6.<x>
XYX Boundary Beginning Violation

[Note: Perhaps this should be subsumed by XYZ.][Added this recommendation to XYZ Unchecked Array Indexing]
6.<x>.0
Status and history

2008-02-13, Edited by Derek Jones

R
2007-12-14, edited at OWGV meeting 7
2007-08-04, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.<x>.1
Description of application vulnerability

A buffer underwrite condition occurs when an array is indexed outside its lower bounds, or pointer arithmetic results in an access to storage that occurs before the beginning of the intended object.

6.<x>.2
Cross reference

CWE:

124. Boundary Beginning Violation ("buffer underwrite")
129. Unchecked Array Indexing
6.<x>.3
Categorization

See clause 5.?.

Group: Array Bounds

6.<x>.4
Mechanism of failure

There are two kinds of failures (jn both cases an exception may be raised if the accessed location is outside of some permitted range):

· A read access will return a value that has no relationship to the intended value, e.g., the value of another variable or uninitialised storage.

· An out-of-bounds read access may be used to obtain information that is intended to be confidential.

· A write access will not result in the intended value being updated may result in the value of an unrelated object (that happens to exist at the given storage location) being modified.
· When the array has been allocated storage on the stack an out-of-bounds write access may modify internal runtime housekeeping information (e.g., a functions return address) which might change a programs control flow.
6.<x>.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that do not detect and prevent an array being accessed outside of its declared bounds.

· Languages that do not automatically allocate storage when accessing an array element for which storage has not already been allocated.

·
·
·
·
·
·
·
6.<x>.6
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:.

· Use of implementation provided functionality to automatically check array element accesses and prevent out-of-bounds accesses.

· Use of static analysis to verify that all array accesses are within the permitted bounds. Such analysis may require that source code contain certain kinds of information, e.g., that the bounds of all declared arrays be explicitly specified, or that pre- and post-conditions be specified.

· Sanity checks should be performed on all calculated expressions used as an array index or for pointer arithmetic.

Some guideline documents recommend only using variables having an unsigned type when indexing an array, on the basis that an unsigned type can never be negative. This recommendation simply converts an indexing underflow to an indexing overflow because the value of the variable will wrap to a large positive value rather than a negative one; also some language support arrays whose lower bound is greater than zero, so an index can be positive and be less than the lower bound.
In the past the implementation of array bound checking has sometimes incurred what has been considered to be a high runtime overhead (often because unnecessary checks were performed). It is now practical for translators to perform sophisticated analysis which significantly reduces the runtime overhead (because runtime checks are only made when it cannot be shown statically that no bound violations can occur).
6.<x>.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

Language designers shall provide a mechanism that allows array bounds checking to be performed with the minimum of input from software developers.
6.<x>.8
Bibliography

[
[Do we want to list all of the references in the array bounds checking bibliography here?]
