
Wording improvements for encodings and character sets
Document #: P2297R0
Date: 2021-02-19
Project: Programming Language C++
Audience: SG-16
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

Summary of behavior changes

Alert & backspace

The wording mandated that the executions encoding be able to encode ”alert, backspace,
and carriage return”. This requirement is not used in the core wording (Tweaks of [5.13.3.3.1]
may be needed), nor in the library wording, and therefore does not seem useful, so it was not
added in the new wording. This will not have any impact on existing implementations.

Unicode in raw string delimiters

Falls out of the wording change. should we?

New terminology

Basic character set

Formerly basic source character set. Represent the set of abstract (non-coded) characters in
the graphic subset of the ASCII character set. The term ”source” has been dropped because
the source code encoding is not observable nor relevant past phase 1.

The basic character set is used:

• As a subset of other encodings

• To restric accepted characters in grammar elements

• To restrict values in library

literal character set, literal character encoding, wide literal character set, wide lit-
eral character encoding

Encodings and associated character sets of narrow and wide character and string literals.
implementation-defined, and locale agnostic.

1

mailto:corentin.jabot@gmail.com

execution character set, execution character encoding, wide execution character
set, wide execution character encoding

Encodings and associated character sets of the encoding used by the library. isomorphic or
supersets of their literal counterparts. Separating literal encodings from libraries encoding
allows:

• To make a distinction that exists in practice and which was not previously admitted by
the standard previous.

• To keep the core wording locale agnostic.

The definition for these encodings has been moved to [library.intro]

Questions and bikesheding

• Do the terms of art code unit, code point, abstract character need to be defined?

• Are we happy with execution for library encodings?

• Do we prefer literal character encoding or literal ordinary character encoding ?

Codepoints vs scalar values

Only code points that are scalar can appear in a valid program. This is implied by the sentence
”mapped to the Unicode character set” (as opposition to codespace) in phase 1. As such it
doesn’t matter which term we use, but we should be consistent.

Differences with P2314

This paper and P2314 are two separate effort which accidentally occurred at the same time.
They share many similarities as they are born of the same SG-16 efforts to improve lexing.

There are some differences between the two approaches that we feel are important enough
that we think it is important for SG-16 to consider and compare bother papers!

Note that unlike P2194R0 [1] this paper does not try to fix phase 5 & 6!

The character set of C++ source code is Unicode

We explored this point in great detail in P2194R0 [1]. In particular:

• If the source character set is Unicode, codepoints can be mapped 1 to 1 (see also
P2290R0). Whether a codepoint is assigned or not is irrelevant for the compiler as long
as the properties of the codepoint are not observed. In particular identifier validation
which looks at XID properties implies codepoints are assigned.

• If the source character set is not Unicode then the existence of a mapping to a codepoint
implies the mapped-to codepoint is assigned (bare an evil implementation).

2

https://wg21.link/P2194R0
https://wg21.link/P2194R0

Therefore, unlike P2314, this paper does not introduce a different character set to describe the
Unicode character set, referring instead to the Unicode character set directly, which we think
is important as it makes things simpler. The fact that we need to look at Unicode properties
of codepoints to determine the validity of identifiers further implies that we understand the
Unicode character set as being a Coded Character set.

Encodings assumed at runtime should be described!

In the current wording, it is implied that there exists an execution encoding that is both the
encoding of literals and the encoding assumed by C functions affected by locale. This is
a side effect of the current wording not distinguishing between the compile and runtime
environment. It is presumably also why the encodings of literals are ”locale-specific”.

It seems evident that literal encoding is a better term to describe the encodings of literals. But
that renaming is less innocuous than it might first appear: It admits the encoding of literals
may not be the same as the encodings assumed by local specific libraries functions!

This for sure is a good thing as it matches reality but left us with a question: What is then
the encoding assumed by the local specific functions and do they have a relation with the
encodings of literals?

Ultimately, I think the question boils down to whether it is sensible for the following assertion
to ever fail:

assert(std::isalpha('a'));

A wider question is maybe ”Is a program which exposes mojibake well-defined?”

The functions in <cctype>, <cstdlib> expect ””characters”” in the local specific encoding. Dig-
ging into the C++ standard, it seems to be the intent that fputc and all functions that use it
(including printf) treat in characters.

The effect of setlocale on the execution encoding is never quite described by neither standard.

Assuming putc('a') should print the character 'a', and assuming 'a' is a lower case alphabetic
character, or assuming simply that 'a' is a character than there must exist a relation between
the encoding used to encode 'a' and the encoding used to later interpret it.

Requiring the same encoding, however, would be over constraining. For example, if the literal
encoding is ASCII the runtime encoding can be UTF-8 as UTF8 is a superset of ASCII. The
precise requirement to avoid mojibake is that all code units sequences present in literals
are valid code units sequences in the execution encoding associated with the corresponding
character type.

A less precise, but simpler and therefore more useful requirement is that the execution
character encoding is a ”superset” of the literal character encoding, to the extent encodings
can be supersets of one another.

Without this precondition, no function can be expected to behave reasonably in the extreme
case where the literal encoding is EBCDIC-derived and the execution encoding is ASCII derived
(or vice-versa) Starting with setlocale. What does a call to setlocale(LC_ALL, "C") possibly

3

mean if "C" is not the ”C” locale? Confused yet? In fact, any function taking a character or string
as a parameter would behave non-sensically if initialized with a literal. Without a relationship
between the literal and execution encodings, literals can never be used in any function as the
literal values would be in a different domain!

This observation is reinforced and aggravated by the fact that it is generally not possible to
distinguish literals from other objects at runtime!

Issues Fixed

• Phase 1 modification resolves CWG1403 [2], CWG578 [5], CWG1335 [4]

Future works

• Align wchar_t with existing practices.

• Review more thoroughly usages of the terms character.

Wording

�? Terms and definitions [intro.defs]

[...]

multibyte character
sequence of one or more bytes representing a member of the extended character set of
either the source or the execution environment Sequenceof oneormore codeunits representing
a member of one of the literal or execution character sets.

[Note: The extended character set is a superset of the basic character set. —end note]

Rationale: The notion of extended characters is removed, as, while the notion
of basic character is useful, there are only a few places where basic characters
should be handled differently from other characters (character meaning code
point here).
TODO: Should that definition apply to the UTF-8 (char8_t) encoding?

[...]

4

https://wg21.link/CWG1403
https://wg21.link/CWG578
https://wg21.link/CWG1335

�? Memory and objects [basic.memobj]

�? Memory model [intro.memory]

The fundamental storage unit in the C++ memory model is the byte. A byte is at least large
enough to contain any member of the basic execution character set represent any code unit
of the literal and execution character encodings and the eight-bit code units of the Unicode
UTF-8 encoding form and is composed of a contiguous sequence of bits, the number of which
is implementation-defined.

�? Fundamental types [basic.fundamental]

[...]

Rationale: The wording was not clear that it meant the basic source (rather
than execution) character set. ”implementation’s basic character set” is also a
fuzzy term. Is the basic source character set a coded character set?

Type char is a distinct type that has an implementation-defined choice of “signed char” or
“unsigned char” as its underlying type. The values of type char can represent distinct codes
for all members of the implementation’s basic character set all code units of the literal and
execution character encodings. The three types char, signed char, and unsigned char are
collectively called ordinary character types. The ordinary character types and char8_t are
collectively called narrow character types. For narrow character types, each possible bit pattern
of the object representation represents a distinct value. [Note: This requirement does not
hold for other types. —end note] [Note: A bit-field of narrow character type whose width is
larger than the width of that type has padding bits; see . —end note]

Rationale: The wording was implying that UTF-16 could not be used with
wchar_t (as it is a multibyte encoding and therefore can not represent all
values in a single wchar_t)

Type wchar_t is a distinct type that has an implementation-defined signed or unsigned integer
type as its underlying type. The values of type wchar_t can represent distinct codes for all
members of the largest extended character set specified among the supported locales all
code units of the wide literal and wide execution character encodings.

�? Phases of translation [lex.phases]

1. Physical source file characters Each abstract character in the source file is mapped, in
an implementation-defined mannner, to the basic source character set a Unicode scalar
value (introducing new-line characters for end-of-line indicators) if necessary. The set of
physical source file characters sets accepted is implementation-defined.

5

Any source file character not in the basic source character set is replaced by the
universal-character-name that designates that character. An implementation may use
any internal encoding, so long as an actual extended character encountered in the
source file, and the same extended character expressed in the source file as a
universal-character-name (e.g., using the \uXXXXnotation), are handled equivalently except
where this replacement is reverted in a raw string literal.

Do we need to mention anything about the encoding of the Unicode
character set being implementation-defined given it is not observable?

2. Each instance of a backslash character (\) immediately followed by a new-line character
is deleted, splicing physical source input lines to form logical source lines. Only the last
backslash on any physical source input line shall be eligible for being part of such a splice.
Except for splices reverted in a raw string literal, if a splice results in a character sequence
that matches the syntax of a universal-character-name, the behavior is undefined. A
source file that is not empty and that does not end in a new-line character, or that
ends in a new-line character immediately preceded by a backslash character before any
such splicing takes place, shall be processed as if an additional new-line character were
appended to the file.

3. The source file is decomposed into preprocessing tokens and sequences of whitespace
characters (including comments). A source file shall not end in a partial preprocess-
ing token or in a partial comment. Each comment is replaced by one space character.
New-line characters are retained. Whether each nonempty sequence of whitespace char-
acters other than new-line is retained or replaced by one space character is unspecified.
Each universal-character-name outside of a character or string literal is replaced by the
Unicode codepoint it represents.

The process of dividing a source file’s characters into preprocessing tokens is context-
dependent. [Example: See the handling of < within a #include preprocessing directive.
—end example]

�? Preprocessing tokens [lex.pptoken]

[...]

If the input stream has been parsed into preprocessing tokens up to a given character:

• If the next character begins a sequence of characters that could be the prefix and initial
double quote of a raw string literal, such as R", the next preprocessing token shall be a
raw string literal. Between the initial and final double quote characters of the raw string,
any transformations performed in phases 1 and 2 (universal-character-names and line
splicing) are line splicing performed in phase 2 is reverted; this reversion shall apply
before any d-char, r-char, or delimiting parenthesis is identified. The raw string literal
is defined as the shortest sequence of characters that matches the raw-string pattern

optencoding-prefix R raw-string

6

• Otherwise, if the next three characters are <:: and the subsequent character is neither :
nor >, the < is treated as a preprocessing token by itself and not as the first character of
the alternative token <:.

�? Character sets [lex.charset]

The basic source character set consists of 96 characters: the space character, the control
characters representing horizontal tab, vertical tab, form feed, and new-line, plus the following
91 graphical characters:

Edit the footnote associated with the above paragraph as follows:
Rationale:

• Abstract character is a more precise terminology to talk about the same
characters in different character sets or not in any character set.

• The second sentence seems incorrect. While the mapping in phase 1
must be documented, neither the source files nor the internal repre-
sentation should be observable by the program and as such do not
need to be documented. The paragraph further seems to imply that the
formerly-source basic character set applies to source files

The glyphs for the members of the basic source charac-
ter set are intended to identify abstract characters from
the subset of ISO/IEC 10646 which corresponds to the
ASCII character set. However, the mapping from source
file characters to the source character set (described in
translation phase 1) is specified as implementation-defined,
and therefore implementations must document how the
basic source characters are represented in source files.

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
_ { } [] # () < > % : ; . ? * + - / ^ & | ~ ! = , \ " '

The above paragraph, footnote and table should be replaced by a table of
codepoints identified by their Unicode name and values!

The universal-character-name construct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

A universal-character-name designates the character in ISO/IEC 10646 (if any) whose code
point is the hexadecimal number represented by the sequence of hexadecimal-digit s in the

7

universal-character-name. The program is ill-formed if that number is not a code point or if it is
a surrogate code point. Noncharacter code points and reserved code points are considered
to designate separate characters distinct from any ISO/IEC 10646 character.

Noncharacters, reserved characters are still valid codepoints and valid scalar
values.
Consequences of that:

• When they appear in a literal whose associated character set is Unicode,
then the codepoint can be preserved in the evaluated string

• When they appear in a literal whose associated character set is not
Unicode, then the codepoint designates a non-encodable character literal

• In identifier they do not designate a code point with the XID_Start or
XID_Continue which makes the program ill-formed.

If a universal-character-name outside the c-char-sequence, s-char-sequence, or r-char-sequence
of a character-literal or string-literal (in either case, including within a user-defined-literal)
corresponds to a control character or to a character in the basic source character set, the
program is ill-formed. A sequence of characters resembling a universal-character-name in an
r-char-sequence does not form a universal-character-name. [Note: ISO/IEC 10646 code points
are integers in the range [0, 10FFFF] (hexadecimal). A surrogate code point is a value in the
range [D800, DFFF] (hexadecimal). A control character is a character whose code point is in
either of the ranges [0, 1F] or [7F, 9F] (hexadecimal). —end note]

The basic execution character set and the basic execution wide-character set shall each contain
all the members of the basic source character set, plus control characters representing alert,
backspace, and carriage return, plus a null character (respectively, null wide character), whose
value is 0. For each basic execution character set, the values of the members shall be non-
negative and distinct from one another. In both the source and execution basic character sets,
the value of each character after 0 in the above list of decimal digits shall be one greater than
the value of the previous. The execution character set and the execution wide-character set are
implementation-defined supersets of the basic execution character set and the basic execution
wide-character set, respectively. The values of the members of the execution character sets
and the sets of additional members are locale-specific.

The literal character set and wide literal character set are implementation-defined characters
set which shall contain all members of the basic character set plus an implementation-defined
set of additional members.

The literal character encoding andwide literal character encoding are the implementation-defined
character encodings of the literal character set and wide literal character set respectively such
that:

• Each code unit is represented by a single char or wchar_t respectively

• Each member of the basic character set is uniquely represented by a single code unit
whose value is positive

• The NULL character (U+0000) is represented as a single code unit whose value, as read

8

via a glvalue of type char, is 0

Do we still need the gvalue bit above? My understanding is that we are
trying to say char(L'\0') == 0.

• The code units representing each digit in the basic character set (U+0030 to U+0039)
have consecutive values

Each member of the wide literal character set shall be represented by a single code units in the
wide literal character encoding.

This is... an interesting restriction that does not match existing practices but
maintains the status-quo brokenness of wchar_t!

Members of the wide literal character set are represented in one or more code units in the wide
literal character encoding.

[...]

�? Header names [lex.header]

header-name:
< h-char-sequence >
" q-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source basic character set Unicode codepoint except new-
line and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source basic character set Unicode codepoint except new-
line and "

�? Character literals [lex.ccon]

The grammar below will be further impacted by work to not replace non-basic
characters in phase 1

basic-c-char:
any member of the source basic character set Unicode codepoint except the
single-quote ', backslash \, or new-line character

9

conditional-escape-sequence-char:
any member of the source basic character set that is not an octal-digit, a simple-
escape-sequence-char, or the characters u, U, or x

I think we want to limit to basic characters here

[...]

The kind of a character-literal, its type, and its associated character encoding are determined by
its encoding-prefix and its c-char-sequence as defined by . The special cases for non-encodable
character literals and multicharacter literals take precedence over their respective base kinds.
[Note: The associated character encoding for ordinary and wide character literals ordinary
and wide literal character encodings determines encodability, but does not determine the
value of non-encodable ordinary or wide character literals or ordinary or wide multicharacter
literals. The examples in [lex.ccon.literal] for non-encodable ordinary and wide character liter-
als assume that the specified character lacks representation in the execution literal character
set or execution literal wide-character set, respectively, or that encoding it would require more
than one code unit. —end note]

Encoding Kind Type Associated char- Example
prefix acter encoding
none ordinary character literal char encoding of literal 'v'

non-encodable ordinary character literal int the execution encoding '\U0001F525'
ordinary multicharacter literal int character set 'abcd'

L wide character literal wchar_t encoding of wide literal L'w'
non-encodable wide character literal wchar_t the execution encoding L'\U0001F32A'
wide multicharacter literal wchar_t wide-character set L'abcd'

u8 UTF-8 character literal char8_t UTF-8 u8'x'

u UTF-16 character literal char16_t UTF-16 u'y'

U UTF-32 character literal char32_t UTF-32 U'z'

�? String literals [lex.string]

The grammars belowwill be further impacted by work to not replace non-basic
characters in phase 1

basic-s-char:
any member of the source basic character set Unicode codepoint except the
double-quote ", backslash \, or new-line character

raw-string:
" optd-char-sequence (optr-char-sequence) optd-char-sequence "

r-char-sequence:
r-char
r-char-sequence r-char

10

r-char:
anymember of the source basic character set Unicode codepoint, except a right
parenthesis) followed by

the initial d-char-sequence (which may be empty) followed by a double
quote ".

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the source basic character set Unicode codepoint :

space, the left parenthesis (, the right parenthesis), the backslash \, and
the control characters

representing horizontal tab, vertical tab, form feed, and newline.

Because \ is not allowed, and threfore universal-character-name, allow-
ing unicode here is a change of behavior.

[...]

Encoding Kind Type Associated Examples
prefix character en-

coding
none ordinary string literal array of n

const char
encoding
of the
execution
character
set literal
encoding

"ordinary string"
R"(ordinary raw string)"

L wide string literal array of n
const wchar_t

encoding
of the
execution
wide-character
set wide
literal
encoding

L"wide string"
LR"w(wide raw string)w"

u8 UTF-8 string literal array of n
const char8_t

UTF-8 u8"UTF-8 string"
u8R"x(UTF-8 raw
string)x"

u UTF-16 string literal array of n
const char16_-
t

UTF-16 u"UTF-16 string"
uR"y(UTF-16 raw
string)y"

U UTF-32 string literal array of n
const char32_-
t

UTF-32 U"UTF-32 string"
UR"z(UTF-32 raw
string)z"

A string-literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a
delimiter. The terminating d-char-sequence of a raw-string is the same sequence of characters

11

as the initial d-char-sequence. A d-char-sequence shall consist of at most 16 characters.

[Note: The characters '(' and ')' are permitted in a raw-string. Thus, R"delimiter((a|b))delimiter"
is equivalent to "(a|b)". —end note]

[Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution
evaluated string literal. Assuming no whitespace at the beginning of lines in the following
example, the assert will succeed:

const char* p = R"(a\
b
c)";
assert(std::strcmp(p, "a\\\nb\nc") == 0);

—end note]

[...]

�? User-defined literals [lex.ext]

[...]

If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S contains a literal
operator with parameter type unsigned long long, the literal L is treated as a call of the form

operator "" X(nULL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template but not
both. If S contains a raw literal operator, the literal L is treated as a call of the form

operator "" X("n")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form

operator "" X<'c1', 'c2', ... 'ck'>()

where n is the source character codepoint sequence c1c2...ck. [Note: The sequence c1c2...ck

can only contain characters from the basic source character set. —end note]

This note was in the wording original proposal N2750 [3]. It is not clear why
this restriction exists. With the early replacement of universal-character-name
as proposed in this paper, it would be easy to remove that restriction. In
fact, if we wanted to keep this restriction the note should probably become
normative?
There is little reason to make the following code ill-formed:

long long operator""_µs(unsigned long long);

There is currently implementation divergence !

If L is a user-defined-floating-point-literal, let f be the literal without its ud-suffix. If S contains a
literal operator with parameter type long double, the literal L is treated as a call of the form

12

https://wg21.link/N2750
https://godbolt.org/z/sTET3q

operator "" X(fL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template but not
both. If S contains a raw literal operator, the literal L is treated as a call of the form

operator "" X("f")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form

operator "" X<'c1', 'c2', ... 'ck'>()

where f is the source character codepoint sequence c1c2...ck. [Note: The sequence c1c2...ck

can only contain characters from the basic source character set. —end note]

�? Library introduction [library]

�? Method of description [library.c]

�? Other conventions [conventions]

�? Type descriptions [type.descriptions]

�? Character sequences [character.seq]

�? Execution encodings [execution encodings]

The execution encoding is the character encoding of the execution character set, such that all
members of the literal character set are represented, with the same value in the execution
character set and any sequence of characters in the literal character encoding represent the
same sequence of code points when interpreted as being in the execution encoding.

The wide execution encoding is the character encoding of the wide execution character set, such
that all members of the wide literal character set are represented, with the same value in
the wide execution character set and any sequence of characters in the wide literal character
encoding represent the same sequence of code points when interpreted as being in the wide
execution encoding.

The execution encoding and wide execution encoding are implementation-defined and may be
be affected by a call to setlocale(int, const char*), or by a change to a locale object, as
described in locales and input.output.

The paragraph below only becomes relevant if we have constexpr text trans-
formation, encodings or classification functions. I don’t think that’s the case
yet.

During constant evaluation, the execution encoding and execution character set are the literal
character set and wide literal character set respectively and are not affected by locale.

13

�? General [character.seq.general]

The C standard library makes widespread use of characters and character sequences that
follow a few uniform conventions:

• A letter is any of the 26 lowercase or 26 uppercase letters in the basic execution basic
character set.

• The decimal-point character is the (single-byte) character used by functions that convert
between a (single-byte) character sequence and a value of one of the floating-point
types. It is used in the character sequence to denote the beginning of a fractional part.
It is represented in [??] through [??] and by a period, '.', which is also its value in the
"C" locale, but may change during program execution by a call to setlocale(int, const
char*), or by a change to a locale object, as described in and .

• A character sequence is an array object A that can be declared as T A[N], where T is any of
the types char, unsigned char, or signed char, optionally qualified by any combination
of const or volatile. The initial elements of the array have defined contents up to and
including an element determined by some predicate. A character sequence can be
designated by a pointer value S that points to its first element.

�? Byte strings [byte.strings]

A null-terminated byte string, or ntbs, is a character sequencewhose highest-addressed element
with defined content has the value zero (the terminating null character); no other element in
the sequence has the value zero.

The length of an ntbs is the number of elements that precede the terminating null character.
An empty ntbs has a length of zero.

The value of an ntbs is the sequence of values of the elements up to and including the termi-
nating null character.

A static ntbs is an ntbs with static storage duration.

�? Multibyte strings [multibyte.strings]

A null-terminated multibyte string, or ntmbs, is an ntbs that constitutes a sequence of valid
multibyte characters, beginning and ending in the initial shift state.

Edit the footnote attached to the above sentence as follow:

An ntbs that contains characters only from the basic execution
character set is also an ntmbs. Each multibyte character then
consists of a single byte only contains characters represented
as a single byte is also an ntmbs .

A static ntmbs is an ntmbs with static storage duration.

14

�? Locales [locales]

�? Class locale [locale]

�? ctypemembers [locale.ctype.members]

charT do_widen(char c) const;
const char* do_widen(const char* low, const char* high, charT* dest) const;

Effects: Applies the simplest reasonable transformation from a char value or sequence
of char values to the corresponding charT value or values. The only characters for which
unique transformations are required are those in the basic source character set.

For any named ctype category with a ctype<charT> facet ctc and valid ctype_base::mask
value M, (ctc.is(M, c) || !is(M, do_widen(c))) is true.

The second form transforms each character *p in the range [low, high), placing the
result in dest[p - low].

Returns: The first form returns the transformed value. The second form returns high.

char do_narrow(charT c, char dfault) const;
const charT* do_narrow(const charT* low, const charT* high, char dfault, char* dest) const;

Effects: Applies the simplest reasonable transformation from a charT value or sequence
of charT values to the corresponding char value or values.

For any character c in the basic source character set the transformation is such that

do_widen(do_narrow(c, 0)) == c

�? Time library [time]

Table 1: Meaning of parse flags

Flag Parsed value

%a The locale’s full or abbreviated case-insensitive weekday name.

%Z The time zone abbreviation or name. A single word is parsed. This word
can only contain characters from the basic source character set that are
alphanumeric, or one of '_', '/', '-', or '+'.

%% A % character is extracted.

15

�? C++ and ISO C++ 2014 [diff.cpp14]

�? lexical conventions [diff.cpp14.lex]

Change: Removal of trigraph support as a required feature.
Rationale: Prevents accidental uses of trigraphs in non-raw string literals and comments.
Effect on original feature: Valid C++ 2014 code that uses trigraphs may not be valid or may
have different semantics in this revision of C++. Implementations may choose to translate
trigraphs as specified in C++ 2014 if they appear outside of a raw string literal, as part of the
implementation-defined mapping from physical source file characters to the basic source
character set.

References

[1] Corentin Jabot and Peter Brett. P2194R0: The character set of the internal representation
should be unicode. https://wg21.link/p2194r0, 8 2020.

[2] David Krauss. CWG1403: Universal-character-names in comments. https://wg21.link/
cwg1403, 10 2011.

[3] I. McIntosh, M. Wong, R. Mak, R. Klarer, and et al. N2750: User-defined literals (aka.
extensible literals (revision 4)). https://wg21.link/n2750, 8 2008.

[4] Johannes Schaub. CWG1335: Stringizing, extended characters, and universal-character-
names. https://wg21.link/cwg1335, 7 2011.

[5] Martin Vejnár. CWG578: Phase 1 replacement of characters with universal-character-
names. https://wg21.link/cwg578, 5 2006.

[N4878] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.link/N4878

16

https://wg21.link/p2194r0
https://wg21.link/cwg1403
https://wg21.link/cwg1403
https://wg21.link/n2750
https://wg21.link/cwg1335
https://wg21.link/cwg578
https://wg21.link/N4878

	1 Abstract
	2 Summary of behavior changes
	2.1 Alert & backspace
	2.2 Unicode in raw string delimiters

	3 New terminology
	3.1 Basic character set
	3.2 literal character set, literal character encoding, wide literal character set, wide literal character encoding
	3.3 execution character set, execution character encoding, wide execution character set, wide execution character encoding

	4 Questions and bikesheding
	4.1 Codepoints vs scalar values

	5 Differences with P2314
	5.1 The character set of C++ source code is Unicode
	5.2 Encodings assumed at runtime should be described!

	6 Issues Fixed
	7 Future works
	8 Wording
	9 Terms and definitions
	10 Memory and objects
	10.1 Memory model
	10.2 Fundamental types

	11 Phases of translation
	12 Preprocessing tokens
	13 Character sets
	14 Header names
	14.1 Character literals
	14.2 String literals
	14.3 User-defined literals

	15 Library introduction
	16 Method of description
	16.1 Other conventions
	16.1.1 Type descriptions
	16.1.2 Character sequences
	16.1.3 Execution encodings
	16.1.4 General
	16.1.5 Byte strings
	16.1.6 Multibyte strings

	17 Locales
	17.1 Class locale
	17.1.1 ctype members

	18 Time library
	19 C++ and ISO C++ 2014
	19.1 lexical conventions

	20 References

