6. YOW Identifier name reuse

6.x.0 Status and history

2008-02-14, Edited by Chad Dougherty

2008-01-04 Edited by Robert C. Seacord
REWRITE: Robert Seacord (references immediately below relate to N0102)
2007-10-15 Also decided at OWGV Meeting 6: "add something about issues in redefining and overloading operators – MISRA 2004 rules 5.2, 8.9, 8.10; JSF C++ rule 159".
2007-10-15 Also decided at OWGV Meeting 6: Deal with MISRA 2004 rules 5.3, 5.4, 5.5, 5.6, 5.7, 20.1, 20.2
2007-10-15 Also decided at OWGV Meeting 6: Deal with JSF C++ rule 120.
2007-10-01, Edited at OWGV Meeting #6

2007-07-19, Edited by Jim Moore

2007-06-30, Created by Derek Jones

6.<x>.1 Description of application vulnerability

When distinct entities are defined in nested scopes using the same name it is possible that program logic will operate on an entity other than the intended entity. For example, if the innermost definition is deleted from the source, the program will continue to compile without a diagnostic being issued but execution will provide different results.

6.<x>.2 Cross reference

CERT C: DCL32-C,
MISRA C 2004: 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 20.1, 20.2
JSF C++: 120, 159
6.<x>.3 Categorization

See clause 5.2.

6.<x>.4 Mechanism of failure

Many languages support the concept of scope. One of the ideas behind the concept of scope is to provide a mechanism for the independent definition of identifiers that may share the same name.

For instance, in the following code fragment:

int some_var;
{
 int t_var;
 int some_var; /* definition in nested scope */
 t_var=3;
 some_var=2;
}
an identifier called some_var has been defined in different scopes.

If the either the definition of some_var or t_var that occurs in the nested scope is deleted (e.g., when the source is modified) it is necessary to delete all other references to that identifier within the scope. If a developer deletes the definition of t_var but fails to delete the statement that references it, then most languages require a diagnostic to be issued (e.g., reference to undefined variable). However, if the nested definition of some_var is deleted but the reference to it in the nested scope is not deleted, then no diagnostic will be issued (because the reference resolves to the definition in the outer scope).
Non-unique identifiers in the same scope can also be introduced through the use of identifiers whose common substring exceeds the length of characters the implementation considers to be distinct. For example, in the following code fragment:

extern int global_symbol_definition_lookup_table_a[100];

extern int global_symbol_definition_lookup_table_b[100];

the external identifiers are not unique on implementations where only the first 31 characters are significant.

A related problem exists in languages that allow overloading or overriding of keywords or standard library function identifiers. Such overloading can lead to confusion about which entity is intended to be referenced.
6.<x>.5 Interrupting the failure mechanism

New identifiers should not be defined using a name that is already visible within which the scope of the new definition. Alternately, language-specific facilities that check for and prevent inadvertent overloading of names should be used.
6.<x>.6 Assumed variations among languages

This vulnerability is intended to be applicable to languages with the following characteristics:

· Languages which require a diagnostic to be issued if an identifier is referenced and no definition is visible for that identifier.
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Ensuring that a definition of an entity does not occur in a scope where a different entity with the same name is accessible. A language-specific project coding convention can be used to ensure that such errors are detectable.
· Ensuring that a definition of an entity does not occur in a scope where a different entity with the same name is accessible and has a type which permits it to occur in at least one context where the first entity can occur.

· Use language features, if any, that explicitly mark definitions of entities that are intended to hide other definitions.
· Overloaded operations or methods should form families that use the same semantics, share the same name, have the same purpose, and that are differentiated by formal parameters.

· Determining the number of significant characters recognized by the most restrictive implementation used and documenting this assumption in the code.

6.<x>.8 References

Hatton 2003
MISRA C 2004

CERT C
