_and_result_profile ::=

[formal_part] return [null_exclusion] subtype_mark
| [formal_part] return access_definition

formal_part ::=
(parameter_specification {; parameter_specification})
parameter_specification ::=
defining_identifier_list : [aliased] mode [null_exclusion] subtype_mark [:= default_expressi
on]
| defining_identifier_list : access_definition [:= default_expression]

mode ::= [in] | in out | out

© ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules

A formal parameter is an object directly visible within a subprogram_body that represents the actual
parameter passed to the subprogram in a call; it is declared by a parameter_specification. For a
formal parameter, the expected type for its default_expression, if any, is that of the formal parameter.

Legality Rules

The parameter mode of a formal parameter conveys the direction of information transfer with the
actual parameter: in, in out, or out. Mode in is the default, and is the mode of a parameter defined by
an access_definition.

A default_expression is only allowed in a parameter_specification for a formal parameter of mode
in.

A subprogram_declaration or a generic_subprogram_declaration requires a completion unless the
Import aspect (see B.1) is True for the declaration; the completion shall be a body or a
renaming_declaration (see 8.5). A completion is not allowed for an
abstract_subprogram_declaration (see 3.9.3), a null_procedure_declaration (see 6.7), or an
expression_function_declaration (see 6.8).

A name that denotes a formal parameter is not allowed within the formal_part in which it is declared,
nor within the formal_part of a corresponding body or accept_statement.

Static Semantics

The profile of (a view of) a callable entity is either a parameter_profile or
parameter_and_result_profile; it embodies information about the interface to that entity — for
example, the profile includes information about parameters passed to the callable entity. All callable
entities have a profile — enumeration literals, other subprograms, and entries. An access-to-
subprogram type has a designated profile. Associated with a profile is a calling convention. A
subprogram_declaration declares a procedure or a function, as indicated by the initial reserved word,
with name and profile as given by its specification.

The nominal subtype of a formal parameter is the subtype determined by the optional null_exclusion
and the subtype_mark, or defined by the access_definition, in the parameter_specification. The
nominal subtype of a function result is the subtype determined by the optional null_exclusion and the
subtype_mark, or defined by the access_definition, in the parameter_and_result_profile.

An explicitly aliased parameter is a formal parameter whose parameter_specification includes the
reserved word aliased.

An access parameter is a formal in parameter specified by an access_definition. An access result
type is a function result type specified by an access_definition. An access parameter or result type is
of an anonymous access type (see 3.10). Access parameters of an access-to-object type allow
dispatching calls to be controlled by access values. Access parameters of an access-to-subprogram
type permit calls to subprograms passed as parameters irrespective of their accessibility level.
The subtypes of a profile are:

e For any non-access parameters, the nominal subtype of the parameter.

e For any access parameters of an access-to-object type, the designated subtype of the
parameter type.

e For any access parameters of an access-to-subprogram type, the subtypes of the designated
profile of the parameter type.

e For any non-access result, the nominal subtype of the function result.

e For any access result type of an access-to-object type, the designated subtype of the result

type.

© ISO/IEC 2012 — All rights reserved 140

ISO/IEC 8652:DIS

e For any access result type of an access-to-subprogram type, the subtypes of the designated
profile of the result type.

The types of a profile are the types of those subtypes.

A subprogram declared by an abstract_subprogram_declaration is abstract; a subprogram declared
by a subprogram_declaration is not. See 3.9.3, “Abstract Types and Subprograms”. Similarly, a
procedure declared by a null_procedure_declaration is a null procedure; a procedure declared by a
subprogram_declaration is not. See 6.7, “Null Procedures”. Finally, a function declared by an
expression_function_declaration is an expression function; a function declared by a
subprogram_declaration is not. See 6.8, “Expression Functions”.

An overriding_indicator is used to indicate whether overriding is intended. See 8.3.1, “Overriding
Indicators”.

Dynamic Semantics
The elaboration of a subprogram_declaration has no effect.

NOTES
1 A parameter_specification with several identifiers is equivalent to a sequence of single parameter_specifications,
as explained in 3.3.

2 Abstract subprograms do not have bodies, and cannot be used in a nondispatching call (see 3.9.3, “Abstract Types
and Subprograms”).

3 The evaluation of default_expressions is caused by certain calls, as described in 6.4.1. They are not evaluated
during the elaboration of the subprogram declaration.

4 Subprograms can be called recursively and can be called concurrently from multiple tasks.

Examples

Examples of subprogram declarations:

procedure Traverse Tree;
procedure Increment (X : in out Integer) ;

procedure Right Indent (Margin : out Line Size); -- see3.54
procedure Switch(From, To : in out Link); -- see 3.10.1
function Random return Probability; -- see3.5.7
function Min Cell (X : Link) return Cell; -- see3.10.1
function Next Frame (K : Positive) return Frame; -- see 3.10
function Dot Product (Left, Right : Vector) return Real; -- see3.6

function "*" (Left, Right : Matrix) return Matrix; -- see 3.6

Examples of in parameters with default expressions:

procedure Print Header (Pages : in Natural;
Header : in Line := (1 .. Line'lLast => ' '); -- see3.6
Center : in Boolean := True);

141 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

6.1.1 Preconditions and Postconditions

For a subprogram or entry, the following language-defined aspects may be specified with an
aspect_specification (see 13.1.1):
Pre This aspect specifies a specific precondition for a callable entity; it shall be specified by

an expression, called a specific precondition expression. If not specified for an entity, the
specific precondition expression for the entity is the enumeration literal True.

Pre'Class This aspect specifies a class-wide precondition for an operation of a tagged type and its
descendants; it shall be specified by an expression, called a class-wide precondition
expression. If not specified for an entity, then if no other class-wide precondition applies
to the entity, the class-wide precondition expression for the entity is the enumeration
literal True.

Post This aspect specifies a specific postcondition for a callable entity; it shall be specified by
an expression, called a specific postcondition expression. If not specified for an entity,
the specific postcondition expression for the entity is the enumeration literal True.

Post'Class This aspect specifies a class-wide postcondition for an operation of a tagged type and its
descendants; it shall be specified by an expression, called a class-wide postcondition
expression. 1f not specified for an entity, the class-wide postcondition expression for the
entity is the enumeration literal True.

Name Resolution Rules
The expected type for a precondition or postcondition expression is any boolean type.

Within the expression for a Pre'Class or Post'Class aspect for a primitive subprogram of a tagged type
T, a name that denotes a formal parameter of type T is interpreted as having type T'Class. Similarly, a
name that denotes a formal access parameter of type access-to-7 is interpreted as having type access-
to-T'Class. This ensures that the expression is well-defined for a primitive subprogram of a type
descended from 7.

For an attribute_reference with attribute designator Old, if the attribute reference has an expected
type or shall resolve to a given type, the same applies to the prefix; otherwise, the prefix shall be
resolved independently of context.

Legality Rules

The Pre or Post aspect shall not be specified for an abstract subprogram or a null procedure. Only the
Pre'Class and Post'Class aspects may be specified for such a subprogram.

If a type T has an implicitly declared subprogram P inherited from a parent type 7/ and a homograph
(see 8.3) of P from a progenitor type 72, and

e the corresponding primitive subprogram P/ of type 71 is neither null nor abstract; and

e the class-wide precondition expression True does not apply to P/ (implicitly or explicitly);
and

e there is a class-wide precondition expression that applies to the corresponding primitive
subprogram P2 of 72 that does not fully conform to any class-wide precondition expression
that applies to P1,

then:
o Ifthe type T is abstract, the implicitly declared subprogram P is abstract.

e Otherwise, the subprogram P requires overriding and shall be overridden with a nonabstract
subprogram.

If a renaming of a subprogram or entry S/ overrides an inherited subprogram S2, then the overriding
is illegal unless each class-wide precondition expression that applies to S/ fully conforms to some

© ISO/IEC 2012 — All rights reserved 142

ISO/IEC 8652:DIS

class-wide precondition expression that applies to S2 and each class-wide precondition expression that
applies to S2 fully conforms to some class-wide precondition expression that applies to S/.

Static Semantics

If a Pre'Class or Post'Class aspect is specified for a primitive subprogram of a tagged type 7, then the
associated expression also applies to the corresponding primitive subprogram of each descendant of 7.

If performing checks is required by the Pre, Pre'Class, Post, or Post'Class assertion policies (see
11.4.2) in effect at the point of a corresponding aspect specification applicable to a given subprogram
or entry, then the respective precondition or postcondition expressions are considered enabled.

An expression is potentially unevaluated if it occurs within:
e any part of an if_expression other than the first condition;
e adependent_expression of a case_expression;
e the right operand of a short-circuit control form; or
e a membership_choice other than the first of a membership operation.

For a prefix X that denotes an object of a nonlimited type, the following attribute is defined:

X'0ld For each X'Old in a postcondition expression that is enabled, a constant is implicitly
declared at the beginning of the subprogram or entry. The constant is of the type of X and
is initialized to the result of evaluating X (as an expression) at the point of the constant
declaration. The value of X'Old in the postcondition expression is the value of this
constant; the type of X'Old is the type of X. These implicit constant declarations occur in
an arbitrary order.

Reference to this attribute is only allowed within a postcondition expression. The prefix
of an Old attribute_reference shall not contain a Result attribute_reference, nor an Old
attribute_reference, nor a use of an entity declared within the postcondition expression
but not within prefix itself (for example, the loop parameter of an enclosing
quantified_expression). The prefix of an Old attribute_reference that is potentially
unevaluated shall statically denote an entity.

For a prefix F that denotes a function declaration, the following attribute is defined:

F'Result ~ Within a postcondition expression for function F, denotes the result object of the function.
The type of this attribute is that of the function result except within a Post'Class
postcondition expression for a function with a controlling result or with a controlling
access result. For a controlling result, the type of the attribute is 7'Class, where T is the
function result type. For a controlling access result, the type of the attribute is an
anonymous access type whose designated type is T'Class, where T is the designated type
of the function result type.

Use of this attribute is allowed only within a postcondition expression for F.
Dynamic Semantics

Upon a call of the subprogram or entry, after evaluating any actual parameters, precondition checks
are performed as follows:

e The specific precondition check begins with the evaluation of the specific precondition
expression that applies to the subprogram or entry, if it is enabled; if the expression evaluates
to False, Assertions.Assertion Error is raised; if the expression is not enabled, the check
succeeds.

e The class-wide precondition check begins with the evaluation of any enabled class-wide
precondition expressions that apply to the subprogram or entry. If and only if all the class-
wide precondition expressions evaluate to False, Assertions.Assertion_Error is raised.

The precondition checks are performed in an arbitrary order, and if any of the class-wide precondition
expressions evaluate to True, it is not specified whether the other class-wide precondition expressions

143 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

are evaluated. The precondition checks and any check for elaboration of the subprogram body are
performed in an arbitrary order. It is not specified whether in a call on a protected operation, the
checks are performed before or after starting the protected action. For an entry call, the checks are
performed prior to checking whether the entry is open.

Upon successful return from a call of the subprogram or entry, prior to copying back any by-copy in
out or out parameters, the postcondition check is performed. This consists of the evaluation of any
enabled specific and class-wide postcondition expressions that apply to the subprogram or entry. If
any of the postcondition expressions evaluate to False, then Assertions.Assertion Error is raised. The
postcondition expressions are evaluated in an arbitrary order, and if any postcondition expression
evaluates to False, it is not specified whether any other postcondition expressions are evaluated. The
postcondition check, and any constraint or predicate checks associated with in out or out parameters
are performed in an arbitrary order.

If a precondition or postcondition check fails, the exception is raised at the point of the call; the
exception cannot be handled inside the called subprogram or entry. Similarly, any exception raised by
the evaluation of a precondition or postcondition expression is raised at the point of call.

For any subprogram or entry call (including dispatching calls), the checks that are performed to verify
specific precondition expressions and specific and class-wide postcondition expressions are
determined by those for the subprogram or entry actually invoked. Note that the class-wide
postcondition expressions verified by the postcondition check that is part of a call on a primitive
subprogram of type T includes all class-wide postcondition expressions originating in any progenitor
of T, even if the primitive subprogram called is inherited from a type 7/ and some of the
postcondition expressions do not apply to the corresponding primitive subprogram of 77.

The class-wide precondition check for a call to a subprogram or entry consists solely of checking the
class-wide precondition expressions that apply to the denoted callable entity (not necessarily the one
that is invoked).

For a call via an access-to-subprogram value, all precondition and postcondition checks performed are
determined by the subprogram or entry denoted by the prefix of the Access attribute reference that
produced the value.

NOTES
5 A precondition is checked just before the call. If another task can change any value that the precondition expression
depends on, the precondition need not hold within the subprogram or entry body.

6.2 Formal Parameter Modes

A parameter_specification declares a formal parameter of mode in, in out, or out.

Static Semantics

A parameter is passed either by copy or by reference. When a parameter is passed by copy, the formal
parameter denotes a separate object from the actual parameter, and any information transfer between
the two occurs only before and after executing the subprogram. When a parameter is passed by
reference, the formal parameter denotes (a view of) the object denoted by the actual parameter; reads
and updates of the formal parameter directly reference the actual parameter object.

A type is a by-copy type if it is an elementary type, or if it is a descendant of a private type whose full
type is a by-copy type. A parameter of a by-copy type is passed by copy, unless the formal parameter
is explicitly aliased.

A type is a by-reference type if it is a descendant of one of the following:
e atagged type;
e atask or protected type;

¢ an explicitly limited record type;

© ISO/IEC 2012 — All rights reserved 144

ISO/IEC 8652:DIS

e a composite type with a subcomponent of a by-reference type;
e a private type whose full type is a by-reference type.

A parameter of a by-reference type is passed by reference, as is an explicitly aliased parameter of any
type. Each value of a by-reference type has an associated object. For a parenthesized expression,
qualified_expression, or type_conversion, this object is the one associated with the operand. For a
conditional_expression, this object is the one associated with the evaluated dependent expression.

For other parameters, it is unspecified whether the parameter is passed by copy or by reference.

Bounded (Run-Time) Errors

If one name denotes a part of a formal parameter, and a second name denotes a part of a distinct
formal parameter or an object that is not part of a formal parameter, then the two names are
considered distinct access paths. 1f an object is of a type for which the parameter passing mechanism
is not specified and is not an explicitly aliased parameter, then it is a bounded error to assign to the
object via one access path, and then read the value of the object via a distinct access path, unless the
first access path denotes a part of a formal parameter that no longer exists at the point of the second
access (due to leaving the corresponding callable construct). The possible consequences are that
Program_Error is raised, or the newly assigned value is read, or some old value of the object is read.

NOTES
6 A formal parameter of mode in is a constant view (see 3.3); it cannot be updated within the subprogram_body.

6.3 Subprogram Bodies

A subprogram_body specifies the execution of a subprogram.

Syntax
subprogram_body ::=
[overriding_indicator]
subprogram_specification
[aspect_specification] is
declarative_part
begin
handled_sequence of statements
end [designator];

If a designator appears at the end of a subprogram_body, it shall repeat the defining_designator
of the subprogram_specification.

Legality Rules

In contrast to other bodies, a subprogram_body need not be the completion of a previous declaration,
in which case the body declares the subprogram. If the body is a completion, it shall be the
completion of a subprogram_declaration or generic_subprogram_declaration. The profile of a
subprogram_body that completes a declaration shall conform fully to that of the declaration.

Static Semantics

A subprogram_body is considered a declaration. It can either complete a previous declaration, or
itself be the initial declaration of the subprogram.

Dynamic Semantics

The elaboration of a nongeneric subprogram_body has no other effect than to establish that the
subprogram can from then on be called without failing the Elaboration_Check.

The execution of a subprogram_body is invoked by a subprogram call. For this execution the
declarative_part is elaborated, and the handled _sequence of statements is then executed.

145 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Examples

Example of procedure bodly:

procedure Push(E : in Element Type; S : in out Stack) is
begin

if S.Index = S.Size then
raise Stack Overflow;

else
S.Index := S.Index + 1;
S.Space(S.Index) := E;
end if;
end Push;

Example of a function body:

function Dot Product (Left, Right : Vector) return Real is
Sum : Real := 0.0;

begin

Check (Left'First = Right'First and Left'Last = Right'Last) ;
for J in Left'Range loop
Sum := Sum + Left (J)*Right (J) ;
end loop;
return Sum;
end Dot Product;

6.3.1 Conformance Rules

When subprogram profiles are given in more than one place, they are required to conform in one of

four ways: type conformance, mode conformance, subtype conformance, or full conformance.

As explained in B.1, “Interfacing Aspects”, a convention can be specified for an entity. Unless this
International Standard states otherwise, the default convention of an entity is Ada. For a callable
entity or access-to-subprogram type, the convention is called the calling convention. The following

Static Semantics

conventions are defined by the language:

The default calling convention for any subprogram not listed below is 4da. The Convention
aspect may be specified to override the default calling convention (see B.1).

The Intrinsic calling convention represents subprograms that are “built in” to the compiler.
The default calling convention is Intrinsic for the following:

e an enumeration literal;
e a"/=" operator declared implicitly due to the declaration of "=" (see 6.6);
« any other implicitly declared subprogram unless it is a dispatching operation of a tagged
type;
« an inherited subprogram of a generic formal tagged type with unknown discriminants;
e an attribute that is a subprogram;
 a subprogram declared immediately within a protected_body;
o any prefixed view of a subprogram (see 4.1.3).
The Access attribute is not allowed for Intrinsic subprograms.

The default calling convention is protected for a protected subprogram, and for an access-to-
subprogram type with the reserved word protected in its definition.

The default calling convention is entry for an entry.

The calling convention for an anonymous access-to-subprogram parameter or anonymous
access-to-subprogram result is protected if the reserved word protected appears in its
definition; otherwise, it is the convention of the subprogram that contains the parameter.

© ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

e If not specified above as Intrinsic, the calling convention for any inherited or overriding
dispatching operation of a tagged type is that of the corresponding subprogram of the parent
type. The default calling convention for a new dispatching operation of a tagged type is the
convention of the type.

Of these four conventions, only Ada and Intrinsic are allowed as a convention_identifier in the
specification of a Convention aspect.

Two profiles are #ype conformant if they have the same number of parameters, and both have a result
if either does, and corresponding parameter and result types are the same, or, for access parameters or
access results, corresponding designated types are the same, or corresponding designated profiles are
type conformant.

Two profiles are mode conformant if:
e they are type conformant; and

e corresponding parameters have identical modes and both or neither are explicitly aliased
parameters; and

e for corresponding access parameters and any access result type, the designated subtypes
statically match and either both or neither are access-to-constant, or the designated profiles
are subtype conformant.

Two profiles are subtype conformant if they are mode conformant, corresponding subtypes of the
profile statically match, and the associated calling conventions are the same. The profile of a generic
formal subprogram is not subtype conformant with any other profile.

Two profiles are fully conformant if they are subtype conformant, if they have access-to-subprogram
results whose designated profiles are fully conformant, and for corresponding parameters:

o they have the same names; and

e both or neither have null_exclusions; and

e neither have default_expressions, or they both have default_expressions that are fully
conformant with one another; and

e for access-to-subprogram parameters, the designated profiles are fully conformant.

Two expressions are fully conformant if, after replacing each use of an operator with the equivalent
function_call:
e cach constituent construct of one corresponds to an instance of the same syntactic category in

the other, except that an expanded name may correspond to a direct_ name (or
character_literal) or to a different expanded name in the other; and

e cach direct_name, character_literal, and selector_name that is not part of the prefix of an
expanded name in one denotes the same declaration as the corresponding direct_name,
character_literal, or selector_name in the other; and

e cach attribute_designator in one is the same as the corresponding attribute_designator in the
other; and

e cach primary that is a literal in one has the same value as the corresponding literal in the
other.

Two known_discriminant_parts are fully conformant if they have the same number of discriminants,
and discriminants in the same positions have the same names, statically matching subtypes, and
default_expressions that are fully conformant with one another.

Two discrete_subtype_definitions are fully conformant if they are both subtype_indications or are
both ranges, the subtype_marks (if any) denote the same subtype, and the corresponding
simple_expressions of the ranges (if any) fully conform.

The prefixed view profile of a subprogram is the profile obtained by omitting the first parameter of
that subprogram. There is no prefixed view profile for a parameterless subprogram. For the purposes

147 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

of defining subtype and mode conformance, the convention of a prefixed view profile is considered to
match that of either an entry or a protected operation.

Implementation Permissions

An implementation may declare an operator declared in a language-defined library unit to be intrinsic.

6.3.2 Inline Expansion of Subprograms

Subprograms may be expanded in line at the call site.

Static Semantics

For a callable entity or a generic subprogram, the following language-defined representation aspect

may be specified:

Inline The type of aspect Inline is Boolean. When aspect Inline is True for a callable entity,
inline expansion is desired for all calls to that entity. When aspect Inline is True for a
generic subprogram, inline expansion is desired for all calls to all instances of that generic
subprogram.

If directly specified, the aspect_definition shall be a static expression. This aspect is
never inherited; if not directly specified, the aspect is False.

Implementation Permissions

For each call, an implementation is free to follow or to ignore the recommendation determined by the
Inline aspect.

6.4 Subprogram Calls

A subprogram call is either a procedure_call_statement or a function_call; it invokes the execution
of the subprogram_body. The call specifies the association of the actual parameters, if any, with
formal parameters of the subprogram.

Syntax

procedure call_statement ::=
procedure_name;
| procedure_prefix actual_parameter_part;

function_call ::=
function_name
| function_prefix actual_parameter_part

actual_parameter_part ::=
(parameter_association {, parameter_association})

parameter_association ::=
[formal _parameter selector_name =>] explicit_actual_parameter

explicit_actual_parameter ::= expression | variable_name

A parameter_association is named or positional according to whether or not the formal -
parameter_selector_name is specified. Any positional associations shall precede any named
associations. Named associations are not allowed if the prefix in a subprogram call is an
attribute_reference.

Name Resolution Rules

The name or prefix given in a procedure_call_statement shall resolve to denote a callable entity that
is a procedure, or an entry renamed as (viewed as) a procedure. The name or prefix given in a
function_call shall resolve to denote a callable entity that is a function. The name or prefix shall not

© ISO/IEC 2012 — All rights reserved 148

ISO/IEC 8652:DIS

resolve to denote an abstract subprogram unless it is also a dispatching subprogram. When there is an
actual_parameter_part, the prefix can be an implicit_dereference of an access-to-subprogram value.

A subprogram call shall contain at most one association for each formal parameter. Each formal
parameter without an association shall have a default_expression (in the profile of the view denoted
by the name or prefix). This rule is an overloading rule (see 8.6).

Dynamic Semantics

For the execution of a subprogram call, the name or prefix of the call is evaluated, and each
parameter_association is evaluated (see 6.4.1). If a default_expression is used, an implicit
parameter_association is assumed for this rule. These evaluations are done in an arbitrary order. The
subprogram_body is then executed, or a call on an entry or protected subprogram is performed (see
3.9.2). Finally, if the subprogram completes normally, then after it is left, any necessary assigning
back of formal to actual parameters occurs (see 6.4.1).

If the name or prefix of a subprogram call denotes a prefixed view (see 4.1.3), the subprogram call is
equivalent to a call on the underlying subprogram, with the first actual parameter being provided by
the prefix of the prefixed view (or the Access attribute of this prefix if the first formal parameter is an
access parameter), and the remaining actual parameters given by the actual_parameter_part, if any.

The exception Program_Error is raised at the point of a function_call if the function completes
normally without executing a return statement.

A function_call denotes a constant, as defined in 6.5; the nominal subtype of the constant is given by
the nominal subtype of the function result.

Examples
Examples of procedure calls:
Traverse Tree; -- see6.1
Print Header (128, Title, True); -- see6.1
Switch (From => X, To => Next) ; -- see6.1
Print Header (128, Header => Title, Center => True); -- seeb.1]
Print Header (Header => Title, Center => True, Pages => 128); -- seeb.]
Examples of function calls:
Dot Product (U, V) -- see 6.1 and 6.3
Clock -- see 9.6
F.all - - presuming F is of an access-to-subprogram type — see 3.10

Examples of procedures with default expressions:

procedure Activate(Process : in Process_Name;
After : in Process Name := No Process;
Wait : in Duration := 0.0;
Prior : in Boolean := False);
procedure Pair (Left, Right : in Person Name := new Person) ; -- see 3.10.1

Examples of their calls:

Activate (X) ;

Activate (X, After => Y);

Activate (X, Wait => 60.0, Prior => True);

Activate (X, Y, 10.0, False);

Pair;

Pair (Left => new Person, Right => new Person) ;

NOTES

7 If a default_expression is used for two or more parameters in a multiple parameter_specification, the default_-
expression is evaluated once for each omitted parameter. Hence in the above examples, the two calls of Pair are
equivalent.

149 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Examples

Examples of overloaded subprograms:

procedure Put

X : in Integer) ;
procedure Put (X

: in String);

(

(
procedure Set (Tint : in Color) ;
procedure Set (Signal : in Light) ;

Examples of their calls:

Put (28) ;

Put ("no possible ambiguity here");
(
(

Set (Tint => Red) ;
Set (Signal => Red);
Set (Color' (Red)) ;

- - Set(Red) would be ambiguous since Red may
- - denote a value either of type Color or of type Light

6.4.1 Parameter Associations

A parameter association defines the association between an actual parameter and a formal parameter.

Name Resolution Rules

The formal parameter selector_name of a named parameter_association shall resolve to denote a
parameter_specification of the view being called; this is the formal parameter of the association. The
formal parameter for a positional parameter_association is the parameter with the corresponding
position in the formal part of the view being called.

The actual parameter is either the explicit_actual_parameter given in a parameter_association for a
given formal parameter, or the corresponding default_expression if no parameter_association is
given for the formal parameter. The expected type for an actual parameter is the type of the
corresponding formal parameter.

If the mode is in, the actual is interpreted as an expression; otherwise, the actual is interpreted only as
a name, if possible.

Legality Rules
If the mode is in out or out, the actual shall be a name that denotes a variable.

If the formal parameter is an explicitly aliased parameter, the type of the actual parameter shall be
tagged or the actual parameter shall be an aliased view of an object. Further, if the formal parameter
subtype F is untagged:

o the subtype F shall statically match the nominal subtype of the actual object; or

e the subtype F shall be unconstrained, discriminated in its full view, and unconstrained in any
partial view.

In a function call, the accessibility level of the actual object for each explicitly aliased parameter shall
not be statically deeper than the accessibility level of the master of the call (see 3.10.2).

Two names are known to denote the same object if:
e both names statically denote the same stand-alone object or parameter; or

e both names are selected_components, their prefixes are known to denote the same object,
and their selector_names denote the same component; or

e both names are dereferences (implicit or explicit) and the dereferenced names are known to
denote the same object; or

© ISO/IEC 2012 — All rights reserved 150

ISO/IEC 8652:DIS

e both names are indexed_components, their prefixes are known to denote the same object,
and each of the pairs of corresponding index values are either both static expressions with the
same static value or both names that are known to denote the same object; or

¢ both names are slices, their prefixes are known to denote the same object, and the two slices
have statically matching index constraints; or

¢ one of the two names statically denotes a renaming declaration whose renamed object hame
is known to denote the same object as the other, the prefix of any dereference within the
renamed object name is not a variable, and any expression within the renamed object hame
contains no references to variables nor calls on nonstatic functions.

Two names are known fo refer to the same object if
e The two names are known to denote the same object; or

e One of the names is a selected _component, indexed _component, or slice and its prefix is
known to refer to the same object as the other name; or

e One of the two names statically denotes a renaming declaration whose renamed object hame
is known to refer to the same object as the other name.

If a call C has two or more parameters of mode in out or out that are of an elementary type, then the
call is legal only if:

e For each name N that is passed as a parameter of mode in out or out to the call C, there is no
other name among the other parameters of mode in out or out to C that is known to denote
the same object.

If a construct C has two or more direct constituents that are names or expressions whose evaluation
may occur in an arbitrary order, at least one of which contains a function call with an in out or out
parameter, then the construct is legal only if:

e For each name N that is passed as a parameter of mode in out or out to some inner function
call C2 (not including the construct C itself), there is no other name anywhere within a direct
constituent of the construct C other than the one containing C2, that is known to refer to the
same object.

For the purposes of checking this rule:

e For an array aggregate, an expression associated with a discrete_choice_list that has two or
more discrete choices, or that has a nonstatic range, is considered as two or more separate
occurrences of the expression;

e For a record aggregate:

e The expression of a record component _association is considered to occur once for
each associated component; and

o The default_expression for each record _component_association with <> for which the
associated component has a default_expression is considered part of the aggregate;

e For a call, any default_expression evaluated as part of the call is considered part of the call.

Dynamic Semantics
For the evaluation of a parameter_association:
e The actual parameter is first evaluated.

e For an access parameter, the access_definition is elaborated, which creates the anonymous
access type.

e For a parameter (of any mode) that is passed by reference (see 6.2), a view conversion of the
actual parameter to the nominal subtype of the formal parameter is evaluated, and the formal
parameter denotes that conversion.

151 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

e For an in or in out parameter that is passed by copy (see 6.2), the formal parameter object is
created, and the value of the actual parameter is converted to the nominal subtype of the
formal parameter and assigned to the formal.

e For an out parameter that is passed by copy, the formal parameter object is created, and:

e For an access type, the formal parameter is initialized from the value of the actual,
without checking that the value satisfies any constraint, any predicate, or any exclusion of
the null value;

e For a scalar type that has the Default Value aspect specified, the formal parameter is
initialized from the value of the actual, without checking that the value satisfies any
constraint or any predicate;

e For a composite type with discriminants or that has implicit initial values for any
subcomponents (see 3.3.1), the behavior is as for an in out parameter passed by copy.

e For any other type, the formal parameter is uninitialized. If composite, a view conversion
of the actual parameter to the nominal subtype of the formal is evaluated (which might
raise Constraint Error), and the actual subtype of the formal is that of the view
conversion. If elementary, the actual subtype of the formal is given by its nominal
subtype.

e In a function call, for each explicitly aliased parameter, a check is made that the accessibility
level of the master of the actual object is not deeper than that of the master of the call (see
3.10.2).

A formal parameter of mode in out or out with discriminants is constrained if either its nominal
subtype or the actual parameter is constrained.

After normal completion and leaving of a subprogram, for each in out or out parameter that is passed
by copy, the value of the formal parameter is converted to the subtype of the variable given as the
actual parameter and assigned to it. These conversions and assignments occur in an arbitrary order.

Erroneous Execution

If the nominal subtype of a formal parameter with discriminants is constrained or indefinite, and the
parameter is passed by reference, then the execution of the call is erroneous if the value of any
discriminant of the actual is changed while the formal parameter exists (that is, before leaving the
corresponding callable construct).

© ISO/IEC 2012 — All rights reserved 152

ISO/IEC 8652:DIS

6.5 Return Statements

A simple_return_statement or extended_return_statement (collectively called a return statement)
is used to complete the execution of the innermost enclosing subprogram_body, entry_body, or
accept_statement.

Syntax
simple_return_statement ::= return [expression];

extended_return_object_declaration ::=
defining_identifier : [aliased][constant] return_subtype_indication [:= expression]

extended_return_statement ::=
extended_return_object_declaration [do
handled_sequence_of_statements
end return];

return_subtype_indication ::= subtype_indication | access_definition
Name Resolution Rules

The result subtype of a function is the subtype denoted by the subtype mark, or defined by the
access_definition, after the reserved word return in the profile of the function. The expected type for
the expression, if any, of a simple_return_statement is the result type of the corresponding function.
The expected type for the expression of an extended_return_statement is that of the return_-
subtype_indication.

Legality Rules

A return statement shall be within a callable construct, and it applies to the innermost callable
construct or extended_return_statement that contains it. A return statement shall not be within a
body that is within the construct to which the return statement applies.

A function body shall contain at least one return statement that applies to the function body, unless the
function contains code_ statements. A simple_return_statement shall include an expression if and
only if it applies to a function body. An extended_return_statement shall apply to a function body.
An extended_return_statement with the reserved word constant shall include an expression.

For an extended_return_statement that applies to a function body:

e If the result subtype of the function is defined by a subtype mark, the return_subtype_ -
indication shall be a subtype_indication. The type of the subtype_indication shall be covered
by the result type of the function. The subtype defined by the subtype_indication shall be
statically compatible with the result subtype of the function; if the result type of the function
is elementary, the two subtypes shall statically match. If the result subtype of the function is
indefinite, then the subtype defined by the subtype_indication shall be a definite subtype, or
there shall be an expression.

e If the result subtype of the function is defined by an access_definition, the return_subtype_-
indication shall be an access_definition. The subtype defined by the access_definition shall
statically match the result subtype of the function. The accessibility level of this anonymous
access subtype is that of the result subtype.

e If the result subtype of the function is class-wide, the accessibility level of the type of the
subtype defined by the return_subtype_indication shall not be statically deeper than that of
the master that elaborated the function body.

For any return statement that applies to a function body:

o If the result subtype of the function is limited, then the expression of the return statement (if
any) shall meet the restrictions described in 7.5.

153 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

o If the result subtype of the function is class-wide, the accessibility level of the type of the
expression (if any) of the return statement shall not be statically deeper than that of the
master that elaborated the function body.

e If the subtype determined by the expression of the simple_return_statement or by the
return_subtype_indication has one or more access discriminants, the accessibility level of the
anonymous access type of each access discriminant shall not be statically deeper than that of
the master that elaborated the function body.

If the keyword aliased is present in an extended_return_object_declaration, the type of the extended
return object shall be immutably limited.

Static Semantics

Within an extended_return_statement, the return object 1is declared with the given
defining_identifier, with the nominal subtype defined by the return_subtype_indication. An
extended_return_statement with the reserved word constant is a full constant declaration that
declares the return object to be a constant object.

Dynamic Semantics

For the execution of an extended_return_statement, the subtype_indication or access_definition is
elaborated. This creates the nominal subtype of the return object. If there is an expression, it is
evaluated and converted to the nominal subtype (which might raise Constraint Error — see 4.6); the
return object is created and the converted value is assigned to the return object. Otherwise, the return
object is created and initialized by default as for a stand-alone object of its nominal subtype (see
3.3.1). If the nominal subtype is indefinite, the return object is constrained by its initial value. A check
is made that the value of the return object belongs to the function result subtype. Constraint Error is
raised if this check fails.

For the execution of a simple_return_statement, the expression (if any) is first evaluated, converted
to the result subtype, and then is assigned to the anonymous return object.

If the return object has any parts that are tasks, the activation of those tasks does not occur until after
the function returns (see 9.2).

If the result type of a function is a specific tagged type, the tag of the return object is that of the result
type. If the result type is class-wide, the tag of the return object is that of the type of the
subtype_indication if it is specific, or otherwise that of the value of the expression. A check is made
that the master of the type identified by the tag of the result includes the elaboration of the master that
elaborated the function body. If this check fails, Program_Error is raised.

If the result subtype of the function is defined by an access_definition designating a specific tagged
type 7, a check is made that the result value is null or the tag of the object designated by the result
value identifies 7. Constraint_Error is raised if this check fails.

If any part of the specific type of the return object of a function (or coextension thereof) has one or
more access discriminants whose value is not constrained by the result subtype of the function, a
check is made that the accessibility level of the anonymous access type of each access discriminant, as
determined by the expression or the return_subtype_indication of the return statement, is not deeper
than the level of the master of the call (see 3.10.2). If this check fails, Program_Error is raised.

For the execution of an extended return_statement, the handled sequence of statements is
executed. Within this handled_sequence_of statements, the execution of a simple_return_-
statement that applies to the extended_return_statement causes a transfer of control that completes
the extended_return_statement. Upon completion of a return statement that applies to a callable
construct by the normal completion of a simple_return_statement or by reaching the end return of
an extended_return_statement, a transfer of control is performed which completes the execution of
the callable construct, and returns to the caller.

© ISO/IEC 2012 — All rights reserved 154

ISO/IEC 8652:DIS

In the case of a function, the function_call denotes a constant view of the return object.

Implementation Permissions

For a function call used to initialize a composite object with a constrained nominal subtype or used to
initialize a return object that is built in place into such an object:

o If the result subtype of the function is constrained, and conversion of an object of this subtype
to the subtype of the object being initialized would raise Constraint Error, then
Constraint_Error may be raised before calling the function.

o If the result subtype of the function is unconstrained, and a return statement is executed such
that the return object is known to be constrained, and conversion of the return object to the
subtype of the object being initialized would raise Constraint Error, then Constraint Error
may be raised at the point of the call (after abandoning the execution of the function body).

Examples
Examples of return statements.
return; - - in a procedure body, entry_body,
- - accept_statement, or extended_return_statement

return Key Value (Last_ Index); - - in a function body
return Node : Cell do - - in a function body, see 3.10.1 for Cell

Node.Value := Result;

Node.Succ := Next Node;

end return;

6.5.1 Nonreturning Procedures
Specifying aspect No Return to have the value True indicates that a procedure cannot return
normally; it may propagate an exception or loop forever.

Static Semantics

For a procedure or generic procedure, the following language-defined representation aspect may be
specified:

No Return The type of aspect No Return is Boolean. When aspect No Return is True for an entity,
the entity is said to be nonreturning.

If directly specified, the aspect_definition shall be a static expression. This aspect is
never inherited; if not directly specified, the aspect is False.

If a generic procedure is nonreturning, then so are its instances. If a procedure declared within a
generic unit is nonreturning, then so are the corresponding copies of that procedure in instances.

Legality Rules
Aspect No_Return shall not be specified for a null procedure nor an instance of a generic unit.
A return statement shall not apply to a nonreturning procedure or generic procedure.

A procedure shall be nonreturning if it overrides a dispatching nonreturning procedure. In addition to
the places where Legality Rules normally apply (see 12.3), this rule applies also in the private part of
an instance of a generic unit.

If a renaming-as-body completes a nonreturning procedure declaration, then the renamed procedure
shall be nonreturning.

Dynamic Semantics

If the body of a nonreturning procedure completes normally, Program_Error is raised at the point of
the call.

155 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Examples

procedure Fail (Msg : String) -- raises Fatal Error exception
with No_Return;
- - Inform compiler and reader that procedure never returns normally

6.6 Overloading of Operators

An operator is a function whose designator is an operator_symbol. Operators, like other functions,
may be overloaded.

Name Resolution Rules

Each use of a unary or binary operator is equivalent to a function_call with function prefix being the
corresponding operator_symbol, and with (respectively) one or two positional actual parameters
being the operand(s) of the operator (in order).

Legality Rules

The subprogram_specification of a unary or binary operator shall have one or two parameters,
respectively. The parameters shall be of mode in. A generic function instantiation whose designator
is an operator_symbol is only allowed if the specification of the generic function has the
corresponding number of parameters, and they are all of mode in.

Default_expressions are not allowed for the parameters of an operator (whether the operator is
declared with an explicit subprogram_specification or by a generic_instantiation).

An explicit declaration of "/=" shall not have a result type of the predefined type Boolean.

Static Semantics

An explicit declaration of "=" whose result type is Boolean implicitly declares an operator "/=" that
gives the complementary result.

NOTES
8 The operators "+" and "—" are both unary and binary operators, and hence may be overloaded with both one- and
two-parameter functions.

Examples

Examples of user-defined operators:

function "+" (Left, Right : Matrix) return Matrix;
function "+" (Left, Right : Vector) return Vector;

- - assuming that A, B, and C are of the type Vector
- - the following two statements are equivalent:

B + C;

A :
A nan (BI C),

© ISO/IEC 2012 — All rights reserved 156

ISO/IEC 8652:DIS

6.7 Null Procedures

A null_procedure_declaration provides a shorthand to declare a procedure with an empty body.

Syntax
null_procedure_declaration ::=
[overriding_indicator]
procedure_specification is null
[aspect_specification];
Legality Rules

If a null_procedure_declaration is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of a
null_procedure_declaration that completes a declaration shall conform fully to that of the
declaration.

Static Semantics

A null_procedure_declaration declares a null procedure. A completion is not allowed for a
null_procedure_declaration; however, a null_procedure_declaration can complete a previous
declaration.

Dynamic Semantics

The execution of a null procedure is invoked by a subprogram call. For the execution of a subprogram
call on a null procedure, the execution of the subprogram_body has no effect.

The elaboration of a null_procedure_declaration has no other effect than to establish that the null
procedure can be called without failing the Elaboration_Check.

Examples

procedure Simplify (Expr : in out Expression) is null; -- see3.9
- - By default, Simplify does nothing, but it may be overridden in extensions of Expression

157 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

6.8 Expression Functions

An expression_function_declaration provides a shorthand to declare a function whose body consists
of a single return statement.

Syntax

expression_function_declaration ::=
[overriding_indicator]
function_specification is
(expression)
[aspect_specification];

Name Resolution Rules

The expected type for the expression of an expression_function_declaration is the result type (see
6.5) of the function.

Legality Rules

If an expression_function_declaration is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of an expression_-
function_declaration that completes a declaration shall conform fully to that of the declaration.

If the result subtype has one or more unconstrained access discriminants, the accessibility level of the
anonymous access type of each access discriminant, as determined by the expression of the
expression function, shall not be statically deeper than that of the master that elaborated the
expression_function_declaration.

Static Semantics

An expression_function_declaration declares an expression function. A completion is not allowed
for an expression_function_declaration; however, an expression_function_declaration can
complete a previous declaration.

Dynamic Semantics

The execution of an expression function is invoked by a subprogram call. For the execution of a
subprogram call on an expression function, the execution of the subprogram_body executes an
implicit function body containing only a simple_return_statement whose expression is that of the
expression function.

The elaboration of an expression_function_declaration has no other effect than to establish that the
expression function can be called without failing the Elaboration Check.

Examples

function Is_Origin (P : in Point) return Boolean is -- see 3.9
(P.X = 0.0 and P.Y = 0.0);

© ISO/IEC 2012 — All rights reserved 158

ISO/IEC 8652:DIS

Section 7: Packages

Packages are program units that allow the specification of groups of logically related entities.
Typically, a package contains the declaration of a type (often a private type or private extension)
along with the declarations of primitive subprograms of the type, which can be called from outside the
package, while their inner workings remain hidden from outside users.

7.1 Package Specifications and Declarations

A package is generally provided in two parts: a package_specification and a package_body. Every
package has a package_specification, but not all packages have a package_body.

Syntax
package_declaration ::= package_specification;
package_specification ::=

package defining_program_unit_name
[aspect_specification] is
{basic_declarative_item}
[private
{basic_declarative_item}]
end [[parent_unit_name.]identifier]

If an identifier or parent_unit_name.identifier appears at the end of a package_specification,
then this sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

A package_declaration or generic_package_declaration requires a completion (a body) if it
contains any basic_declarative_item that requires a completion, but whose completion is not in its
package_specification.

Static Semantics

The first list of basic_declarative_items of a package_specification of a package other than a
generic formal package is called the visible part of the package. The optional list of
basic_declarative_items after the reserved word private (of any package_specification) is called the
private part of the package. If the reserved word private does not appear, the package has an implicit
empty private part. Each list of basic_declarative_items of a package_specification forms a
declaration list of the package.

An entity declared in the private part of a package is visible only within the declarative region of the
package itself (including any child units — see 10.1.1). In contrast, expanded names denoting entities
declared in the visible part can be used even outside the package; furthermore, direct visibility of such
entities can be achieved by means of use_clauses (see 4.1.3 and 8.4).

Dynamic Semantics

The elaboration of a package_declaration consists of the elaboration of its basic_declarative_items
in the given order.
NOTES

1 The visible part of a package contains all the information that another program unit is able to know about the
package.

2 If a declaration occurs immediately within the specification of a package, and the declaration has a corresponding
completion that is a body, then that body has to occur immediately within the body of the package.

159 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Examples
Example of a package declaration:
package Rational Numbers is
type Rational is
record
Numerator : Integer;
Denominator : Positive;
end record;
function "="(X,Y : Rational) return Boolean;
function "/" (X,Y : Integer) return Rational; -- fo construct a rational number
function "+" (X,Y : Rational) return Rational;
function "-" (X,Y : Rational) return Rational;
function "*" (X,Y : Rational) return Rational;
function " /" (X,Y : Rational) return Rational;
end Rational Numbers;

There are also many examples of package declarations in the predefined language environment (see
Annex A).

7.2 Package Bodies

In contrast to the entities declared in the visible part of a package, the entities declared in the
package_body are visible only within the package_body itself. As a consequence, a package with a
package_body can be used for the construction of a group of related subprograms in which the
logical operations available to clients are clearly isolated from the internal entities.

Syntax
package_body ::=
package body defining_program_unit_name
[aspect_specification] is
declarative_part
[begin
handled_sequence_of statements]
end [[parent_unit_name.]identifier];

If an identifier or parent_unit_name.identifier appears at the end of a package_body, then this
sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

A package_body shall be the completion of a previous package_declaration or generic_package_-
declaration. A library package_declaration or library generic_package_declaration shall not have
a body unless it requires a body; pragma Elaborate Body can be used to require a library_unit_-
declaration to have a body (see 10.2.1) if it would not otherwise require one.

Static Semantics

In any package body without statements there is an implicit null_statement. For any package_-
declaration without an explicit completion, there is an implicit package_body containing a single
null_statement. For a noninstance, nonlibrary package, this body occurs at the end of the
declarative_part of the innermost enclosing program unit or block_statement; if there are several
such packages, the order of the implicit package_bodies is unspecified. (For an instance, the implicit
package_body occurs at the place of the instantiation (see 12.3). For a library package, the place is
partially determined by the elaboration dependences (see Section 10).)

Dynamic Semantics

For the elaboration of a nongeneric package body, its declarative_part is first elaborated, and its
handled_sequence_of_statements is then executed.

© ISO/IEC 2012 — All rights reserved 160

ISO/IEC 8652:DIS

NOTES

3 A variable declared in the body of a package is only visible within this body and, consequently, its value can only be
changed within the package_body. In the absence of local tasks, the value of such a variable remains unchanged
between calls issued from outside the package to subprograms declared in the visible part. The properties of such a
variable are similar to those of a “static” variable of C.

4 The elaboration of the body of a subprogram explicitly declared in the visible part of a package is caused by the
elaboration of the body of the package. Hence a call of such a subprogram by an outside program unit raises the
exception Program_Error if the call takes place before the elaboration of the package_body (see 3.11).

Examples

Example of a package body (see 7.1):
package body Rational Numbers is

procedure Same Denominator (X,Y : in out Rational) is
begin
- - reduces X and Y to the same denominator:

end Same Denominator;

function "="(X,Y : Rational) return Boolean is
U : Rational := X;
V : Rational := Y;

begin

Same Denominator (U,V);

return U.Numerator = V.Numerator;
end n = n

function "/" (X,Y : Integer) return Rational is

begin
if Y > 0 then
return (Numerator => X, Denominator => Y);
else
return (Numerator => -X, Denominator => -Y);
end if;
end n/n ;
function "+" (X,Y : Rational) return Rational is ... end "+";
function "-" (X,Y : Rational) return Rational is ... end "-";
function "*" (X,Y : Rational) return Rational is ... end "*";
function "/" (X,Y : Rational) return Rational is ... end "/";

end Rational Numbers;

7.3 Private Types and Private Extensions

The declaration (in the visible part of a package) of a type as a private type or private extension serves
to separate the characteristics that can be used directly by outside program units (that is, the logical
properties) from other characteristics whose direct use is confined to the package (the details of the
definition of the type itself). See 3.9.1 for an overview of type extensions.

Syntax

private_type_declaration ::=
type defining_identifier [discriminant_part] is [[abstract] tagged] [limited] private
[aspect_specification];
private_extension_declaration ::=
type defining_identifier [discriminant_part] is
[abstract] [limited | synchronized] new ancestor subtype_indication
[and interface_list] with private
[aspect_specification];

Legality Rules

A private_type_declaration or private_extension_declaration declares a partial view of the type;
such a declaration is allowed only as a declarative_item of the visible part of a package, and it
requires a completion, which shall be a full_type_declaration that occurs as a declarative_item of the

161 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

private part of the package. The view of the type declared by the full_type_declaration is called the
Jfull view. A generic formal private type or a generic formal private extension is also a partial view.

A type shall be completely defined before it is frozen (see 3.11.1 and 13.14). Thus, neither the
declaration of a variable of a partial view of a type, nor the creation by an allocator of an object of the
partial view are allowed before the full declaration of the type. Similarly, before the full declaration,
the name of the partial view cannot be used in a generic_instantiation or in a representation item.

A private type is limited if its declaration includes the reserved word limited; a private extension is
limited if its ancestor type is a limited type that is not an interface type, or if the reserved word
limited or synchronized appears in its definition. If the partial view is nonlimited, then the full view
shall be nonlimited. If a tagged partial view is limited, then the full view shall be limited. On the other
hand, if an untagged partial view is limited, the full view may be limited or nonlimited.

If the partial view is tagged, then the full view shall be tagged. On the other hand, if the partial view is
untagged, then the full view may be tagged or untagged. In the case where the partial view is
untagged and the full view is tagged, no derivatives of the partial view are allowed within the
immediate scope of the partial view; derivatives of the full view are allowed.

If a full type has a partial view that is tagged, then:

o the partial view shall be a synchronized tagged type (see 3.9.4) if and only if the full type is a
synchronized tagged type;

o the partial view shall be a descendant of an interface type (see 3.9.4) if and only if the full
type is a descendant of the interface type.

The ancestor subtype of a private_extension_declaration is the subtype defined by the ancestor -
subtype_indication; the ancestor type shall be a specific tagged type. The full view of a private
extension shall be derived (directly or indirectly) from the ancestor type. In addition to the places
where Legality Rules normally apply (see 12.3), the requirement that the ancestor be specific applies
also in the private part of an instance of a generic unit.

If the reserved word limited appears in a private_extension_declaration, the ancestor type shall be a
limited type. If the reserved word synchronized appears in a private_extension_declaration, the
ancestor type shall be a limited interface.

If the declaration of a partial view includes a known_discriminant_part, then the
full_type_declaration shall have a fully conforming (explicit) known_discriminant_part (see 6.3.1,
“Conformance Rules”). The ancestor subtype may be unconstrained; the parent subtype of the full
view is required to be constrained (see 3.7).

If a private extension inherits known discriminants from the ancestor subtype, then the full view shall
also inherit its discriminants from the ancestor subtype, and the parent subtype of the full view shall
be constrained if and only if the ancestor subtype is constrained.

If the full_type_ declaration for a private extension includes a derived_type definition, then the
reserved word limited shall appear in the full_type_declaration if and only if it also appears in the
private_extension_declaration.

If a partial view has unknown discriminants, then the full_type_declaration may define a definite or
an indefinite subtype, with or without discriminants.

If a partial view has neither known nor unknown discriminants, then the full_type_declaration shall
define a definite subtype.

If the ancestor subtype of a private extension has constrained discriminants, then the parent subtype of
the full view shall impose a statically matching constraint on those discriminants.

© ISO/IEC 2012 — All rights reserved 162

ISO/IEC 8652:DIS

Static Semantics

A private_type_declaration declares a private type and its first subtype. Similarly, a private_-
extension_declaration declares a private extension and its first subtype.

A declaration of a partial view and the corresponding full_type_declaration define two views of a
single type. The declaration of a partial view together with the visible part define the operations that
are available to outside program units; the declaration of the full view together with the private part
define other operations whose direct use is possible only within the declarative region of the package
itself. Moreover, within the scope of the declaration of the full view, the characteristics (see 3.4) of
the type are determined by the full view; in particular, within its scope, the full view determines the
classes that include the type, which components, entries, and protected subprograms are visible, what
attributes and other predefined operations are allowed, and whether the first subtype is static. See
7.3.1.

For a private extension, the characteristics (including components, but excluding discriminants if
there is a new discriminant_part specified), predefined operators, and inherited user-defined primitive
subprograms are determined by its ancestor type and its progenitor types (if any), in the same way that
those of a record extension are determined by those of its parent type and its progenitor types (see 3.4
and 7.3.1).

Dynamic Semantics

The elaboration of a private_type_declaration creates a partial view of a type. The elaboration of a
private_extension_declaration elaborates the ancestor subtype_indication, and creates a partial
view of a type.

NOTES

5 The partial view of a type as declared by a private_type_declaration is defined to be a composite view (in 3.2). The
full view of the type might or might not be composite. A private extension is also composite, as is its full view.

6 Declaring a private type with an unknown_discriminant_part is a way of preventing clients from creating
uninitialized objects of the type; they are then forced to initialize each object by calling some operation declared in the
visible part of the package.

7 The ancestor type specified in a private_extension_declaration and the parent type specified in the corresponding
declaration of a record extension given in the private part need not be the same. If the ancestor type is not an interface
type, the parent type of the full view can be any descendant of the ancestor type. In this case, for a primitive
subprogram that is inherited from the ancestor type and not overridden, the formal parameter names and default
expressions (if any) come from the corresponding primitive subprogram of the specified ancestor type, while the body
comes from the corresponding primitive subprogram of the parent type of the full view. See 3.9.2.

8 If the ancestor type specified in a private_extension_declaration is an interface type, the parent type can be any type
so long as the full view is a descendant of the ancestor type. The progenitor types specified in a
private_extension_declaration and the progenitor types specified in the corresponding declaration of a record
extension given in the private part need not be the same — the only requirement is that the private extension and the
record extension be descended from the same set of interfaces.

Examples

Examples of private type declarations:

type Key is private;
type File Name is limited private;

Example of a private extension declaration:

type List is new Ada.Finalization.Controlled with private;

7.3.1 Private Operations

For a type declared in the visible part of a package or generic package, certain operations on the type
do not become visible until later in the package — either in the private part or the body. Such private
operations are available only inside the declarative region of the package or generic package.

163 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Static Semantics

The predefined operators that exist for a given type are determined by the classes to which the type
belongs. For example, an integer type has a predefined "+" operator. In most cases, the predefined
operators of a type are declared immediately after the definition of the type; the exceptions are
explained below. Inherited subprograms are also implicitly declared immediately after the definition
of the type, except as stated below.

For a composite type, the characteristics (see 7.3) of the type are determined in part by the
characteristics of its component types. At the place where the composite type is declared, the only
characteristics of component types used are those characteristics visible at that place. If later
immediately within the declarative region in which the composite type is declared additional
characteristics become visible for a component type, then any corresponding characteristics become
visible for the composite type. Any additional predefined operators are implicitly declared at that
place. If there is no such place, then additional predefined operators are not declared at all, but they
still exist.

The corresponding rule applies to a type defined by a derived_type_definition, if there is a place
immediately within the declarative region in which the type is declared where additional
characteristics of its parent type become visible.

For example, an array type whose component type is limited private becomes nonlimited if the full
view of the component type is nonlimited and visible at some later place immediately within the
declarative region in which the array type is declared. In such a case, the predefined "=" operator is
implicitly declared at that place, and assignment is allowed after that place.

A type is a descendant of the full view of some ancestor of its parent type only if the current view it
has of its parent is a descendant of the full view of that ancestor. More generally, at any given place, a
type is descended from the same view of an ancestor as that from which the current view of its parent
is descended. This view determines what characteristics are inherited from the ancestor, and, for
example, whether the type is considered to be a descendant of a record type, or a descendant only
through record extensions of a more distant ancestor.

It is possible for there to be places where a derived type is visibly a descendant of an ancestor type,
but not a descendant of even a partial view of the ancestor type, because the parent of the derived type
is not visibly a descendant of the ancestor. In this case, the derived type inherits no characteristics
from that ancestor, but nevertheless is within the derivation class of the ancestor for the purposes of
type conversion, the "covers" relationship, and matching against a formal derived type. In this case the
derived type is considered to be a descendant of an incomplete view of the ancestor.

Inherited primitive subprograms follow a different rule. For a derived_type_definition, each inherited
primitive subprogram is implicitly declared at the earliest place, if any, immediately within the
declarative region in which the type_declaration occurs, but after the type declaration, where the
corresponding declaration from the parent is visible. If there is no such place, then the inherited
subprogram is not declared at all, but it still exists. For a tagged type, it is possible to dispatch to an
inherited subprogram that is not declared at all.

For a private_extension_declaration, each inherited subprogram is declared immediately after the
private_extension_declaration if the corresponding declaration from the ancestor is visible at that
place. Otherwise, the inherited subprogram is not declared for the private extension, though it might
be for the full type.

The Class attribute is defined for tagged subtypes in 3.9. In addition, for every subtype S of an
untagged private type whose full view is tagged, the following attribute is defined:

S'Class Denotes the class-wide subtype corresponding to the full view of S. This attribute is
allowed only from the beginning of the private part in which the full view is declared,
until the declaration of the full view. After the full view, the Class attribute of the full
view can be used.

© ISO/IEC 2012 — All rights reserved 164

ISO/IEC 8652:DIS

NOTES

9 Because a partial view and a full view are two different views of one and the same type, outside of the defining
package the characteristics of the type are those defined by the visible part. Within these outside program units the type
is just a private type or private extension, and any language rule that applies only to another class of types does not
apply. The fact that the full declaration might implement a private type with a type of a particular class (for example, as
an array type) is relevant only within the declarative region of the package itself including any child units.

The consequences of this actual implementation are, however, valid everywhere. For example: any default initialization
of components takes place; the attribute Size provides the size of the full view; finalization is still done for controlled
components of the full view; task dependence rules still apply to components that are task objects.

10 Partial views provide initialization, membership tests, selected components for the selection of discriminants and
inherited components, qualification, and explicit conversion. Nonlimited partial views also allow use of
assignment_statements.

11 For a subtype S of a partial view, S'Size is defined (see 13.3). For an object A of a partial view, the attributes A'Size
and A'Address are defined (see 13.3). The Position, First Bit, and Last Bit attributes are also defined for discriminants
and inherited components.

Examples
Example of a type with private operations:

package Key Manager is
type Key is private;
Null Key : constant Key; -- adeferred constant declaration (see 7.4)
procedure Get Key (K : out Key);
function "<" (X, Y : Key) return Boolean;

private
type Key is new Natural;
Null Key : constant Key := Key'First;

end Key Manager;

package body Key Manager is
Last Key : Key := Null Key;
procedure Get Key (K : out Key) is

begin
Last Key := Last Key + 1;
K := Last_ Key;

end Get Key;
function "<" (X, Y : Key) return Boolean is
begin
return Natural (X) < Natural (Y);
end n < n
end Key Manager;

NOTES

12 Notes on the example: Outside of the package Key Manager, the operations available for objects of type Key
include assignment, the comparison for equality or inequality, the procedure Get Key and the operator "<"; they do not
include other relational operators such as ">=", or arithmetic operators.

The explicitly declared operator "<" hides the predefined operator "<" implicitly declared by the full_type_declaration.
Within the body of the function, an explicit conversion of X and Y to the subtype Natural is necessary to invoke the "<"
operator of the parent type. Alternatively, the result of the function could be written as not (X >=Y), since the operator
">="is not redefined.

The value of the variable Last Key, declared in the package body, remains unchanged between calls of the procedure
Get_Key. (See also the NOTES of 7.2.)

7.3.2 Type Invariants

For a private type or private extension, the following language-defined aspects may be specified with
an aspect_specification (see 13.1.1):

Type Invariant
This aspect shall be specified by an expression, called an invariant expression.
Type Invariant may be specified on a private_type_declaration, on a private -
extension_declaration, or on a full_type_declaration that declares the completion of a
private type or private extension.

165 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

Type Invariant'Class
This aspect shall be specified by an expression, called an invariant expression.
Type Invariant'Class may be specified on a private_type declaration or a private_-
extension_declaration.

Name Resolution Rules
The expected type for an invariant expression is any boolean type.

Within an invariant expression, the identifier of the first subtype of the associated type denotes the
current instance of the type. Within an invariant expression associated with type 7, the type of the
current instance is 7 for the Type Invariant aspect and 7'Class for the Type Invariant'Class aspect.

Legality Rules
The Type Invariant'Class aspect shall not be specified for an untagged type. The Type Invariant

aspect shall not be specified for an abstract type.

Static Semantics
If the Type Invariant aspect is specified for a type 7, then the invariant expression applies to 7.

If the Type Invariant'Class aspect is specified for a tagged type 7, then the invariant expression
applies to all descendants of 7.

Dynamic Semantics

If one or more invariant expressions apply to a type 7, then an invariant check is performed at the
following places, on the specified object(s):

e After successful default initialization of an object of type 7, the check is performed on the
new object;

e After successful conversion to type 7, the check is performed on the result of the conversion;

e For a view conversion, outside the immediate scope of 7, that converts from a descendant of T
(including T itself) to an ancestor of type T (other than T itself), a check is performed on the
part of the object that is of type T:

o after assigning to the view conversion; and

« after successful return from a call that passes the view conversion as an in out or out
parameter.

e After a successful call on the Read or Input stream attribute of the type 7, the check is
performed on the object initialized by the stream attribute;

e An invariant is checked upon successful return from a call on any subprogram or entry that:

e is declared within the immediate scope of type 7 (or by an instance of a generic unit, and
the generic is declared within the immediate scope of type T), and

e is visible outside the immediate scope of type T or overrides an operation that is visible
outside the immediate scope of 7, and

e has a result with a part of type 7, or one or more parameters with a part of type 7, or an
access to variable parameter whose designated type has a part of type 7.

The check is performed on each such part of type 7.

If performing checks is required by the Invariant or Invariant'Class assertion policies (see 11.4.2) in
effect at the point of corresponding aspect specification applicable to a given type, then the respective
invariant expression is considered enabled.

The invariant check consists of the evaluation of each enabled invariant expression that applies to 7,
on each of the objects specified above. If any of these evaluate to False, Assertions.Assertion_Error is
raised at the point of the object initialization, conversion, or call. If a given call requires more than

© ISO/IEC 2012 — All rights reserved 166

ISO/IEC 8652:DIS

one evaluation of an invariant expression, either for multiple objects of a single type or for multiple
types with invariants, the evaluations are performed in an arbitrary order, and if one of them evaluates
to False, it is not specified whether the others are evaluated. Any invariant check is performed prior to
copying back any by-copy in out or out parameters. Invariant checks, any postcondition check, and
any constraint or predicate checks associated with in out or out parameters are performed in an
arbitrary order.

The invariant checks performed on a call are determined by the subprogram or entry actually invoked,
whether directly, as part of a dispatching call, or as part of a call through an access-to-subprogram
value.

NOTES

13 For a call of a primitive subprogram of type NT that is inherited from type 7, the specified checks of the specific

invariants of both the types NT and T are performed. For a call of a primitive subprogram of type NT that is overridden
for type NT, the specified checks of the specific invariants of only type NT are performed.

7.4 Deferred Constants

Deferred constant declarations may be used to declare constants in the visible part of a package, but
with the value of the constant given in the private part. They may also be used to declare constants
imported from other languages (see Annex B).

Legality Rules

A deferred constant declaration is an object_declaration with the reserved word constant but no
initialization expression. The constant declared by a deferred constant declaration is called a deferred
constant. Unless the Import aspect (see B.1) is True for a deferred constant declaration, the deferred
constant declaration requires a completion, which shall be a full constant declaration (called the full
declaration of the deferred constant).

A deferred constant declaration that is completed by a full constant declaration shall occur
immediately within the visible part of a package_specification. For this case, the following
additional rules apply to the corresponding full declaration:

e The full declaration shall occur immediately within the private part of the same package;

e The deferred and full constants shall have the same type, or shall have statically matching
anonymous access subtypes;

o [f the deferred constant declaration includes a subtype_indication S that defines a constrained
subtype, then the constraint defined by the subtype_indication in the full declaration shall
match the constraint defined by S statically. On the other hand, if the subtype of the deferred
constant is unconstrained, then the full declaration is still allowed to impose a constraint. The
constant itself will be constrained, like all constants;

e If the deferred constant declaration includes the reserved word aliased, then the full
declaration shall also;

e If the subtype of the deferred constant declaration excludes null, the subtype of the full
declaration shall also exclude null.

A deferred constant declaration for which the Import aspect is True need not appear in the visible part
of a package_specification, and has no full constant declaration.

The completion of a deferred constant declaration shall occur before the constant is frozen (see
13.14).

Dynamic Semantics

The elaboration of a deferred constant declaration elaborates the subtype_indication,
access_definition, or (only allowed in the case of an imported constant) the array_type_definition.

167 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:DIS

NOTES
14 The full constant declaration for a deferred constant that is of a given private type or private extension is not
allowed before the corresponding full_type_declaration. This is a consequence of the freezing rules for types (see

13.14).
Examples
Examples of deferred constant declarations:
Null Key : constant Key; --see73.1

CPU Identifier : constant String(l..8)
with Import => True, Convention => Assembler, Link Name => "CPU _ID";
--see B.1

7.5 Limited Types

A limited type is (a view of) a type for which copying (such as for an assignment_statement) is not
allowed. A nonlimited type is a (view of a) type for which copying is allowed.
Legality Rules

If a tagged record type has any limited components, then the reserved word limited shall appear in its
record_type_definition. If the reserved word limited appears in the definition of a
derived_type_definition, its parent type and any progenitor interfaces shall be limited.

In the following contexts, an expression of a limited type is not permitted unless it is an aggregate, a
function_call, a parenthesized expression or qualified_expression whose operand is permitted by
this rule, or a conditional_expression all of whose dependent expressions are permitted by this rule:

e the initialization expression of an object_declaration (see 3.3.1)

o the default_expression of a component_declaration (see 3.8)

e the expression of a record_component_association (see 4.3.1)

e the expression for an ancestor_part of an extension_aggregate (see 4.3.2)

e an expression of a positional_array_aggregate or the expression of an
array_component_association (see 4.3.3)

o the qualified_expression of an initialized allocator (see 4.8)
e the expression of a return statement (see 6.5)
o the expression of an expression_function_declaration (see 6.8)

o the default_expression or actual parameter for a formal object of mode in (see 12.4)

Static Semantics
A view of a type is /imited if it is one of the following:
e a type with the reserved word limited, synchronized, task, or protected in its definition;
e a class-wide type whose specific type is limited;
e a composite type with a limited component;
e an incomplete view;
e aderived type whose parent is limited and is not an interface.
Otherwise, the type is nonlimited.
There are no predefined equality operators for a limited type.
A type is immutably limited if it is one of the following:
e An explicitly limited record type;

e A record extension with the reserved word limited;

© ISO/IEC 2012 — All rights reserved 168

ISO/IEC 8652:DIS

¢ A nonformal limited private type that is tagged or has at least one access discriminant with a
default_expression;

e A task type, a protected type, or a synchronized interface;
e A type derived from an immutably limited type.

A descendant of a generic formal limited private type is presumed to be immutably limited except
within the body of a generic unit or a body declared within the declarative r