
Before After

x = 1;
atomic_thread_fence(memory_order_release);
a.store(1, memory_order_relaxed);

x = 1;
atomic_object_fence(memory_order_release, x);
a.store(1, memory_order_relaxed);

while(a.load(memory_order_relaxed) != 1);
atomic_thread_fence(memory_order_acquire);
assert(x == 1);

while(a.load(memory_order_relaxed) != 1);
atomic_object_fence(memory_order_acquire, x);
assert(x == 1);

(slower) (faster)

Message fences
Document #: D2535R0

Date: 2-2-2022

Audience: SG1

Reply-to: dlustig@nvidia.com, ogiroux@nvidia.com

Abstract
Message fences place evaluations on objects into happens before but not strongly happens before. Object fences
are message fences that restrict their effects to specific objects.

Tony tables

Revisions
R0

This is the first revision

Motivation
C++ is the lingua franca of accelerated computing. Accelerated computing platforms often contain
sophisticated memory hierarchies, with specialized features such as scratchpad memories, complex
interconnection fabrics, and other hallmarks of distributed systems in spite of being programmed using a
standard shared address space paradigm.

In many deployments, there are situations where communication needs to be established between two threads
alone, with no other threads participating at any time in the past or future.

mailto:dlustig@nvidia.com
mailto:ogiroux@nvidia.com

The canonical example is the very same message passing paradigm that is commonly used to explain memory
models. Each message is strictly a point-to-point communication: no third-party thread will ever directly
observe the contents of that message. As such, there is no need for transitivity (or in memory model fencing
parlance, "cumulativity") for these messages.

On large distributed systems connected by complex fabrics, and/or on architectures that internally resemble
distributed systems, transitivity can be expensive to enforce. Message fences introduce a non-transitive
synchronization mechanism that suffices for message passing scenarios and that can be implemented on many
systems more cheaply than traditional transitive fences and ordering mechanisms.

Message fences can be further optimized by restricting their applicability only to certain objects explicitly
specified by the programmer. These object fences can take advantage of hardware storage-specific fencing
mechanisms that may be cheaper to execute than standard synchronization applied across the entire memory
space. Object fences provide a way to write code that remains portable even when using non-standard storage
declarations such as CUDA's __shared__ .

Existing Implementations
A number of existing programming models provide synchronization for message passing paradigms.

On many existing implementations with shared memory, transitivity is provided by default, and
implementations will therefore pay the cost of enforcing transitivity even though it is not always needed when
implementing a message passing paradigm. On larger MPI deployments [mpi] built on top of complex network
fabrics, message passing can be implemented using point-to-point communication over the network, and
transitivity with other prior communication will not be established.

OpenMP [openmp] provides a flush construct #pragma omp flush [memory-order-clause] [(list)] new-
line which allows expert programmers to specify the specific list of objects being flushed. The memory-order-
clause can be release , acquire , or acq_rel , but establishing seq_cst ordering is not an option. To be
fair, the OpenMP manual also includes the following warning:

Use of a flush construct with a list is extremely error prone and users are strongly discouraged from
attempting it.

OpenCL [opencl] provides distinct happens before ordering relationships for local memory (a private per-work-
group memory space) and for global memory (visible to all work-groups as well as to the host). If both are
viewed as part of a larger flat address space, then synchronization on local memory can be seen as a form of
message or object fence that establishes transitive ordering among objects in local memory but with no
connection to any ordering established among objects in global memory.

A conservative implementation of object fences simply discards the object information and becomes a message
fence:

A conservative implementation of message fences simply falls back on standard thread fences:

Discussion
These rules suffice for establishing point-to-point communication as was motivated earlier:

1. Message fences are strictly non-transitive: they intentionally "forget history" when establishing ordering
relationships in order to make the synchronization cheaper.

2. Object fences further evaluations on objects not named, thereby creating a form of "per-object happens
before" relationship, in order to make the synchronization cheaper still.

However, they do not provide a means of "re-integrating" the synchronized objects into the transitive ordering
established by strongly happens before. The memory model would need to become dramatically more complex
to capture such relationships, and so instead we simply disallow it. Ordinary fences and atomic operations
continue to place evaluations on these objects into strongly happens before as normal.

Because message and object fences make no attempt to establish transitive ordering, they also make no
attempt to restore sequential consistency. By their nature, no total order is being established. Message fences
executing concurrently may operate in an completely unsynchronized manner on optimized implementations;
e.g., operating on two different scratchpad memories. As such, because it would have no real meaning,
memory_order_seq_cst is also simply disallowed on message fences.

For simple objects, many implementations will have sufficient knowledge about the storage backing the object
that they will be able to emit an optimized mapping. For example, an object fence targeting an object in GPU
scratchpad memory will be able to emit a fence specifically targeting scratchpad memory. However, if an object
fence specifies more complex objects and/or multiple objects backed by multiple different storage locations,
then the implementation may have no choice but to take the conservative implementation path.

A more conservative version of this proposal could omit message fences, and instead provide only object
fences.

Proposed Wording
This wording is relative to N4901.

31.11 Fences [atomics.fences]

template<class... Objects>
void atomic_object_fence(memory_order order, Objects const&...) noexcept
{
 atomic_message_fence(order);
}

template<>
void atomic_message_fence(memory_order order) noexcept
{
 atomic_thread_fence(order);
}

31.11 Fences [atomics.fences]

1. This subclause introduces synchronization primitives called fences. An invocation of an
atomic_thread_fence() is a thread fence. An invocation of an atomic_message_fence() is a
message fence. An invocation of an atomic_object_fence() is both a message fence and an object
fence.

2. Fences can have acquire semantics, release semantics, or both. A fence with acquire semantics is called an
acquire fence. A fence with release semantics is called a release fence.

3. A release thread fence A synchronizes with an acquire thread fence B if there exist atomic operations X and
Y , both operating on some atomic object M, such that A is sequenced before X, X modifies M, Y is
sequenced before B, and Y reads the value written by X or a value written by any side effect in the
hypothetical release sequence X would head if it were a release operation.

4. A release thread fence A synchronizes with an atomic operation B that performs an acquire operation on
an atomic object M if there exists an atomic operation X such that A is sequenced before X, X modifies M,
and B reads the value written by X or a value written by any side effect in the hypothetical release
sequence X would head if it were a release operation

5. An atomic operation A that is a release operation on an atomic object M synchronizes with an acquire
thread fence B if there exists some atomic operation X on M such that X is sequenced before B and reads
the value written by A or a value written by any side effect in the release sequence headed by A.

6. An evalution A on object O happens before another evaluation B on the same object if there exist
fences X and Y such that A is sequenced before X, X is invoked with O if it is an object fence, Y is
invoked with O if it is an object fence, Y is sequenced before B, and X would synchronize with Y if
they were both thread fences.

7. Preconditions: if it is a message fence, order != memory_order::seq_cst .
8. Effects: Depending on the value of order , this operation:

(8.1) — has no effects, if order == memory_order::relaxed ;

(8.2) — is an acquire fence, if order == memory_order::acquire or order == memory_order::consume ;

(8.3) — is a release fence, if order == memory_order::release ;

(8.4) — is both an acquire fence and a release fence, if order == memory_order::acq_rel ;

(8.5) — is a sequentially consistent acquire and release fence, if order == memory_order::seq_cst .

References

extern "C" void atomic_thread_fence(memory_order order) noexcept;

extern "C" void atomic_message_fence(memory_order order) noexcept;

template<class... Objects>
void atomic_object_fence(memory_order order, Objects const&... objects) noexcept;

References
[mpi] MPI, a Message Passing Interface Standard, version 3.1 https://www.mpi-forum.org/docs/mpi-3.1/mpi31-r
eport.pdf

[opencl] OpenCL, the OpenCL Specification, v3.0.10 https://www.khronos.org/registry/OpenCL/specs/3.0-unified
/pdf/OpenCL_API.pdf

[openmp] OpenMP, flush construct https://www.openmp.org/spec-html/5.0/openmpsu96.html#x127-4920002.1
7.8

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.openmp.org/spec-html/5.0/openmpsu96.html#x127-4920002.17.8

	Message fences
	Abstract
	Tony tables
	Revisions
	Motivation
	Existing Implementations
	Discussion
	Proposed Wording
	31.11 Fences [atomics.fences]

	References

