6.5
XYK Dangling Reference to Heap
6.5.0
Status and history

PENDING
2007-12-11, Edited by Erhard Ploedereder; general edits without any MISRA additions
2007-10-15, Decided at OWGV #6: We decide to write a new vulnerability, Pointer Arithmetic, RVG, for 17.1 thru 17.4. Don't do 17.5. We also want to create DCM to deal with dangling references to stack frames, 17.6. XYK deals with dangling pointers. Deal with MISRA 2004 rules 17.1, 17.2, 17.3, 17.4, 17.5, 17.6; JSF rule 175.
2007-10-01, Edited at OWGV #6

2007-08-03, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.5.1
Description of application vulnerability

A dangling reference is a reference to an object whose lifetime has ended due to explicit deallocation or the stack frame in which the object resided has been freed due to exiting the dynamic scope. The memory for the object may be reused; therefore, any access through the dangling reference may affect an apparently arbitrary location of memory, corrupting data or code. This description concerns the former case, dangling references to the heap. The description of dangling references to stack frames is DCM. In many languages references are called pointers; the issues are identical.
A notable special case of using a dangling reference is calling a deallocator, e.g., free, twice on the same memory address. Such a “Double Free” may corrupt internal data structures of the heap administration, leading to extremely surprising fault behaviour (such as infinite loops within the allocator, returning the same memory repeatedly as the result of distinct subsequent allocations, or deallocating memory legitimately allocated to another request since the first free call, to name but a few), or it may have no adverse effects at all.
Memory corruption through the use of a dangling reference is among the most difficult errors to locate.
With sufficient knowledge about the heap management scheme (often provided by the OS or standard kernel), use of dangling references is an exploitable vulnerability, since the dangling reference provides an arbitrary view to read and modify valid data in the designated memory locations after freed memory has been re-allocated by subsequent allocations.
6.5.2
Cross reference

CWE:

415. Double Free (Note that Double Free (415) is a special case of Use After Free (416))

416. Use after Free
MISRA C 2004: 17.6
[Note: perhaps double free and use after free should be separate items.]

6.5.3
Categorization

See clause 5.?.
Group: Dynamic Allocation
6.5.4
Mechanism of failure

The lifetime of an object is the portion of program execution during which storage is guaranteed to be reserved for it. An object exists and retains its last-stored value throughout its lifetime. If an object is referred to outside of its lifetime, the behavior is undefined. Explicit deallocation of heap-allocated storage ends the lifetime of the object residing in this memory (as does leaving the dynamic scope of a declared variable). The value of a pointer becomes indeterminate when the object it points to reaches the end of its lifetime. Such pointers are called dangling references.

The use of dangling references to previously freed memory can have any number of adverse consequences — ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the deallocation causing all remaining copies of the reference to become dangling, of the system's reuse of the freed memory, and of the subsequent usage of a dangling reference.
Like Double Free errors and memory leaks, Use After Free errors have two common and sometimes overlapping causes: Error conditions and other exceptional circumstances; and confusion over which part of the program is responsible for freeing the memory. In one scenario, the memory in question is allocated to another pointer validly at some point after it has been freed. The original pointer to the freed memory is used again and points to somewhere within the new allocation. As the data is changed, it corrupts the validly re-used memory. This induces undefined behavior in the affected program. If the newly allocated data chances to hold a class description, in C++ for example, various function pointers may be scattered within the heap data. If one of these function pointers is overwritten with an address to valid shell code, execution of arbitrary code can be achieved. If chunk consolidation occurs after the use of previously freed data, the process may crash when invalid data is used as chunk information. If malicious data is entered before chunk consolidation can take place, it may be possible to take advantage of a write-what-where primitive to execute arbitrary code.

When a program calls free() twice with the same argument, the program's memory management data structures are likely to become corrupted. This corruption can cause the allocator to loop, crash or, in some circumstances, cause two later calls to malloc() to return the same pointer. Doubly freeing memory may also result in allowing an attacker to execute arbitrary code.

6.5.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that permit the use of pointers andthat
· permit explicit deallocation by the user or provide for alternative means to reallocate memory still pointed to by some pointer value.

6.5.6
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Use a language that performs garbage collection rather than performing explicit release of allocated storage. In this case, set pointers/references to NULL when no longer needed (or else garbage collection will not collect the referenced memory).
· Use a implementation that is capable of checking if a pointer is used that designates a memory location that has already been freed.
· Use a coding style that never permits deallocation.
· Ensure that each allocation is freed only once. After freeing a chunk of memory, set the pointer to NULL to ensure the pointer cannot be freed again. In complicated error conditions, be sure that clean-up routines respect the state of allocation properly. If the language is object-oriented, ensure that object destructors delete each chunk of memory only once. Ensuring that all pointers are set to NULL once memory they point to has been freed can be an effective strategy. The utilization of multiple or complex data structures may lower the usefulness of this strategy.

· Allocating and freeing memory in different modules and levels of abstraction burdens the programmer with tracking the lifetime of that block of memory. This may cause confusion regarding when and if a block of memory has been allocated or freed, leading to programming defects such as double-free vulnerabilities, accessing freed memory, or dereferencing NULL pointers or uninitialized pointers. To avoid these situations, it is recommended that memory be allocated and freed at the same level of abstraction, and ideally in the same code module.

6.5.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.5.8
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

