6.x JCW Operator precedence and associativity
6.x.0 Status and history

NEEDS TO BE WRITTEN: Tom Plum
[For the convenience of reviewers, the applicable JSF C++ rule is quoted below:
AV Rule 213: No dependence shall be placed on C++’s operator precedence rules, below arithmetic operators, in expressions.

Rationale: Readability.
From JSF C++ Appendix (with examples)
AV Rule 213

Parentheses should be used to clarify operator precedence rules to enhance readability and reduce mistakes. However, overuse of parentheses can clutter an expression thereby reducing readability. Requiring parenthesis below arithmetic operators strikes a reasonable balance between readability and clutter.

Table 2 documents C++ operator precedence rules where items higher in the table have precedence over those lower in the table.

Examples: Consider the following examples. Note that parentheses are required to specify operator ordering for those operators below the arithmetic operators.

x = a * b + c;

// Good: can assume “*” binds before “+”
x = v->a + v->b + w.c;
// Good: can assume “->” and “.” Bind before “+”
x = (f()) + ((g()) * (h()));
// Bad: overuse of parentheses. Can assume

// function call binds before “+” and “*”
x = a & b | c;

// Bad: must use parenthesis to clarify order

// [Note from Tom: to clarify “binding” not “order”
x = a >> 1 + b;

// Bad: must use parenthesis to clarify order

// [Note from Tom: to clarify “binding” not “order”
[For the convenience of reviewers, I have paraphrased relevant rules from MISRA 2004]

12.1 (adv) Limited dependence should be placed on C’s operator precedence rules in expressions.

[Note from Tom: MISRA rules 12.5, 12.6 and 13.2 don’t really belong here or in SAM either: 12.5 (req) The operands of logical operators (&&, || and !) should be effectively Boolean; 12.6 (adv) Expressions that are effectively Boolean should not be used as operands to operators other than (&&, || and !); 13.2 (adv) Tests of a value against zero should be made explicit, unless the operand is effectively Boolean. Hard to know what to recommend. MISRA refers to an out-of-date C standard, while the current C standard (C99, and also the C++ standard C++03) incorporated an explicit Boolean type. OTOH, “use of assignment in Boolean tests” is still a vulnerability, in C and C++, even with an explicit Boolean type. I added these rules to the list in BRS “Leveraging experience and expertise” … it’s one of those observations made by senior techs regarding common mistakes.]
[For the convenience of reviewers, the applicable CERT/CC Guidelines are quoted below]

EXP00-A Use parentheses for precedence of operation
2008-01-21: Revised by Tom Plum [I ended up merging MTW here, and leaving SAM as a separate topic.]
2007-12-12: Reviewed at OWGV meeting 7: The existing material here probably belongs in either SAM or MTW.
[from MTW Associativity …]
NEEDS TO BE WRITTEN: Tom Plum: Mine material from JCW-071101.
2007-12-12: Review at OWGV Meeting 7:
2007-10-15: Decided at OWGV Meeting 6: We decide to write three new descriptions: operator precedence, JCW; associativity, MTW; order of evaluation, SAM. Deal with MISRA 2004 rules 12.1 and 12.2; JSF C++ rules 204, 213.
[back to JCW-080121 …]
2007-11-01: Edited by Larry Wagoner

2007-10-15: Decided at OWGV Meeting 6: We decide to write three new descriptions: operator precedence, JCW; associativity, MTW; order of evaluation, SAM. Deal with MISRA 2004 rules 12.1 and 12.2; JSF C++ rules 204, 213. Should also deal with MISRA 2004 rules 12.5, 12.6 and 13.2.
6.x.1 Description of application vulnerability

Each language provides rules of precedence and associativity, which determine, for each expression in source code, a specific syntax tree of operators and operands. These rules are also known as the rules of “grouping” or “binding”; they determine which operands are bound to each operator.
The way in which operators or sub-expressions are grouped can differ from the grouping that was expected by the programmer, causing expressions to evaluate to unexpected values.
6.x.2 Cross reference

[Note from Tom: I couldn’t find any relevant CWE examples]
MISRA: 12.1
JSF: 213
CERT/CC Guidelines: EXP00-A
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

6.x.4 Mechanism of failure

 [Note from Tom: For C/C++, this was not correctly analyzed; if a different language was intended, I’m not able to comment … but the example appears to be C/C++.]
In C and C++, the bitwise operators (bitwise logical and bitwise shift) are sometimes thought of by the programmer as being similar to arithmetic operations, so just as one might correctly write “x – 1 == 0” (“x minus one is equal to zero”), a programmer might erroneously write “x & 1 == 0”, mentally thinking “x anded-with 1 is equal to zero”, whereas the operator precedence rules of C and C++ actually bind the expression as “compute 1==0, producing ‘false’ i.e. zero, then bitwise-and that zero with x”, producing (a constant) zero, contrary to the programmer’s intent.

Examples from an opposite extreme can be found in programs written in APL, which is noteworthy for the absence of any distinctions of precedence. One commonly-made mistake is to write “a χ b + c”, intending to produce “a times b plus c”, whereas APL’s uniform right-to-left associativity produces “c plus b, times a”.

 [moved to SAM]
6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that permit undefined or incomplete operator precedence definitions [Note from Tom: are there any such languages?]
· Languages whose precedence rules are sometimes overlooked or confused by working programmers (i.e., most languages) [moved to SAM]
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules itemized above from JSF C++, CERT/CC or MISRA C.

·
·
·
·
·
·
·
·
6.x.7 Implications for standardization

· [moved to SAM]
6.x.8 Bibliography

