6.CGT Concurrency – Directed Termination [CGT]
6.CGT.0 Terminology
·
·
·
· Abort: The completion and shut down of a thread, where the thread is not permitted any execution after the command to abort has been received by the thread, or by the runtime services that control the thread. In particular, the thread will not be able to release any locks that it has explicitly acquired, and may not release any OS provided locks or data structures.

·
· Termination: The completion and orderly shutdown of a thread, where the thread is permitted to make data objects consistent, return any heap-acquired storage, and notify any dependent threads that it is terminating.
· Terminating Thread:
· Termination: The completion and orderly shutdown of a thread, where the thread is permitted to make data objects consistent, return any heap-acquired storage, and notify any dependent threads that it is terminating. There are a number of steps in the termination of a thread as listed below, but depending upon the multithreading model, some of these steps may be combined, may be explicitly programmed, or may be missing.
· The termination of programmed execution of the thread, including termination of any synchronous communication;
· The finalisation of the local objects of the thread;
· Waiting for any th dynamic, and may be a result of the master having created the child or have been given “master” status by other mechanisms.
6.CGT.1 Description of Application Vulnerability
This discussion is associated with the effects of unsuccessful or late termination of a thread. For a discussion of premature termination, see CGS Concurrency – Premature Termination.
When a thread is working cooperatively with other threads and is directed to terminate, there are a number of error situations that may occur that can lead to compromise of the system. The termination directing thread may request that one or more other threads abort or terminate, but the terminated thread(s) may not be in a state such that the termination can occur, may ignore the direction, or may take longer to abort or terminate then the application can tolerate. In any case, on most systems, the thread will not terminate until it is next scheduled for execution.

There are a number of steps in the termination of a thread.
The termination of execution of the thread, including termination of any synchronous communication;
 The finalisation of the local objects of the thread;
 Waiting for any threads that may depend on the thread to terminate;
 Finalisation of any state associated with dependent threads;
 Notification of outer scopes that finalisation is complete, including possible notification of the activating task;
Removal and cleanup of thread control blocks and any state accessible by the thread by possibly threads in outer scopes.
Depending upon the multithreading model, some of these steps may be combined, may be explicitly programmed, or may be missing.
Thread termination is a complex process involving termination of execution, finalization of state and cleanup. Thread termination vulnerabilities happen because of a failure in the termination protocol itself, or because of implicit dependencies that other threads that are outside of the termination dependency threads have on the terminating thread(s).
A thread may complete normal execution and terminate, may terminate due to a local error condition, or may be terminated by another thread or by the underlying runtime. A thread may also fail to terminate because it depends upon other threads that fail to complete their work and terminate. Early termination will may result in the application not completing its task or result in the failure of the applicationin deadlock, livelock, and failure of service requests. Late termination or failure to termination.
Late termination will may cause non progress of the applicationa failure to meet deadlines, implying incomplete calculation, leading the or will cause the application to deliver no results, or wrong incorrect results. Failure to initiate termination may lead to … Failure to complete termination may lead to … Non-termination may cause deadlock, spinlock, failure to release resources, and corrupted data abstractions. All of these may lead to failure of the application. Unexpectedly delayed termination or the consumption of resources by the termination itself may cause a failure to meet deadlines, which, in turn, may lead to other failures.

6.CGT.2 Cross References
Hoare C.A.R., "Communicating Sequential Processes", Prentice Hall, 1985
 Holzmann G., "The SPIN Model Checker: Principles and Reference Manual"., Addison Wesley Professional. 2003
 Larsen, Peterson, Wang, "Model Checking for Real-Time Systems"., Proceedings of the 10th International Conference on Fundamentals of Computation Theory, 1995
 The Ravenscar Tasking Profile, specified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007

 CWE 364 Signal Handler Race Condition
6.CGT.3 Mechanism of Failure
The abort of a thread may not happen if a thread is in an abort-deferred region and does not leave that region (for whatever reason) after the abort directive is given. Similarly, if abort is implemented as an event sent to a thread and it is permitted to ignore such events, then the abort will not be obeyed.
The termination of a thread may not happen if the thread ignores the directive to terminate, or if the finalization of the thread to be terminated does not complete.
If the termination directing thread continues on the false assumption that termination has completed, then any sort of failure may occur.

If the terminateda thread terminates prematurely, and there is no visibility to its runtime state from other threads sharing a communication protocol or a termination protocol, then those threads will be unaware of the termination (unless they make a specific operation or request that makes them aware). Tthreads that depend upon direct actionsservices from the terminating task thread (in the sense of waiting exclusively for a specific action before continuing) will may wait forever.
If a dependent thread depends on the terminating thread, but the dependent thread ignores the termination notification, then a protocol failure will occur in the dependent thread. For asynchronous termination events, an unexpected event may cause immediate transfer of control from the execution place of dependent thread to anther (possible unknown), resulting in corrupted objects or resources; or may cause termination in the master thread, and an expected propagation of failures.
These conditions can result in
premature shutdown of the system;
corruption or arbitrary execution of code;
livelock;
· deadlock;
· depending upon how other threads handle the termination errors.
·
· If a thread is aborted by another thread, there is nothing that can be done within the aborted thread to prepare data for return to master tasks, except possibly the management thread or OS notifies others that the event occurred. Any held locks may be left in a locked state resulting in waiting threads never being released. If the aborted thread was holding resources or performing active updates when aborted, then any direct access by other threads to such locks, resources or memory may result in corruption of those threads or of the complete system, up to and including arbitrary code execution.
· Arbitrary execution of random code is distinct possibility from some kinds of termination errors, but arbitrary execution of known code is not likely since it is hard to determine where nonterminating threads will be in their execution when the terminating thread notification is delivered.
6.CGT.4 Applicable Language Characteristics
Languages that permit concurrency within the language, or support libraries and operating systems (such as POSIX-compliant OSsoperating systems or Windows) that provide hooks for concurrency control.
6.CGT.5 Avoiding the Vulnerability or Mitigating its Effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use mechanisms of the language or system to determine that aborted threads or threads directed to terminate have successfully terminated. Such mechanisms may include direct communication, runtime-level checks, explicit dependency relationships, or progress counters in shared communication code to verify progress.
· Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use a language that provides a complete concurrency mechanism.
· Use mechanisms of the language or system to determine that necessary threads are still operating. Such mechanisms may be direct communication, runtime-level checks, explicit dependency relationships, or progress counters in shared communication code to verify progress
· Handle events and exceptions from termination events
· Program fall-back handlers to report or recover from premature termination failures.
· Provide manager threads to monitor progress and to collect and recover from improper terminations or abortions of threads.Provide mechanisms to detect and/or recover from failed termination.
6.CGT.6 Implications for StandardisationStandardization
In future standardization activities, the following items should be considered:
In future standardisation activities, the following items should be considered:
· Provide a mechanism (either a language mechanism or a service call) to preclude the abort of a thread from another thread during critical pieces of code. Some languages (eg Ada) provide a notion of an abort-deferred region.
· Provide a mechanism (either a language mechanism or a service call) to signal another thread (or an entity that can be queried by other threads) when a thread terminates.
· Provide a structure within the concurrency service (either a language mechanism or a service call) that defers the delivery of asynchronous exceptions or asynchronous transfers of controlProvide a mechanism (either a language mechanism or a service call) to signal either another thread or an entity that can be queried by other threads when a thread terminates.
