6.<x> XYE Integer Coercion Errors

6.x.0 Status and history

PENDING
2007-07-30, Edited by Larry Wagoner
2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.<x>.1 Description of application vulnerability

Integer coercion refers to a set of flaws pertaining to the type casting, extension, or truncation of primitive data types. Common consequences are of integer coercion are undefined states of execution resulting in infinite loops or crashes, or exploitable buffer overflow conditions, resulting in the execution of arbitrary code.

6.<x>.2 Cross reference

CWE:

192. Integer Coercion Error

6.<x>.3 Categorization

See clause 5.?.
Group: Arithmetic
6.<x>.4 Mechanism of failure

Several flaws fall under the category of integer coercion errors. For the most part, these errors in and of themselves result only in availability and data integrity issues. However, in some circumstances, they may result in other, more complicated security related flaws, such as buffer overflow conditions.

Integer coercion often leads to undefined states of execution resulting in infinite loops or crashes. In some cases, integer coercion errors can lead to exploitable buffer overflow conditions, resulting in the execution of arbitrary code. Integer coercion errors result in an incorrect value being stored for the variable in question.

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that allow implicit type conversion (coercion).
· Languages that are weakly typed. Strongly typed languages do a strict enforcement of type rules since all types are known at compile time.
· Languages that support logical, arithmetic, or circular shifts. Some languages do not support one or more of the shift types.

· Some languages throw exceptions on ambiguous data casts.
6.x.6 Avoiding the vulnerability or mitigating its effects

 Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

 [Ask Tom Plum for words regarding RSIZE_T and verifiably representable.]

· Integer values used in any of the following ways must be guaranteed correct:

· as an array index

· in any pointer arithmetic

· as a length or size of an object

· as the bound of an array (for example, a loop counter)

· in security critical code

· The first line of defense against integer vulnerabilities should be range checking, either explicitly or through strong typing. However, it is difficult to guarantee that multiple input variables cannot be manipulated to cause an error to occur in some operation somewhere in a program.

· An alternative or ancillary approach is to protect each operation. However, because of the large number of integer operations that are susceptible to these problems and the number of checks required to prevent or detect exceptional conditions, this approach can be prohibitively labor intensive and expensive to implement.

· A language which throws exceptions on ambiguous data casts might be chosen. Design objects and program flow such that multiple or complex casts are unnecessary. Ensure that any data type casting that you must used is entirely understood in order to reduce the plausibility of error in use.

· Type conversions occur explicitly as the result of a cast or implicitly as required by an operation. While conversions are generally required for the correct execution of a program, they can also lead to lost or misinterpreted data.

· Do not assume that a right shift operation is implemented as either an arithmetic (signed) shift or a logical (unsigned) shift. If E1 in the expression E1 >> E2 has a signed type and a negative value, the resulting value is implementation defined and may be either an arithmetic shift or a logical shift. Also, be careful to avoid undefined behavior while performing a bitwise shift.

· Integer conversions, including implicit and explicit (using a cast), must be guaranteed not to result in lost or misinterpreted data. The only integer type conversions that are guaranteed to be safe for all data values and all possible conforming implementations are conversions of an integral value to a wider type of the same signedness. Typically, converting an integer to a smaller type results in truncation of the high-order bits.

· Bitwise shifts include left shift operations of the form shift-expression << additive-expression and right shift operations of the form shift-expression >> additive-expression. The integer promotions are performed on the operands, each of which has integer type. The type of the result is that of the promoted left operand. If the value of the right operand is negative or is greater than or equal to the width of the promoted left operand, the behavior is undefined.
· [Bitwise shifting may be a distinct vulnerability.]
· If an integer expression is compared to, or assigned to, a larger integer size, then that integer expression should be evaluated in that larger size by explicitly casting one of the operands.

6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

