7.4
XYS Executing or Loading Untrusted Code

7.4.0
Status and History

OK: No one is assigned
2007-12-15, status revised, Jim Moore
2007-08-05, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner
7.4.1
Description of application vulnerability

Executing commands or loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands (and payloads) on behalf of an attacker. 

7.4.2
Cross reference

CWE: 

114. Process Control

7.4.3
Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

7.4.4
Mechanism of failure

Process control vulnerabilities take two forms:
  An attacker can change the command that the program executes so that the attacker explicitly controls what the command is;
  An attacker can change the environment in which the command executes so that the attacker implicitly controls what the command means.

Considering only the first scenario, the possibility that an attacker may be able to control the command that is executed, process control vulnerabilities occur when:
 Data enters the application from an untrusted source.
 The data is used as or as part of a string representing a command that is executed by the application.
 By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

7.4.5
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Libraries that are loaded should be well understood and come from a trusted source. The application can execute code contained in the native libraries, which often contain calls that are susceptible to other security problems, such as buffer overflows or command injection.

· All native libraries should be validated to determine if the application requires the use of the library. It is very difficult to determine what these native libraries actually do, and the potential for malicious code is high. In addition, the potential for an inadvertent mistake in these native libraries is also high, as many are written in C or C++ and may be susceptible to buffer overflow or race condition problems.

· To help prevent buffer overflow attacks, validate all input to native calls for content and length.

· If the native library does not come from a trusted source, review the source code of the library. The library should be built from the reviewed source before using it.
7.4.6
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

7.4.7
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004
