ISO/IEC JTC 1/SC 22/WG 23 N 0270

Possible new vulnerability, Buffer overflow (HCB)--Language-independent and C versions

Date 2010-08-31

Contributed by John Benito

Original file name Buffer Overflow HCB_.pdf and C - HCB.pdf
Notes Action Item #14-08

Buffer Boundary Violation Vulnerability [HCB]

6.nn Buffer Boundary Violation (Buffer Overflow) [HCB]
6.nn.1 Description of application vulnerability

A buffer boundary violation arises when, due to unchecked array indexing or unchecked array copying,
storage outside the buffer is accessed. Usually boundary violations describe the situation where such
storage is then written. Depending on where the buffer is located, logically unrelated portions of the
stack or the heap could be modified maliciously or unintentionally. Usually, buffer boundary violations
are accesses to contiguous memory beyond either end of the buffer data, accessing before the
beginning or beyond the end of the buffer data is equally possible, dangerous and maliciously
exploitable.

6.nn.2 Cross reference

CWE:
120. Buffer copy without Checking Size of Input (‘Classic Buffer Overflow’)
122. Heap-based Buffer Overflow
124. Boundary Beginning Violation (‘Buffer Underwrite’)
129. Unchecked Array Indexing
787: Out-of-bounds Write
JSF AV Rule: 15 and 25
MISRA C 2004: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: ARR30-C, ARR32-C, ARR33-C, ARR38-C, MEM35-C and STR31-C

6.nn.3 Mechanism of failure
The program statements that cause buffer boundary violations are often difficult to find.

There are several kinds of failures (in all cases an exception may be raised if the accessed location is
outside of some permitted range of the run-time environment):

e Avread access will return a value that has no relationship to the intended value, such as, the
value of another variable or uninitialized storage.

e An out-of-bounds read access may be used to obtain information that is intended to be
confidential.

e A write access will not result in the intended value being updated and may result in the value of
an unrelated object (that happens to exist at the given storage location) being modified.

e When an array has been allocated storage on the stack an out-of-bounds write access may
modify internal runtime housekeeping information (for example, a function's return address)
which might change a program’s control flow.

e Aninadvertent or malicious overwrite of function pointers that may be in memory, pointing
them to the attacker's code. Even in applications that do not explicitly use function pointers, the

Buffer Boundary Violation Vulnerability [HCB]

run-time will usually store pointers to functions in memory. For example, object methods in
object-oriented languages are generally implemented using function pointers in a data structure
or structures that are kept in memory. The consequence of a buffer boundary violation can be
targeted to cause arbitrary code execution; this vulnerability may be used to subvert any
security service.

6.nn.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e languages that do not detect and prevent an array being accessed outside of its declared
bounds (either by means of an index or by pointer?).

e languages that do not automatically allocate storage when accessing an array element for which
storage has not already been allocated.

e languages that provide bounds checking but permit the check to be suppressed.

e languages that allow a copy or move operation without an automatic length check ensuring that
source and target locations are of at least the same size. The destination target can be larger
than the source being copied.

6.nn.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Use of implementation-provided functionality to automatically check array element accesses
and prevent out-of-bounds accesses.

e Use of static analysis to verify that all array accesses are within the permitted bounds. Such
analysis may require that source code contain certain kinds of information, such as, that the
bounds of all declared arrays be explicitly specified, or that pre- and post-conditions be
specified.

e Sanity checks should be performed on all calculated expressions used as an array index or for
pointer arithmetic.

Some guideline documents recommend only using variables having an unsigned data type when
indexing an array, on the basis that an unsigned data type can never be negative. This recommendation
simply converts an indexing underflow to an indexing overflow because the value of the variable will
wrap to a large positive value rather than a negative one. Also some languages support arrays whose
lower bound is greater than zero, so an index can be positive and be less than the lower bound.

In the past the implementation of array bound checking has sometimes incurred what has been
considered to be a high runtime overhead (often because unnecessary checks were performed). Itis
now practical for translators to perform sophisticated analysis that significantly reduces the runtime

! Using the physical memory address to access the memory location.

Buffer Boundary Violation Vulnerability [HCB]

overhead (because runtime checks are only made when it cannot be shown statically that no bound

violations can occur).
6.nn.6 Implications for standardization
In future standardization activities, the following items should be considered:

e Languages should provide safe copying of arrays as built-in operation.

e lLanguages should consider only providing array copy routines in libraries that perform checks on
the parameters to ensure that no buffer overrun can occur.

e languages should perform automatic bounds checking on accesses to array elements. This
capability may need to be optional for performance reasons.

e languages that use pointer types should consider specifying a standardized feature for a pointer
type that would enable array bounds checking.

C.HCB Buffer Boundary Violation [HCB]
C.HCB.1 Terminology and features
C.HCB.2 Description of vulnerability

A buffer boundary violation condition occurs when an array is indexed outside its bounds, or pointer arithmetic
results in an access to storage that occurs outside the bounds of the object accessed.

In C, the subscript operator [] is defined such that EL[E2] is identical to (* ((E1)+(E2))), so that in either
representation, the value in location (E1+E2) is returned. C does not perform bounds checking on arrays, so the
following code:

int foo(const iInt 1) {
int x[] = {0,0,0,
return x[i];

0,0,0,0,0,0,0%};
}

will return whatever is in location X[1] even if, I were equal to -10 or 10 (assuming either subscript was still
within the address space of the program). This could be sensitive information or even a return address, which if
altered by changing the value of X[-10Jor X[10], could change the program flow.

The following code is more appropriate and would not violate the boundaries of the array X:

int foo(const int i) {
int x[X_SI1ZE] = {0};
if (i <0 |] 1 >= XSIZE) {
return ERROR_CODE;
}

else {
return x[i];
}

}

A buffer boundary violation may also occur when coping, initializing, writing or reading a buffer if attention to the
index or addresses used are not taken. For example, in the follow move operation there is a buffer boundary
violation:

char buffer_src[]={“abcdefg”};
char buffer_dest[5]={0};

strcpy(buffer_dest, buffer_src);

the buffer_srcis longer than the buffer_dest, and the code does not check for this before the actual copy
operation is invoked. A safer way to accomplish this copy would be:

char buffer_src[]={“abcdefg];
char buffer_dest[5]={0};

strncpy(buffer_dest, buffer_src, sizeof(buffer_dest) -1);

this would not cause a buffer bounds violation, however, because the destination buffer is smaller than the source
buffer, the destination buffer will now hold “abcd”, the 5™ element of the array would hold the NULL character.

C.HCB.3 Avoiding the vulnerability or mitigating its effects

Validate all input values.

Check any array index before use if there is a possibility the value could be outside the bounds of the
array.

Use length restrictive functions such as strncpy()instead of strcpy ().

Use stack guarding add-ons to prevent overflows of stack buffers.

Do not use the deprecated functions or other language features such as gets().

Be aware that the use of all of these preventive measures may still not be able to stop all buffer overflows
from happening. However, the use of them can make it much rarer for a buffer overflow to occur and
much harder to exploit it.

Use alternative functions as specified in ISO/IEC TR 24731-1:2007 or TR 24731-2:2010. These
Technical Reports provides alternative functions for the C Library (as defined in ISO/IEC 9899:1999)
that promotes safer, more secure programming. The functions verify that output buffers are large
enough for the intended result and return a failure indicator if they are not. Optionally, failing
functions call a“"runtime-constraint handle"” to report the error. Data is never written past the

end of an array. All string results are null terminated. In addition, the functions in ISO/IEC TR
24731-1:2007 are re-entrant: they never return pointers to static objects owned by the function.
ISO/IEC TR 24731-1:2007 also contains functions that address insecurities with the C input-output
facilities.

“n

C.HCB.4 Implications for standardization

Future standardization efforts should consider:

Defining an array type that does automatic bounds checking.

Deprecating less safe functions such as strcpy () and strcat() where a more secure alternative is
available.

Defining safer and more secure replacement functions such as memncpy () and memncat() to
complement the memcpy () and memcat() functions (see in Implications for standardization.XYW).
Adopting one of the Technical Reports on safer C library functions, Extensions to the C Library (TR 24731-1:
Part I: Bounds-checking interfaces or TR 24731-2: Part Il: Dynamic allocation functions, that have been
developed by WG 14.

	ISO/IEC JTC 1/SC 22/WG 23 N 0270

