6.x NZN Returning error status
[For the convenience of reviewers, the applicable JSF C++ rule is quoted below:
[AV Rule 208 C++ exceptions shall not be used (i.e. throw, catch and try shall not be used.) 
[Rationale: Tool support is not adequate at this time.] 
[For the convenience of reviewers, I have paraphrased relevant rules from MISRA 2004:
[16.10 If a function returns error information, then that error information shall be tested.]
6.x.0 Status and history

OK: Jim Moore is responsible
2007-12-18: Jim Moore, minor editorial changes
2007-12-07: Drafted by Jim Moore
2007-10-15: Decided at OWGV Meeting 6: Write a new description, NZN, about returning error status. Some languages return codes that must be checked; others raise exceptions that must be handled. Deal with tool limitations related to exception handling; exceptions may not be statically analyzable. 
6.x.1 Description of application vulnerability

Unpredicted error conditions--perhaps from hardware (such as an I/O device error), perhaps from software (such as heap exhaustion)—sometimes arise during the execution of code. Different programming languages provide a surprisingly wide variety of mechanisms to deal with such errors. The choice of a mechanism that doesn't match the programming language can lead to errors in the execution of the software or unexpected termination of the program. This could lead to a simple decrease in the robustness of a program or it could be exploited in a denial of service attack.
6.x.2 Cross reference

CWE: [None]
MISRA 2004: 16.10 [Added by Jim]
JSF C++: 208
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

Even in the best-written programs, error conditions sometimes arise. Some errors occur because of defects in the software itself, but some result from external conditions in hardware, such as errors in I/O devices, or in the software system, such as exhaustion of heap space. If left untreated, the effect of the error might result in termination of the program or continuation of the program with incorrect results. To deal with the situation, designers of programming languages have equipped their languages with different mechanisms to detect and treat such errors. These mechanisms are typically intended to be used in specific programming idioms. However, the mechanisms differ among languages. A programmer expert in one language might mistakenly use an inappropriate idiom when programming in a different language with the result that some errors are left untreated, leading to termination or incorrect results. Attackers can exploit such weaknesses in denial of service attacks.
In general, languages make no distinction between dealing with programming errors (like an access to protected memory), unexpected hardware errors (like device error), expected but unusual conditions (like end of file), and even usual conditions that fail to provide the typical result (like an unsuccessful search). This description will use the term "error" to apply to all of the above. The description applies equally to error conditions that are detected via hardware mechanisms and error conditions that are detected via software during execution of a subprogram (such as an inappropriate parameter value). 
6.x.5 Range of language characteristics considered

Different programming languages provide remarkably different mechanisms for treating errors. In languages that provide a number of error detection and treatment mechanisms, it becomes a design issue to match the mechanism to the condition. This section will describe the mechanisms that are provided in widely used languages. 

The simplest case is the set of languages that provide no special mechanism for the notification and treatment of unusual conditions. In such languages, error conditions are signaled by the value of an auxiliary status variable, often a subprogram parameter. C standard library functions use a variant of this approach; the error status is provided as the return value. Obviously, in such languages, it is imperative to check and act upon the status variable after every call to a subprogram that might provide an error indication. If error conditions can occur in an asynchronous manner, it is necessary to provide means to check for errors in a systematic and periodic manner.
Some languages, like Fortran, permit the passing of a label parameter to a subprogram or library routine. If an error is encountered, the subprogram returns to the indicated label rather than to the point at which it was called. Similarly some languages accept the name of a subprogram to be used to handle errors. In either case, it is imperative to provide labeled code or a subprogram to deal with all possible error situations.
The approaches described above have the disadvantage that error checking must be provided at every call to a subprogram. This can clutter the code immensely to deal with situations that may occur rarely. For this reason, some languages provide an exception mechanism that automatically transfers control when an error is encountered. This has the potential advantage of allowing error treatment to be factored into distinct error handlers, leaving the main execution path to deal with the usual results. The disadvantages, of course, are that the language design is complicated and the programmer must deal with the conceptually more complex problem of providing error handlers that are removed from the immediate context of a specific call to a subprogram. Furthermore, different languages provide exception handling mechanisms that differ in the manner in which various design issues are treated:
· How is the occurrence of an exception bound to a particular handler?

· What happens when no handler is local to an exception occurrence? Is the exception propagated in some manner or is it lost?

· What happens after an exception handler executes? Is control returned to the point before the call or after the call, or is the calling routine terminated in some way? If the calling routine is terminated, is there some provision for finalization, such as closing files or releasing resources?

· Are programmers permitted to define additional exceptions?

· Does the language provide default handlers for some exceptions or must the programmer explicitly provide for all of them?

· Can predefined exceptions be raised explicitly by a subprogram?

· Under what circumstances can error checking be disabled?

6.x.6 Avoiding the vulnerability or mitigating its effects

Given the variety of error handling mechanisms, it is difficult to write general guidelines. However, dealing with exception handlers can stress the capability of many static analysis tools and can, in some cases, reduce the effectiveness of their analysis. Therefore, for situations where the highest of reliability is required, the application should be designed so that exception handling is not used at all. In the more general case, exception handling mechanisms should be reserved for truly unexpected situations and other situations (possibly hardware arithmetic overflow) where no other mechanism is available. Situations which are merely unusual, like end of file, should be treated by explicit testing—either prior to the call which might raise the error or immediately afterward.
Checking error return values or auxiliary status variables following a call to a subprogram is mandatory unless it can be demonstrated that the error condition is impossible.

In dealing with languages where untreated exceptions can be lost (e.g. an exception that goes untreated within an Ada task), it is mandatory to deal with the exception in the local context before it is lost.

When execution within a particular context is abandoned due to an exception, it is important to finalize the context by closing open files, releasing resources and restoring any invariants associated with the context.

It is often not appropriate to repair an error condition and retry the operation. In such cases, one often treats a symptom but not the underlying problem. It is usually a better solution to finalize and terminate the current context and retreat to a context where the situation is known.

Error checking provided by the language, the software system, or the hardware should never be disabled in the absence of a conclusive analysis that the error condition is rendered impossible.
Because of the complexity of error handling, careful review of all error handling mechanisms is appropriate.

In applications with the highest requirements for reliability, defense-in-depth approaches are often appropriate, i.e. checking and handling errors thought to be impossible.

6.x.7 Implications for standardization

[None]
6.x.8 Bibliography
[1] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-10: 0-321-49362-1, Pearson Education, Boston, MA, 2008

[2] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3rd edition, ISBN-0-471-10426-4, John Wiley & Sons, 1998
