6.2
XYF Numeric Truncation Error

[Note: Consider combining with XYE.]

6.2.0
Status and history

PENDING

2007-08-02, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner
6.2.1
Description of application vulnerability

Truncation errors occur when a primitive is cast to a primitive of a smaller size and data is lost in the conversion.

6.2.2
Cross reference

CWE:

197. Numeric Truncation Error

6.2.3
Categorization

See clause 5.?.
Group: Arithmetic
6.2.4
Mechanism of failure

When a primitive is cast to a smaller primitive, the high order bits of the large value are lost in the conversion. If high order bits are lost, then the new primitive will have lost some of the value of the original primitive, resulting in a value that could cause unintended consequences. For instance, the new primitive may used as an index into a buffer, a loop iterator, or simply as necessary state data. In any case, the value cannot be trusted and the system will be in an undefined state. While this method may be employed viably to isolate the low bits of a value, this usage is rare and better methods are available for isolating bits such as masking.

6.2.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that allow implicit type conversion (coercion).

· Languages that are weakly typed. Strongly typed languages do a strict enforcement of type rules since all types are known at compile time.

· Languages that do not throw exceptions on ambiguous data casts.

6.2.6
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Ensure that no casts, implicit or explicit, take place that move from a larger size primitive to a smaller size primitive.

· Should the isolation of smaller bits of a value be desired, masking of the original value is safer and more predictable.

6.2.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.2.8
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

