
	 	 	 	 ISO/IEC/JTC	1/SC	22/WG	23	N0737	

	

6.<*>	Modifying	Constants		[UJO]		

6.	<*>.1	Description	of	application	vulnerability	

Many	programming	languages	allow	the	user	to	specify	some	declared	entity	to	be	“constant”.	
However,	some	of	these	languages	allow	alteration	of	the	value	of	this	entity	in	some	cases	after	all.	
The	semantics	then	range	from	legitimate	and	deterministic	behavior	to	implementation-defined	or	
undefined	behavior.	Often,	the	alteration	are	performed	by	means	of	indirection.	

6.	<*>.2	Cross	reference	

CWE:	<<none?	I	did	not	find	any,	but	lots	of	“make	const”-advice>>	
CERT	C	guidelines:		DCL52-CPP	,	EXP	40-C,	EXP55-CPP		<<incomplete?>>	

MISRA	C++:	7-1-1,	9-3-3	<<<somebody	please	check;	not	avail.	to	me>>>	

6.	<*>.3	Mechanism	of	failure	

In	code	reviews	and	manual	code	inspections,	users	tend	to	rely	on	the	belief	that	an	entity	declared	
to	be	constant	does	not	change	its	value	during	the	execution	of	the	program	(regardless	of	the	exact	
semantics	of	the	language).	The	initializing	value	is	taken	to	be	its	value	throughout	the	execution.	
For	example,	the	upper	bound	of	a	ring	buffer	array	might	be	declared	as	a	constant.	If,	however,	the	
value	can	be	changed	during	the	execution,	the	belief	in	immutability	can	be	falsified.	In	the	example,	
after	changing	the	upper-bound	constant,	insufficiently	large	buffer	allocations	or	out-of-bounds	
buffer	accesses,	seemingly	checked	against	the	“constant”	upper	bound,	may	occur.	

Even	the	well-meant	alteration	of	constants	is	very	risky	if	the	language	permits	optimizations	based	
on	the	known	initial	value	of	the	constant	entity.	The	optimization	“constant	propagation”	may	
replace	uses	of	the	constant	by	its	initializing	value.	The	alteration	of	the	value	at	run-time	then	has	
no	effect	on	this	use	of	the	constant,	while	it	changes	other	uses	of	the	constant	where	constant	
propagation	did	not	take	place.	Moreover,	different	compilers	or	even	the	same	compiler	under	
different	switch	setting	can	optimize	different	uses	of	the	constant	differently,	leading	to	non-
deterministic	executions	that	often	result	in	dangerous	malfunctions.	

The	vulnerability	can	be	exploited	if	the	modification	of	constants	is	known	to	the	attacker	and	the	
code	that	modifies	the	constant	can	be	triggered	by	the	attacker.			

The	vulnerability	may	be	difficult	to	detect	if	levels	of	indirection	are	involved	in	the	modification	of	
the	constant.	

6.	<*>.4	Applicable	language	characteristics	

This	vulnerability	description	is	intended	to	be	applicable	to	languages	with	the	following	
characteristics:	



• Languages	that	allow	the	specification	of	an	entity	to	be	“constant”	and,	at	the	same	time,	
legitimize	or	tolerate	changes	of	its	value.	

6.	<*>.5	Avoiding	the	vulnerability	or	mitigating	its	effects	

Software	developers	can	avoid	the	vulnerability	or	mitigate	its	ill	effects	in	the	following	ways:	

• Do	not	change	the	value	of	entities	declared	to	be	constant.	
• Do	not	create	references	or	pointers	to	entities	declared	to	be	constant.	This	includes	passing	

constants	as	actual	parameters	by	reference,	unless	immutability	of	the	formal	parameter	is	
ensured.		

• Use	static	analysis	tools	that	detect	the	alteration	of	constant	entities.		

6.	<*>.6	Implications	for	language	design	and	evolution	

In	future	language	design	and	evolution	activities,	the	following	items	should	be	considered:	

• Avoid	language	constructs	that	allow	the	modification	of	constant	entities.		
• Ensure	that	the	property	to	be	immutable	cannot	be	changed	by	language	operations	such	as	

assignment	or	conversion.	
	


