6.x PLF Floating Point Arithmetic

6.x.0 Status and history

OK: Larry Wagoner is responsible

2007-12-15: Minor editorial cleanup, Jim Moore

2007-10-30 Edited by Larry Wagoner

2007-10-15, Decided at OWGV Meeting #6: " Add to a new description PLF that says that when you use floating point, get help. The existing rules should be cross-referenced. MISRA 2004 rules 13.3, 13.4, add-in 1.5, 12.12; JSF rule 184."

6.x.1 Description of application vulnerability

Only a relatively small proportion of real numbers can be represented exactly in a computer. To represent real numbers, most computers use ANSI/IEEE Std 754. Many real numbers can only be approximated since representing the real number using a binary representation would require an endlessly repeating string of bits or more binary digits than are available or representation. Therefore it should be assumed that a floating point number is only an approximation, even though it may be an extremely good one. Floating point representation of real number or conversion to floating point can cause surprising results and unexpected consequences to those unaccustomed to the idiosyncrasies of floating point arithmetic.

6.x.2 Cross reference

CWE: none

JSF: 146, 147, 184, 197, 202

MISRA: 13.3, 13.4

6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

6.x.4 Mechanism of failure

Floating point numbers are generally only an approximation of the actual value. In the base 10 world, the value of 1/3 is 0.333333…

The same type of situation occurs in the binary world, but numbers that can be represented with a limited number of digits, such as 1/10=0.1 become endlessly repeating sequences in the binary world. So 1/10 represented as a binary number is:

0.0001100110011001100110011001100110011001100110011…

Which is 0*1/2 + 0*1/4 + 0*1/8 + 1*1/16 + 1*1/32 + 0*1/64… and no matter how many digits are used, the representation will still only be an approximation of 1/10. Therefore when adding 1/10 ten times, the final result may or may not be exactly 1.
Using a floating point variable as a loop counter can propagate rounding and truncation errors over many iterations so that unexpected results can occur. Rounding and truncation can cause tests of floating point numbers against other values to yield unexpected results. One of the largest manifestations of floating point errors is reliance upon comparisons of floating point values. Tests of equality/inequality can vary due to propagation or conversion errors. Differences in magnitudes of floating point numbers can result in no change of a very large floating point number when a relatively small number is added to or subtracted from it. These and other idiosyncrasies of floating point arithmetic require that users of floating point arithmetic be very cautious in their use of it.

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· All languages with floating point variables can be subject to rounding or truncation errors

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Do not use a floating point expression in a Boolean test for equality. Instead of an expression, use a library that determines the difference between the two values to determine whether the difference is acceptably small enough so that two values can be considered equal. Note that if the two values are very large, the “small enough” difference can be a very large number.

· Avoid the use of a floating point variable as a loop counter. If necessary to use a floating point value as a loop control, use inequality to determine the loop control (i.e. <, <=, > or >=)

· Understand the floating point format used to represent the floating point numbers. This will provide some understanding of the underlying idiosyncrasies of floating point arithmetic.
6.x.7 Implications for standardization

· Do not use floating point for exact values such as monetary amounts. Use floating point only when necessary such as for fundamentally inexact values such as measurements.

· Languages that do not already adhere to or only adhere to a subset of ANSI/IEEE 754 should consider adhering completely to the standard. Note that ANSI/IEEE 754 is currently undergoing revision as ANSI/IEEE 754r and comments regarding 754 refer to either 754 or the new 754r standard when it is approved. Examples of standardization that should be considered:
· C, which predates ANSI/IEEE Std 754 and currently has it as optional in C99, should consider requiring ANSI/IEEE 754 for floating point arithmetic

· Java should consider fully adhering to ANSI/IEEE Std 754 instead of only a subset
· All languages should consider standardizing their data types on ISO/IEC 10967-3:2006

6.x.8 Bibliography

[1] Goldberg, David, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM Computing Surveys, vol 23, issue 1 (March 1991), ISSN 0360-0300, pp 5-48.
[2] IEEE Standards Committee 754. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985. Institute of Electrical and Electronics Engineers, New York, 1985.

[3] Bo Einarsson, ed. Accuracy and Reliability in Scientific Computing, SIAM, July 2005 http://www.nsc.liu.se/wg25/book
[4] GAO Report, Patriot Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi Arabia, B-247094, Feb. 4, 1992, http://archive.gao.gov/t2pbat6/145960.pdf
[5] Robert Skeel, Roundoff Error Cripples Patriot Missile, SIAM News, Volume 25, Number 4, July 1992, page 11, http://www.siam.org/siamnews/general/patriot.htm
[6] ARIANE 5: Flight 501 Failure, Report by the Inquiry Board, July 19, 1996 http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf (Press release is at: http://www.esa.int/esaCP/Pr_33_1996_p_EN.html and there is a link to the report at the bottom of the press release)

