6.<x> XYQ Expression Issues

6.x.0 Status and history

IN
2007-07-30, Edited by Larry Wagoner
2007-07-19, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.<x>.1 Description of application vulnerability

The software contains an expression that will always evaluate to the same Boolean value (either always true or always false). 
[This might be generalized to a discussion of "redundant" code and/or "dead" code.]
[Ben prefers that this be phrased in terms of "unreachable code".]
[From DO-178B:

Dead code - Executable object code (or data) which, as a result of a design error cannot be executed (code) or used (data) in an operational configuration of the target computer environment and is not traceable to a system or software requirement. An exception is embedded identifiers.

Deactivated code - Executable object code (or data) which by design is either (a) not intended to be executed (code) or used (data), for example, a part of a previously developed software component, or (b) is only executed (code) or used (data) in certain configurations of the target computer environment, for example, code that is enabled by a hardware pin selection or software programmed options.]
6.<x>.2 Cross reference

CWE: 

570. Expression is Always True
571. Expression is Always False
6.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.<x>.4 Mechanism of failure

Any boolean expression that evaluates to the same value is indicative of superfluous code and is possibly indicative of a bug that exists and, although the chance is remote, possibly could be exploited.

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:
· All languages that have Boolean expressions are susceptible to this.
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· This expression will always evaluate to the same Boolean value meaning the program could be rewritten in a simpler form.  The nearby code may be present for debugging purposes, or it may not have been maintained along with the rest of the program.  Coding guidelines could require the programmer to declare whether such instances are intentional.
· The expression could be indicative of an earlier bug earlier and additional testing may be needed to ascertain why the same Boolean value is occurring. 
· [This relates to the DO-178B distinction between "dead" code and "deactivated" code. See minutes of Meeting #5 for definitions.]







6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004




