7.1
RST Injection

7.1.0
Status and history
NEEDS TO BE REVISED: Not yet assigned

2007-12-15, status revised, Jim Moore
2007-08-09, Edited by Benito

2007-08-04, Edited by Benito

2007-07-30, Created by Larry Wagoner
Combined:

XYU-070720-sql-injection-hibernate.doc

XYV-070720-php-file-inclusion.doc

XZC-070720-equivalent-special-element-injection.doc

XZD-070720-os-command-injection.doc

XZE-070720-injection.doc

XZF-070720-delimiter.doc

XZG-070720-server-side-injection.doc

XZJ-070720-common-special-element-manipulations.doc

into RST-070730-injection.doc.
7.1.1
Description of application vulnerability

(XYU) Using Hibernate to execute a dynamic SQL statement built with user input can allow an attacker to modify the statement's meaning or to execute arbitrary SQL commands.

(XYV) A PHP product uses "require" or "include" statements, or equivalent statements, that use attacker-controlled data to identify code or HTML to be directly processed by the PHP interpreter before inclusion in the script.

(XZC) The software allows the injection of special elements that are non-typical but equivalent to typical special elements with control implications into the dataplane. This frequently occurs when the product has protected itself against special element injection.

(XZD) Command injection problems are a subset of injection problem, in which the process can be tricked into calling external processes of an attackers choice through the injection of command syntax into the data plane.

(XZE) Injection problems span a wide range of instantiations. The basic form of this weakness involves the software allowing injection of control-plane data into the data-plane in order to alter the control flow of the process.

(XZF) Line or section delimiters injected into an application can be used to compromise a system. as data is parsed, an injected/absent/malformed delimiter may cause the process to take unexpected actions that result in an attack.

(XZG) The software allows inputs to be fed directly into an output file that is later processed as code, e.g. a library file or template. A web product allows the injection of sequences that cause the server to treat as server-side includes.

(XZJ) Multiple leading/internal/trailing special elements injected into an application through input can be used to compromise a system. As data is parsed, improperly handled multiple leading special elements may cause the process to take unexpected actions that result in an attack.

7.1.2
Cross reference

CWE:

76. Equivalent Special Element Injection

78. OS Command Injection

90. LDAP Injection
91. XML Injection (aka Blind Xpath injection)
92. Custom Special Character Injection
95. Direct Dynamic Code Evaluation ('Eval Injection')

97. Server-Side Includes (SSI) Injection

98 PHP File Inclusion
99. Resource Injection

144. Line Delimiter
145. Section Delimiter

161. Multiple Leading Special Elements
163. Multiple Trailing Special Elements
165. Multiple Internal Special Elements
166. Missing Special Element
167. Extra Special Element
168. Inconsistent Special Elements

564. SQL Injection: Hibernate

7.1.3
Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
7.1.4
Mechanism of failure

(XYU) SQL injection attacks are another instantiation of injection attack, in which SQL commands are injected into data-plane input in order to effect the execution of predefined SQL commands. Since SQL databases generally hold sensitive data, loss of confidentiality is a frequent problem with SQL injection vulnerabilities.

If poor SQL commands are used to check user names and passwords, it may be possible to connect to a system as another user with no previous knowledge of the password. If authorization information is held in a SQL database, it may be possible to change this information through the successful exploitation of a SQL injection vulnerability. Just as it may be possible to read sensitive information, it is also possible to make changes or even delete this information with a SQL injection attack.

(XYV) This is frequently a functional consequence of other Weaknesses. It is usually multi-factor with other factors, although not all inclusion bugs involve assumed-immutable data. Direct request Weaknesses frequently play a role. This can also overlap directory traversal in local inclusion problems.

(XZC) Many injection attacks involve the disclosure of important information -- in terms of both data sensitivity and usefulness in further exploitation. In some cases injectable code controls authentication; this may lead to a remote vulnerability. Injection attacks are characterized by the ability to significantly change the flow of a given process, and in some cases, to the execution of arbitrary code. Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data injected is always incidental to data recall or writing. Often the actions performed by injected control code are not logged.

(XZD) A software system that accepts and executes input in the form of operating system commands (e.g. system(), exec(), open()) could allow an attacker with lesser privileges than the target software to execute commands with the elevated privileges of the executing process.

Command injection is a common problem with wrapper programs. Often, parts of the command to be run are controllable by the end user. If a malicious user injects a character (such as a semi-colon) that delimits the end of one command and the beginning of another, he may then be able to insert an entirely new and unrelated command to do whatever he pleases. The most effective way to deter such an attack is to ensure that the input provided by the user adheres to strict rules as to what characters are acceptable. As always, white-list style checking is far preferable to black-list style checking.

Dynamically generating operating system commands that include user input as parameters can lead to command injection attacks. An attacker can insert operating system commands or modifiers in the user input that can cause the request to behave in an unsafe manner. Such vulnerabilities can be very dangerous and lead to data and system compromise. If no validation of the parameter to the exec command exists, an attacker can execute any command on the system the application has the privilege to access.

Command injection vulnerabilities take two forms: an attacker can change the command that the program executes (the attacker explicitly controls what the command is); or an attacker can change the environment in which the command executes (the attacker implicitly controls what the command means). In this case we are primarily concerned with the first scenario, in which an attacker explicitly controls the command that is executed. Command injection vulnerabilities of this type occur when:
· Data enters the application from an untrusted source.
· The data is part of a string that is executed as a command by the application.
· By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

(XZE) Injection problems encompass a wide variety of issues -- all mitigated in very different ways. For this reason, the most effective way to discuss these weaknesses is to note the distinct features which classify them as injection weaknesses. The most important issue to note is that all injection problems share one thing in common -- they allow for the injection of control plane data into the user controlled data plane. This means that the execution of the process may be altered by sending code in through legitimate data channels, using no other mechanism. While buffer overflows and many other flaws involve the use of some further issue to gain execution, injection problems need only for the data to be parsed. The most classic instantiations of this category of weakness are SQL injection and format string vulnerabilities.

Many injection attacks involve the disclosure of important information in terms of both data sensitivity and usefulness in further exploitation. In some cases injectable code controls authentication, this may lead to a remote vulnerability.

Injection attacks are characterized by the ability to significantly change the flow of a given process, and in some cases, to the execution of arbitrary code.

Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data injected is always incidental to data recall or writing. Often the actions performed by injected control code are not logged.

Eval injection occurs when the software allows inputs to be fed directly into a function (e.g. "eval") that dynamically evaluates and executes the input as code, usually in the same interpreted language that the product uses. Eval injection is prevalent in handler/dispatch procedures that might want to invoke a large number of functions, or set a large number of variables.

A PHP file inclusion occurs when a PHP product uses "require" or "include" statements, or equivalent statements, that use attacker-controlled data to identify code or HTML to be directly processed by the PHP interpreter before inclusion in the script.

A resource injection issue occurs when the following two conditions are met:
· An attacker can specify the identifier used to access a system resource. For example, an attacker might be able to specify part of the name of a file to be opened or a port number to be used.
· By specifying the resource, the attacker gains a capability that would not otherwise be permitted.
For example, the program may give the attacker the ability to overwrite the specified file, run with a configuration controlled by the attacker, or transmit sensitive information to a third-party server. Note: Resource injection that involves resources stored on the file system goes by the name path manipulation and is reported in separate category. See the path manipulation description for further details of this vulnerability. Allowing user input to control resource identifiers may enable an attacker to access or modify otherwise protected system resources.

(XZF) Line or section delimiters injected into an application can be used to compromise a system. as data is parsed, an injected/absent/malformed delimiter may cause the process to take unexpected actions that result in an attack. One example of a section delimiter is the boundary string in a multipart MIME message. In many cases, doubled line delimiters can serve as a section delimiter.

(XZG) This can be resultant from XSS/HTML injection because the same special characters can be involved. However, this is server-side code execution, not client-side.

(XZJ) The software does not respond properly when an expected special element (character or reserved word) is missing, an extra unexpected special element (character or reserved word) is used or an inconsistency exists between two or more special characters or reserved words, e.g. if paired characters appear in the wrong order, or if the special characters are not properly nested.

7.1.5
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· (XYU) A non-SQL style database which is not subject to this flaw may be chosen.

· Follow the principle of least privilege when creating user accounts to a SQL database. Users should only have the minimum privileges necessary to use their account. If the requirements of the system indicate that a user can read and modify their own data, then limit their privileges so they cannot read/write others' data.

· Duplicate any filtering done on the client-side on the server side.

· Implement SQL strings using prepared statements that bind variables. Prepared statements that do not bind variables can be vulnerable to attack.

· Use vigorous white-list style checking on any user input that may be used in a SQL command. Rather than escape meta-characters, it is safest to disallow them entirely since the later use of data that have been entered in the database may neglect to escape meta-characters before use.

· Narrowly define the set of safe characters based on the expected value of the parameter in the request.

· (XZC) As so many possible implementations of this weakness exist, it is best to simply be aware of the weakness and work to ensure that all control characters entered in data are subject to black-list style parsing.

· (XZD) Assign permissions to the software system that prevents the user from accessing/opening privileged files.

· (XZE) A language can be chosen which is not subject to these issues.

· As so many possible implementations of this weaknes exist, it is best to simply be aware of the weakness and work to ensure that all control characters entered in data are subject to black-list style parsing. Assume all input is malicious. Use an appropriate combination of black lists and white lists to ensure only valid and expected input is processed by the system.

· To avert eval injections, refractor your code so that it does not need to use eval() at all.

· (XZF) Developers should anticipate that delimiters and special elements will be injected/removed/manipulated in the input vectors of their software system. Use an appropriate combination of black lists and white lists to ensure only valid, expected and appropriate input is processed by the system.

· (XZG) Assume all input is malicious. Use an appropriate combination of black lists and white lists to ensure only valid and expected input is processed by the system.

7.1.6
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

7.1.7
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

