ISO/IEC JTC 1/SC 22/WG 23 N 0278

Revision of C annex portion of N0270

Date 10 September 2010

Contributed by John Benito

Original file name C - HCB.pdf

Notes This is a revision of the C annex portion of N0270

Possible C Annex entry for HCB

C.HCB Buffer Boundary Violation [HCB]
C.HCB.1 Terminology and features
C.HCB.2 Description of vulnerability

A buffer boundary violation condition occurs when an array is indexed outside its bounds, or pointer arithmetic
results in an access to storage that occurs outside the bounds of the object accessed.

In C, the subscript operator [] is defined such that EL[E2] is identical to (*((E1)+(E2))), so that in either
representation, the value in location (E1+E2) is returned. C does not perform bounds checking on arrays, so the
following code:

int foo(const int i) {
int x[] = {0,0,0,0,0,0,0,0,0,0%};
return x[i];

}

will return whatever is in location X[[1] even if, I were equal to -10 or 10 (assuming either subscript was still
within the address space of the program). This could be sensitive information or even a return address, which if
altered by changing the value of X[-10Jor X[107], could change the program flow.

The following code is more appropriate and would not violate the boundaries of the array X:

int foo(const int i) {
int x[X_SI1ZE] = {0};
if (i <0 |] 1 >= XSIZE) {
return ERROR_CODE;
}

else {
return x[i];
}

}
A buffer boundary violation may also occur when copying, initializing, writing or reading a buffer if attention to the
index or addresses used are not taken. For example, in the following move operation there is a buffer boundary
violation:

char buffer_src[]={*abcdefg”};
char buffer_dest[5]={0};

strcpy(buffer_dest, buffer_src);

the buffer_srcis longer than the buffer_dest, and the code does not check for this before the actual copy
operation is invoked. A safer way to accomplish this copy would be:

char buffer_src[]={“abcdefg];
char buffer_dest[5]={0};

strncpy(buffer_dest, buffer_src, sizeof(buffer_dest) -1);

this would not cause a buffer bounds violation, however, because the destination buffer is smaller than the source
buffer, the destination buffer will now hold “abcd”, the 5™ element of the array would hold the null character.

C.HCB.3 Avoiding the vulnerability or mitigating its effects

Validate all input values.

Check any array index before use if there is a possibility the value could be outside the bounds of the
array.

Use length restrictive functions such as strncpy()instead of strcpy().

Use stack guarding add-ons to detect overflows of stack buffers.

Do not use the deprecated functions or other language features such as gets().

Be aware that the use of all of these measures may still not be able to stop all buffer overflows from
happening. However, the use of them can make it much rarer for a buffer overflow to occur and much
harder to exploit it.

Use alternative functions as specified in ISO/IEC TR 24731-1:2007 or TR 24731-2:2010. These
Technical Reports provides alternative functions for the C Library (as defined in ISO/IEC 9899:1999)
that promotes safer, more secure programming. The functions verify that output buffers are large
enough for the intended result and return a failure indicator if they are not. Optionally, failing
functions call a“"runtime-constraint handler"” to report the error. Data is never written past the
end of an array. All string results are null terminated. In addition, the functions in ISO/IEC TR
24731-1:2007 are re-entrant: they never return pointers to static objects owned by the function.
ISO/IEC TR 24731-1:2007 also contains functions that address insecurities with the C input-output
facilities.

(s

C.HCB.4 Implications for standardization

Future standardization efforts should consider:

Defining an array type that does automatic bounds checking.

Deprecating less safe functions such as strcpy () and strcat() where a more secure alternative is
available.

Defining safer and more secure replacement functions such as memncpy () and memncmp() to
complement the memcpy () and memcmp () functions (see in Implications for standardization.XYW).
Adopting one of the Technical Reports on safer C library functions, Extensions to the C Library (TR 24731-1:
Part |: Bounds-checking interfaces or TR 24731-2: Part |l: Dynamic allocation functions, that have been
developed by WG 14."

' TR 24731-1 has been added to the WG 14 working paper as an optionally normative Annex.

	ISO/IEC JTC 1/SC 22/WG 23 N 0278

