6.x TEX Loop control variables

6.x.0 Status and history

2008-02-12, Initial version by Derek Jones

2007-12-12: Considered at OWGV meeting 7; Was mistakenly named TMP for a brief period.
2007-10-15: Decided at OWGV Meeting 6: Write a new description, TEX, about not messing with the control variable of a loop. MISRA 2004 rules 13.5, 13.6, 14.6; JSF C++ rules 198, 199, 200.

6.x.1 Description of application vulnerability

Many languages support a looping construct whose number of iterations is controlled by the value of a loop control variable. Looping constructs provide a method of specifying an initial value for this loop control variable, a test that terminates the loop and the quantity by which it should be decremented/incremented on each loop iteration.

In some languages it is possible to modify the value of the loop control variable within the body of the loop. Experience shows that such value modifications are sometimes overlooked by readers of the source code, resulting in faults being introduced.
6.x.2 Cross reference

MISRA-C:2004 rule 13.6
JSF C++ rule 201
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

6.x.4 Mechanism of failure

Readers of source code often make assumptions about what has been written. A common assumption is that a loop control variable is not modified in the body of its associated loop (such variables are not usually modified in the body of a loop). A reader of the source may incorrectly assume that a loop control variable is modified in the body of its loop and write (incorrect) code based on this assumption.
6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that permit a loop control variable to be modified in the body of its associated loop (some languages (e.g., Ada) treat such usage as an erroneous construct and require translators to diagnose it).

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Not modifying a loop control variable in the body of its associated loop body.
Some languages (e.g., C and C++) do not explciitly specify which of the variables appearing in a loop header is the loop control variable. Jones [?} and MISRA-C [?] have proposed algorithms for deducing which, if any, of these variables is the loop control variable in C (these algorithms could also be applied to other languages that support a C-like for-loop).

6.x.7 Implications for standardization

Whether or not loop control variables can be modified in the body of a loop is an existing language design decision and there is nothing new that this TR can suggst to language designers.
6.x.8 Bibliography

MISRA-C:2004 Guidelines for the use of the C language in critical systems

JOINT STRIKE FIGHTER AIR VEHICLE C++ CODING STANDARDS FOR THE SYSTEM DEVELOPMENT AND DEMONSTRATION PROGRAM, Lockheed Martin Corporation. Document Number 2RDU00001 Rev C, December 2005

Loops and their control variables: Discussion and proposed guidelines, Derek M. Jones, February 2006.

