
	

	

ISO/IEC JTC 1/SC 22/WG 23 N 0309 1	
Proposed	vulnerability	description	on	Inter‐language	calling	2	
	3	
Date 11	March	2011	
Contributed by John	Benito	
Original file name djs.docx	
Notes 	
	4	
 5	
6.X Inter-language Calling [DJS] 6	
 7	
6.x.1 Description	of	application	vulnerability	8	

When	an	application	is	developed	using	more	than	one	programming	language,	complications	arise.		9	
The	calling	conventions,	data	layout,	error	handing	and	return	conventions	all	differ	between	10	
languages,	if	these	are	not	addressed	correctly,	stack	overflow/underflow,	data	corruption,	and	11	
memory	corruption	are	possible.	12	

In	multi‐language	development	environment	it	is	also	difficult	to	reuse	code	across	the	languages.	13	

6.x.2	Cross	reference	14	

[None]	15	

6.x.3	Mechanism	of	failure	16	

When	calling	a	function	that	has	been	developed	using	a	language	different	from	the	calling	language,	17	
the	call	convention	and	the	return	convention	used	must	be	taken	into	account.		If	these	conventions	18	
are	not	handled	correctly,	there	is	a	good	chance	the	calling	stack	will	be	corrupted,	see	[OTR].		The	19	
call	convention	covers	how	the	language	invokes	the	call,	see	[CJS],	but	how	the	parameters	are	20	
handled.	21	

Many	software	languages	have	restriction	on	length	of	identifiers,	the	type	of	characters	that	can	be	22	
used	as	the	first	character,	and	the	case	of	the	characters	used.		All	of	these	need	to	be	taken	into	23	
account	when	invoking	a	routine	written	in	a	language	other	than	the	calling	language.	24	

Character	and	aggregate	data	types	require	special	treatment	in	a	multi‐language	development	25	
environment,	the	data	layout	of	all	languages	that	are	to	be	used	must	be	taken	into	consideration,	26	
this	includes	padding	and	alignment.		If	these	data	types	are	not	handled	correctly,	the	data	could	be	27	
corrupted,	the	memory	could	be	corrupted,	or	both	may	become	corrupt.		This	can	happen	by	28	
writing/reading	past	either	end	of	the	data	structure,	see	[HCB].		For	example,	a	Pascal's	STRING	29	
data	type		30	
	 VAR str: STRING(10);� 31	

corresponds	to	a	C	structure	32	
struct { 33	
 int length; 34	
 char str [10]; 35	
};	36	

�where	length	contains	the	actual	length	of	STRING.		37	

	

	

Most	numeric	data	types	have	counterparts	across	languages,	but	again	the	layout	should	be	38	
understood,	and	only	those	types	that	match	the	languages	should	be	used.		For	example,	in	some	39	
implementations	of	C++	a	40	

	 signed	char	41	

would	match	a	Fortran	42	

	 INTEGER*1	43	

and	would	match	a	Pascal	44	

	 PACKED -128..127 45	

these can be implementation-defined and should be verified.	46	
6.x.4	Applicable	language	characteristics	47	

The vulnerability is applicable to languages with the following characteristics: 48	
 All high level programming languages and low level programming languages are susceptible to this 49	

vulnerability when used in a multi-language development environment.	50	
 51	
6.x.5	Avoiding	the	vulnerability	or	mitigating	its	effects	52	

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 53	
 Understand the calling convenes of all languages used. 54	
 Understand the data layout of all data types used. 55	
 Understand the return conventions of all languages used.	56	
 Ensure	that	the	language	in	which	error	check	occurs	is	the	one	that	handles	the	error.	57	
 Avoid	using	uppercase	letters	in	identifiers.	58	
 Avoid	using	the	underscore	(_)	and	dollar	sign	($)	as	the	first	character	in	identifiers.	59	
 Avoid	using	long	identifier	names.	60	

	61	
6.x.6	Implications	for	standardization	62	
In future standardization activities, the following items should be considered: 63	

 Standards committees should consider developing guides for inter‐language calling with 64	
languages most often used with their programming language.	65	

 66	

