ISO/IEC/JTC 1/SC 22/WG 23 NO750+-

2017-09-16,

with minor comments by Michell

A

6.64 Uncontrolled format string [SHL]

6.64.1 Description of application vulnerability

cause serious program errors.

6.64.2 Cross reference

CWE:
134. Uncontrolled Format String

6.64.3 Mechanism of failure

Format strings are parameters of input or output functions. They consist of fixed text and control

sequences that are associated with other parameters of the function, and which control how the

parameters are displayed or loaded.

There are a number of mechanisms relating to format strings that can lead to safety and security
problems.

1. Firstly, for an output function, the format string controls what is written to an output -

channel (file or printer) or a character buffer. In the latter case particularly there is the

possibility of buffer overrun, when the format string causes data to be written beyond the

end of the buffer. In most languages that provide I/O control using format strings, it is

possible for control sequences in the format string to control the size of the value written

(e.g. the control sequence $6d in C based languages means write an integer value in a 6

character field, padding with spaces if necessary). If the size of the target field is accidentally

or maliciously increased (say to $6000d) at runtime then buffer overrun or resource

exhaustion can occur.

2. Asthe format string controls what is written to an output channel, if an attacker can

influence the format string, then they can control what is written to a buffer, which could

include executable code. If the attacker can then cause corruption of the program stack, it

may be possible to execute this code.

~~"| Forma

HAH

| Forma

...~ | Forma
| Forma

“| Delete
“| Delete

“| Delete

“| Delete

Forma
Numbe
Aligne«

Dele

3. Asthe format string is interpreted at run-time and expects to find a parameter for each

control sequence, if the format string has more control sequences than supplied

parameters, it is likely that additional values will be read off the stack. This can lead to yalues Dele
being output that can Jeak sensitive information. Dele
4. Format strings are able to modify data values passed for output, with the result that values Dele
generated by the application can be arbitrarily changed, with serious consequences for Dele
applications that rely upon the output. Again using C-based languages as an example, the $n the
control sequence means write the number of characters output so far by this function to the Dele
value pointed to by the associated parameter. If the function should be writing the value of Dele
an object that’s,address was supplied by a pointer, then if the intended control sequenceis | Dele

“| Delete

| Delete

‘output a string’, but it is not unknown for the programmer to omit the format string and use the

message to be output as the format string, expecting it to consist solely of literal text. If the message

has been corrupted, so that it includes control sequences, any of the issues mentioned above may

OcCcur.

| Delete
intern:
reposit
format
of thos
messayj

6.64.4 Applicable language characteristics

\4

This vulnerability is intended to be applicable to languages with the following characteristics:

e languages that support format strings for input/output functions.
6.64.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Ensure that all format string functions are passed as static string which cannot be controlled

formatstring,

e Ensure all control sequences used to format /O match the associated parameter,

6.64.6 Implications for language design and evolution

In future language design and evolution activities, the following items should be considered:

e Ensure all format strings are verified to be correct in regard to the associated argument or
parameter.

| Page 2: [1] Deleted Stephen Michell 10/16/17 5:31:00 PM

Avoid format strings that will write to a memory location that is pointed to by its argument.

