
Business Plan and Convener’s Report
ISO/IEC/JTC 1/SC 22/WG 23 (Programming Language
Vulnerabilities)
Document: ISO/IEC JTC 1/SC 22/WG 23/N0873

Date: 2020-08-28

PERIOD COVERED: July 2019 – June 2020

SUBMITTED BY:

Convener, ISO/IEC JTC 1/SC 22/WG 23: Vulnerabilities
Stephen Michell
Maurya Software

156 Shinny Ave,
Stittsville, Ontario K2V 0G4 Canada

Office: +1(613)299-9047
E-mail: stephen.michell@maurya.on.ca

1. MANAGEMENT SUMMARY

. 1.1. JTC 1/SC 22/WG 23  Programming Language Vulnerabilities

1.2. PROJECT REPORT 

1.2.1. COMPLETED PROJECTS

ISO/IEC TR 24772-1:2019, Programing languages – Guidance to Avoiding
Vulnerabilities in Programming Languages – Part 1: Language independent
guidance

Published in December 2019

ISO/IEC TR 24772-2:2020, Programing languages – Guidance to Avoiding
Vulnerabilities in Programming Languages – Part 2: Vulnerability descriptions
for programming language Ada

Published in January 2020

ISO/IEC TR 24772-3:2020 Programing languages – Guidance to Avoiding
Vulnerabilities in Programming Languages – Part 3: Vulnerability descriptions
for programming language C

Published in January 2020

The 2012 version of ISO/IEC 24772 has been withdrawn.

ISO/IEC 17960, Code Signing for Source Code. This project is to produce
an International Standard, and the standard has been published.

1.2.2. PROJECTS UNDERWAY

ISO/IEC TR 24772-4, Guidance to Avoiding Vulnerabilities in Programming
Languages – Part 4: Vulnerability descriptions for programming language
Python. This is the update of TR24772:2013 for Python vulnerabilities which
was Annex E, following the project split of project 22.24772. Under
development

ISO/IEC TR 24772-8, Guidance to Avoiding Vulnerabilities in Programming
Languages – Part 8: Vulnerability descriptions for programming language
Fortran. This is the Part for language specific vulnerabilities for Fortran,
following the project split of project 22.24772. Under development.

ISO/IEC TR 24772-10, Guidance to Avoiding Vulnerabilities in
Programming Languages – Part 10: Vulnerability descriptions for
programming language C++. This is a new Part for language specific
vulnerabilities for C++. Under development.

ISO/IEC TR 24772-11, Guidance to Avoiding Vulnerabilities in Programming
Languages – Part 11: Vulnerability descriptions for programming language
Java. This is a new Part for language specific vulnerabilities for Java. Being
published.

1.2.3. CANCELLED PROJECTS  

none

1.2.4. COOPERATION and COMPETITION

Where appropriate, WG 23 has established active liaisons with other SC22

working groups and international organizations, such as Ada Europe and ACM.
See the table in 2.3 for a list of liaisons.

There is no apparent direct competition with any other current SC22 working
group or JTC 1 subcommittee.

2. PERIOD REVIEW

2.1. MARKET REQUIREMENTS

WG 23 is responding to the needs of the programming language community by
inclusion. WG 23 will accept input and liaison by any and all appropriate
organizations.

The marketplace demands robust, secure software. Vulnerabilities are the
antithesis of robust, secure software. Many of the attacks on software-based
systems succeed because the computer language used did not prevent the attack
vector and did not warn the developer that the code being produced contained
flaws that could be used to generate attacks.

WG 23 has produced 3 editions of TR 24772 (the last one being TR 24772-
1:2019, TR 24772-2:2020 and TR 24772-3:2020), but there are vulnerabilities
that still need to be identified, and programming languages that still need to be
documented with regards to vulnerabilities.

2.2. ACHIEVEMENTS

WG 23 has published the first edition of TR 24772-1, -2 and -3 after splitting the
original TR 24772 project and the TR into Part 1, language independent part,
and Parts 2, 3, 4, 8, 10 and 11 for language-specific vulnerability descriptions
for Ada, C, Python, Fortran, C++ and Java.

2.3. RESOURCES

Seven national bodies have participated in the WG 23 meetings this year:
Austria, Canada, China, Italy, Korea, UK, and the USA, as well as several
liaisons.

Over the last several years WG 23 has made Web conferencing capabilities
available for those that are finding it difficult to travel. At a typical WG 23, one-
third to one-half of all participates are remote, but still participate meaningfully
in the meeting. WG 23 finds that mixed-mode meetings work well in developing

technical content. WG 23 would like to thank ISO for the Web conferencing
support.

Of course, with the world-wide pandemic, WG 23 is holding all meetings
virtually.

Liaison with five SC22 Language groups, and four groups outside of SC22 have
been established. Liaisons fill a valuable role in that they identify the
vulnerabilities that exist (and do not exist) in their language, produce the
primary documentation of those vulnerabilities and turn them into the relevant
language-dependent part in conjunction with the core team through the liaison
individual.

Current WG 23 liaisons are:

Group Name/Type Person
assigned

SC 22/WG4 Cobol
Robert Karlin,

SC 22/WG5 Fortran Dan Nagel

SC 22/WG9 Ada Erhard
Ploedereder

SC 22/ WG14 C Clive Pygott

SC 22/ WG 21 C++ Group

Ada Europe Erhard
Ploedereder

MISRA Clive Pygott

Ada Europe

3. FOCUS NEXT WORK PERIOD

3.1. DELIVERABLES  

WG 23 has the following documents published:

 JTC 1 24772-1:2019, Guidance to Avoiding Vulnerabilities in Programming
Languages – Part 1: Language Independent Guidance

JTC 1 24772-2:2020, Guidance to Avoiding Vulnerabilities in Programming
Languages – Part 2, Vulnerability descriptions for programming language
Ada

JTC 1 24772-3:2020, Guidance to Avoiding Vulnerabilities in
Programming Languages – Part 3, Vulnerability descriptions for
programming language C

WG 23 is working on the following parts:

JTC 1 24772-4, Guidance to Avoiding Vulnerabilities in Programming
Languages – Part 4: Vulnerability descriptions for programming language
Python.

JTC 1 24772-8, Guidance to Avoiding Vulnerabilities in Programming
Languages – Part 8: Vulnerability descriptions for programming language
Fortran.

JTC 1 24772-10, Guidance to Avoiding Vulnerabilities in Programming
Languages – Part 10: Vulnerability descriptions for programming language
C++.

JTC 1 24772-11, Guidance to Avoiding Vulnerabilities in Programming
Languages – Part 11: Vulnerability descriptions for programming language
Java.

3.2. STRATEGIES

WG 23 decided in 2015 that a core document and seven language-specific annexes, with
at least two or three more in planning, creates a maintenance burden that makes it
difficult to keep all portions of the document up to date in a single document.

WG 23 therefore decided to split TR 24772 into a series of parts, as follows (see also
clause 4.1 for the official request for SC 22 action):

• TR24772-1 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 1: Language Independent Guidance

• TR24772-2 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 2: Ada

• TR24772-3 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 3: C

• TR24772-4 Programming languages — Guidance to avoiding vulnerabilities in
programming languages through – Part 4: Python

• TR24772-5 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 5: Ruby

• TR24772-6 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 6: SPARK

• TR24772-7 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 7: PHP

• TR24772-8 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 8: Fortran

• TR24772-9 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 9: COBOL

• TR24772-10 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 10: C++.	

• 24772-11 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 11: Java.
This is a new request to SC 22.

3.3. RISKS  

Progress on Parts 4, 8, 10, and 11 for which work items are allocated are showing reasonable
progress. Editorial and content development meetings are being held bi-weekly for Python, C++
and Java. Some of the other parts for which work items have not been initiated require the
identification of resources within other working groups or external experts to undertake the
work.

3.4. OPPORTUNITIES  

Since the 2019 SC 22 plenary, the US national body has provided resources to develop a
Python part, and to develop a Java part.

3.5. WORK PROGRAM PRIORITIES

See 4.1.

4. OTHER ITEMS

4.1. POSSIBLE ACTION REQUESTS AT FORTHCOMING 2020
PLENARY

4.1.1 Free availability of TR 24772-1, -2 and -3

WG 23 requests that SC 22 request free availability of the following documents. The main
criteria are that it supports the sale of language standards produced by SC 22 and that its free
availability would have little effect on the sale of standards. The two previous editions were
approved for free availability, based on the criteria provided at the end of this report, and
these documents are un revision of the previous TR 24772.

• ISO/IEC TR 24772-1:2019 Programming languages — Guidance to avoiding
vulnerabilities in programming languages – Part 1: Language Independent
Guidance

• TR24772-2 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 2: Ada

• TR24772-3 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 3: C

4.1.2 Register the following project with ISO CS

JTC 1 NP TR 24772-11 Programming languages — Guidance to avoiding vulnerabilities in
programming languages – Part 11: Java. (Project Editor Stephen Michell)

Initiate the following projects with the editors as noted:

• JTC 1 NP TR 24772-4, Programming languages — Guidance to avoiding vulnerabilities
in programming languages – Part 4: Python. (Project Editor S. Michell)

• JTC 1 NP TR 24772-8, Programming languages — Guidance to avoiding vulnerabilities
in programming languages – Part 8: Fortran. (Project Editor Dan Nagle)

• JTC 1 NP TR 24772-10, Programming languages — Guidance to avoiding
vulnerabilities in programming – Part 10: Programming language C++. (Project Editor
Stephen Michell)

• JTC 1 NP TR 24772-11 Programming languages — Guidance to avoiding
vulnerabilities in programming languages – Part 11: Java. (Project Editor Stephen
Michell)

4.2. ELECTRONIC DOCUMENT DISTRIBUTION  

Documents relevant to ISO/IEC/JTC1/SC22 processing are being entered on the ISO
eCommittee web site for WG 23. WG 23 conducts some of its detailed technical discussion
using the email reflector maintained by Keld Simonsen. WG 23 also has a Web site at
http://open-std.org/jtc1/sc22/wg23.  

4.4. RECENT MEETINGS

No Date Place # attendees Host

57 27-28 Aug 2018 Zoom 6 Convenor

58 8-9 Nov 2018 San Diego CA with WG
21

9 USA, WG 21

59 21 January 2019 Zoom Meeting 5 N/A

60 Cancelled

61 20-22 Feb 2019 Kona, Hawaii with WG 21 7 USA, WG 21

62 6 May 2019 Zoom Meeting 5 N/A

63 16-18 July 2019 Cologne Germany with
WG 21

 Germany, WG 21

64 Cancelled

65 15 October 2019 Zoom Meeting 6 N/A

66 6-9 November
2020

Belfast, UK with WG 21 6 UK, WG 21

67 10-12 Feb 2020 Prague, Czech Republic
with WG 21

15 Czech, WG 21

68 23-24 Feb 2020 Las Vegas NV with
INCITS Fortran

6 US, INCITS

69 19 May 2020 Zoom Meeting 5 Convenor

In addition, more than 10 meetings have been held with dedicated language
experts to progress the development of Part 10 C++, Part 4 Python and Part
11 Java.

4.5. FUTURE MEETINGS

#70 Zoom Meeting Sep 14,15 2000-2200 UTC
#71 USA or Zoom meeting Nov 2020 (with WG 21)

#72 Kona, HI or Zoom 22 Feb 2021
#73 Las Vegas with WG 5 TBD June 2020

 (5) REFERENCE MODELS A:
Standards which explain the relationships between existing standards

Justification Ease of consensus

Catalogues of standards for sales ++ promotion

The JTC 1/SC 22 secretariat requests that the JTC 1 secretariat take the necessary action
to make ISO/IEC TR 24772, Information Technology — Programming Languages —
Guidance to Avoiding Vulnerabilities in Programming Languages through Language
Selection and Use, publicly available and free of charge.

ISO/IEC TR 24772 describes security and safety vulnerabilities that can arise from the
undisciplined use of programming languages, including languages maintained by
ISO/IEC JTC 1/SC 22. It also describes how improved use of the languages allows one to
avoid the vulnerabilities. The free availability of 24772 would promote the use of JTC 1
programming languages by demonstrating how they can be used in a safe and secure
manner.

N07604

All of the JTC 1 programming languages were developed in an era prior to the ubiquitous connectivity of
today’s computers. Their designers paid little attention to the problems of “hacking” by unauthorized users.
Therefore these languages contain features that, when improperly used, make the program vulnerable to
attack from unauthorized users. Language developers and maintainers, including SC 22 working groups,
have paid increasing attention to the problem in recent years and now provide alternative features or
alternative ways to use existing features that mitigate the problem. Unfortunately, this is not well known.
For example, the C language is commonly accused of having a weakness in its facility for string copying,
despite the fact that the standard now provides an alternative library that does not have the weakness.

The purpose of TR 24772 is to survey the subject of vulnerabilities in programming languages and to
provide generic descriptions of the vulnerabilities and the ways to mitigate them. The first edition of the
report is completely language-independent. Future editions will contain annexes for individual
programming languages relating the language-independent descriptions to the specific features of the
specific language. The TR can play an important role in bolstering confidence in the SC 22 programming
languages.

Therefore, with respect to the criteria cited above:

-9-

WG 23 Convener’s Report 2010

(5) The language-specific annexes of TR 24772 will call out many of the language standards of SC22.
Existing freely available material2 on similar subjects has the effect of directing persons away from the ISO
programming languages. Our material will have the effect of directing users toward the standardized
languages because we emphasize adherence to the ISO standards as the most basic step to address the
problem.

(6) TR 24772 includes recommendations to the architects of programming languages regarding areas that
they might address in future revisions. It demonstrates the commitment of JTC 1 to meet the challenges of
modern Information Technology. TR 24772 does not contain normative provisions.

(8) TR 24772 explains how to use standard ISO programming languages in manners that are appropriate to
the modern challenges of computing security and safety. The Technical Report makes direct references to
the ISO language standards.

In this particular case, it is also useful to describe the situation with respect to the “rules for selection of the
criteria,” also listed in N7269:

Rules for selection of the
criteria Comments regarding TR 24772
(1) Insignificant impact on
revenue by free access

TR 24772 cannot be used as a substitute for any of the SC 22 standards. It
does not even provide summaries of them.

(2) Promotion of the sales of
other JTC 1 documents

TR 24772 helps to improve public awareness of JTC 1 programming
languages, the importance of using the standard languages, and the steps
that have been taken to improve the standards.

(3) Enhancement of awareness
and dominance of JTC 1 work

TR 24772 demonstrates that JTC 1 is the best and most responsible venue
for programming language specification

