
Naming Text Encodings to Demystify Them
Document #: P1885R8
Date: 2021-10-11
Programming Language C++
Audience: LEWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Peter Brett <pbrett@cadence.com>

If you can’t name it, you probably don’t know what it is
If you don’t know what it is, you don’t know what it isn’t

Tony Van Eerd

Target

C++23

Abstract

For historical reasons, all text encodings mentioned in the standard are derived from a locale
object, which does not necessarily match the reality of how programs and systems interact.

This model works poorly withmodern understanding of text, i.e., the Unicodemodel separates
encoding from locales which are purely rules for formatting and text transformations but do
not affect which characters are represented by a sequence of code units.

Moreover, the standard does not provide a way to query which encodings are expected or
used by the environment, leading to guesswork and unavoidable UB.

This paper introduces the notions of literal encoding, environment encoding, and a way to
query them.

Examples

Listing the encoding

#include <text_encoding>
#include <iostream>

void print(const std::text_encoding & c) {
std::cout << c.name()
<< " (iana mib: " << c.mib() << ")\n"
<< "Aliases:\n";

1

mailto:corentin.jabot@gmail.com
mailto:pbrett@cadence.com

for(auto && a : c.aliases()) {
std::cout << '\t' << a << '\n';

}
}

int main() {
std::cout << "Literal Encoding: ";
print(std::text_encoding::literal());
std::cout << "Wide Literal Encoding: ";
print(std::text_encoding::wide_literal());
std::cout << "environment Encoding: ";
print(std::text_encoding::environment());
std::cout << "Wide environment Encoding: ";
print(std::text_encoding::wide_environment());

}

Compiled with g++ -fwide-exec-charset=EBCDIC-US -fexec-charset=SHIFT_JIS, this program
may display:

Literal Encoding: SHIFT_JIS (iana mib: 17)
Aliases:

Shift_JIS
MS_Kanji
csShiftJIS

Wide Literal Encoding: x-wide16-EBCDIC-US (iana mib: 2078)

environment Encoding: UTF-8 (iana mib: 106)
Aliases:

UTF-8
csUTF8

Wide environment Encoding: ISO-10646-UCS-4 (IANA mib: 1001)
Aliases:

ISO-10646-UCS-4
csUCS4

LWG3314

[time.duration.io] specifies that the unit for microseconds is µ on environments able to display
it. This is currently difficult to detect and implement properly.

The following allows an implementation to use µ if it is supported by both the execution
encoding and the encoding attached to the stream.

template<class traits, class Rep, class Period>
void print_suffix(basic_ostream<char, traits>& os, const duration<Rep, Period>& d)
{

if constexpr(text_encoding::literal() == text_encoding::UTF8) {
if (os.getloc().encoding() == text_encoding::UTF8) {

os << d.count() << "\u00B5s"; // µ
return;

2

}
}
os << d.count() << "us";

}

A more complex implementation may support more encodings, such as iso-8859-1.

Asserting a specific encoding is set

On POSIX, matching encodings is done by name, which pulls the entire database. To avoid
that, we propose a method to asserting that the environment encoding is as expected. such
method mixed to only pull in the strings associated with this encoding:

int main() {
return text_encoding::environment_is<text_encoding::id::UTF8>();

}

User construction

To support other use cases such as interoperability with other libraries or internet protocols,
text_encoding can be constructed by users

text_encoding my_utf8("utf8");
assert(my_utf8.name() == "utf8"sv); // Get the user provided name back
assert(my_utf8.mib() == text_encoding::id::UTF8);

text_encoding my_utf8_2(text_encoding::id::UTF8);
assert(my_utf8_2.name() == "UTF-8"sv); // Get the preferred name for the implementation
assert(my_utf8_2.mib() == text_encoding::id::UTF8);
assert(my_utf8 == my_utf8_2);

Unregistered encoding

Unregistered encoding are also supported. They have the other mib, no aliases and are
compared by names:

text_encoding wtf8("WTF-8");
assert(wtf8.name() == "WTF-8"sv);
assert(wtf8.mib() == text_encoding::id::other);

//encodings with the \tcode{other} mib are compared by name, ignoring case, hyphens and underscores
assert(wtf8 == text_encoding("___wtf8__"));

Revisions

Revision 8

• Add some prose to explain the expected behavior of the wide_environment methods,
especially that it does not aim to return encodings always suitable for use with the

3

wide-character functions. This is accompanied by wording notes.

• Add some wording to clarify that the way an implementation maps an encoding to
a registered-character-set is implementation-defined. This is, for example, to allow
implementations to return the Big5 encoding, as the name as registered may actually
describe slightly different characters sets. Nevertheless, there are existing practices
to respect, and we do not want to constrain implementation too much. In general,
while most registered character encodings do describe a very specific set of characters
and mapping, some do not. This blanket wording allows an implementation to offer a
behavior that matches existing expectations.

• Add more recommended practices in the wording

• Specify that the encoding of literals is that of the object representation.

• Specify that the encodings are encoding schemes.

• Always map UTF16-LE/BE to UTF-16 (and add prose to explain why).

• Fix an example, which while correct was not representative of desired recommended
practices.

• Many wording fixes.

Revision 7

• Improve the wording of aliases(). Make its return type part of the API. aliases_view.
The value_type of that view is const char*. it was string_view in previous versions by
mistake. This view is borrowed_trange, and random_access_range at LEWG’s request. We
inherit from view_interface for greater usuability. All of that has been implemented.
Note that this view is not common_range because it can be implemented more efficiently
without that requirement, and, being copyable, it can be adapted into one.

• Modify the wording of text_encoding::environment to account for the fact locale-related
environment variables can be changed at runtime. Therefore, it is not possible to enforce
that the value returned by text_encoding::environment is not affected by variable locale
changes. However, it is implementable on some systems (We provide an implementation
for Windows, FreeBSD, Linux, OSX), and on these systems, we recommend, but not
mandate that changing the environment variables do not affect the value returned by
text_encoding::environment. To account for that, the environment() functions are no
longer noexcept.

• Clarify how the names returned by name() and aliases() relate. In particular, modify the
wording to call aliases().front() primary name rather than prefered name as to avoid
confusion.

• Clarify that name() can be nullptr.
For example, consider text_encoding{text_encoding::id::unknown}.name().

• Many wording tweaks and correction

4

Revision 6

• Update the list of encoding to add UTF7IMA which was registered this year.

• Replace references of [rfc3808] by [ianacharset-mib] which is the maintained list since
2004

• Explain why the underlying type of text_encoding::id is int_least32_t.

Revision 5

• Add motivation for name returning const char*

• Improve wording

• Rename system to environment

• Remove freestanding wording - will be handled separately

• Exclude a couple of legacy encodings that are problematic with the name matching
algorithm

Revision 4

• Change operator==(encoding, mib) for id::other

• Add wording for freestanding

• Improve wording

• Improve alias comparison algorithm to match unicode TR22

Revision 3

• Add a list of encodings NOT registed by IANA

• Add a comparative list of IANA/WHATWG

• Address names that do not uniquely identify encodings

• Add more examples

Revision 2

• Add all the enumerators of rcf 3008

• Add a mib constructor to text_encoding

• Add environment_is and wide_environment_is function templates

5

Revision 1

• Add more example and clarifications

• Require hosted implementations to support all the names registered in [ianacharset-mib].

Use cases

This paper aims to make C++ simpler by exposing information that is currently hidden to the
point of being perceived as magical by many. It also leaves no room for a language below
C++ by ensuring that text encoding does not require the use of C functions.

The primary use cases are:

• Ensuring a specific string encoding at compile time

• Ensuring at runtime that string literals are compatible with the environment encoding

• Custom conversion function

• locale-independent text transformation

Non goals

This facility aims to help identify text encodings and does not want to solve encoding conver-
sion and decoding. Future text encoders and decoders may use the proposed facility as a way
to identify their source and destination encoding. The current facility is just a fancy name.

The many text encodings of a C++ environment

Text, in a technical sense, is a sequence of bytes to which is virtually attached an encoding.
Without encoding, a blob of data simply cannot be interpreted as text.

In many cases, the encoding used to encode a string is not communicated along with that
string and its encoding is therefore presumed with more or less success.

Generally, it is useful to know the encoding of a string when

• Transferring data as text between environments or processes (I/O)

• Textual transformation of data

• Interpretation of a piece of data

In the purview of the standard, text I/O text originates from

• The source code (literals)

• The iostream library as well as environment functions

• Environment variables and command-line arguments intended to be interpreted as text.

6

Locales provide text transformation and conversion facilities and, as such, in the current
model, have an encoding attached to them.

There are, therefore, three sets of encodings of primary interest:

• The encoding of narrow and wide characters and string literals

• The narrow and wide encodings used by a program when sending or receiving strings
from its environment

• The encoding of narrow and wide characters attached to a std::locale object

[Note: Because they have different code units sizes, narrow and wide strings have different
encodings. char8_t, char16_t, char32_t literals are assumed to be respectively UTF-8, UTF-16
and UTF-32 encoded. —end note]

[Note: A program may have to deal with more encoding - for example, on Windows, the
encoding of the console attached to coutmay be different from the environment encoding.

Likewise, depending on the platform, paths may or may not have an encoding attached to
them, and that encoding may either be a property of the platform or the filesystem itself.
—end note]

The standard only has the notion of execution character sets (which implies the existence of
execution encodings), whose definitions are locale-specific. That implies that the standard
assumes that string literals are encoded in a subset of the encoding of the locale encoding.

This has to hold because it is not generally possible to differentiate runtime strings from
compile-time literals at runtime.

This model does, however, present some shortcomings:

First, in practice, C++ software is often no longer compiled in the same environment as the
one on which they are run, and the entity providing the program may not have control over
the environment on which it is run.

Both POSIX and C++ derive the encoding from the locale, which is an unfortunate artifact of an
era when 255 characters or less ought to be enough for anyone. Sadly, the locale can change
at runtime, which means the encoding which is used by <ctype> and conversion functions
can change at runtime. However, this encoding ought to be an immutable property as it is
dictated by the environment (often the parent process). In the general case, it is not for a
program to change the encoding expected by its environment. A C++ program sets the locale
to ”C” (see [N2346], 7.11.1.1.4) during initialization, further losing information.

Many text transformations can be done in a locale-agnostic manner yet require the encoding
to be known - as no text transformation can ever be applied without prior knowledge of what
the encoding of that text is.

More importantly, it is difficult or impossible for a developer to diagnose an incompatibility
between the locale-derived encoding, the environment-assumed encoding and the encoding
of string literals.

7

Exposing the different encodings would let developers verify that that the environment is
compatible with the implementation-defined encoding of string literals, aka that the encoding
and character set used to encode string literals are a strict subset of the encoding of the
environment.

Identifying Encodings

To be able to expose the encoding to developers, we need to be able to synthesize that
information. The challenge, of course, is that there exist many encodings (hundreds) and
many names to refer to each one. Fortunately, there exists a database of registered encoding
covering almost all encodings supported by operating systems and compilers. This database
is maintained by IANA through a process described by [rfc2978].

This database lists over 250 registered character encodings and for each:

• A name

• A unique identifier

• A set of known aliases

We propose to use that information to reliably identify encoding across implementations and
systems.

Design Considerations

Encodings are orthogonal to locales

The following proposal is mostly independent of locales so that the relevant part can be
implemented in an environment in which <locale> is not available, as well as to make sure we
can transition std::locale to be more compatible with Unicode.

Naming

We use the term literal to match the core wording. ”Environment encoding” is a descriptive
term illustrative of the fact that a C++ program has, in the general case, no control over the
encoding it is expected to produce and consume. It is also purposefully distinct from the term
”execution encoding” which is tied to locales.

MIBEnum

We provide a text_encoding::id enum with the MIBEnum value of a few often used encodings
for convenience. Because there is a rather large number of encodings and because this list
may evolve faster than the standard, it was pointed out during early review that it would
be detrimental to attempt to provide a complete list. [Note: MIB stands for Management
Information Base, which is IANA nomenclature. The name has no particular interest besides
a desire not to deviate from the existing standards and practices. —end note]

8

The enumerators unknown and otherand their corresponding values, are specified in [ianacharset-mib]:

• other designate an encoding not registered in the IANA Database, such that two encod-
ings with the othermib are identical if their names compare equal.

• unknown is used when the encoding could not be determined. Under the current proposal,
only default constructing a text_encoding object can produce that value. The encoding
associated with the locale or environment is always known.

While MIBEnum was necessary to make that proposal implementable consistently across plat-
forms, its main purpose is to remediate the fact that encoding can have multiple inconsistent
names across implementations.

For forward compatibility with the RFCs, this enumeration’s underlying type is int_least32_t.

The RFC definition of INTEGER can be found in RFC2578:

The Integer32 type represents integer-valued information between −231 and
231 − 1 inclusive (-2147483648 to 2147483647 decimal). This type is indistin-
guishable from the INTEGER type. Both the INTEGER and Integer32 types may
be sub-typed to be more constrained than the Integer32 type.
The INTEGER type (but not the Integer32 type) may also be used to repre-
sent integer-valued information as named-number enumerations. In this
case, only those named numbers so enumerated may be present as a value.
Note that although it is recommended that enumerated values start at 1 and
be numbered contiguously, any valid value for Integer32 is allowed for an
enumerated value and, further, enumerated values needn’t be contiguously
assigned.

Name and aliases

The proposed API offers both a name and aliases. The namemethod reflects the name with
which the text_encoding object was created, when applicable. This is notably important when
the encoding is not registered or its name differs from the IANA name.

name and aliases work as follow:

• When constructed from the string_view constructor, name() returns the name passed
to the constructor

• When constructed from a mib, name() returns an implementation defined name that
exists in the list of aliases

• When constructed per the implementation, name() returns an implementation defined-
value

In addition, aliases.front() is defined to return the primary name, as defined by IANA

9

https://datatracker.ietf.org/doc/html/rfc2578#section-7.1.1

Unique identification of encodings

The IANA database intends that the name refers to a specific set of characters. However,
for historical reasons, there exist some names (like Shift-JIS) which describes several slightly
different encoding. The intent of this proposal is that the names refer to the character
encodings as described by IANA. Further differentiation can be made in the application
through out-of-band information such as the provenance of the text to which the encoding is
associated. RFC2978 mandates that all names and aliases are unique.

Implementation flexibility

This proposal aims to be implementable on all platforms. It supports encodings not registered
with IANA, does not impose that a freestanding implementation is aware of all registered
encodings, and it lets implementers provide their aliases for IANA-registered encoding. Be-
cause the process for registering encodings is documented [rfc2978] implementations can
(but are not required to) provide registered encodings not defined in [ianacharset-mib] - in
the case that document is updated out of sync with the standard. However, [ianacharset-mib]
is not frequently updated. It was updated once in 2021 and previously in 2011. As the world
converges to UTF-8, new encodings are less likely to be registered. Until 2004 this document
was maintained in [rfc3808].

Implementations may not extend the text_encoding::id as to guarantee source compatibility.

const char*

A primary use case is to enable people to write their own conversion functions. Unfortu-
nately, most APIs expect NULL-terminated strings, which is why we return a const char*. This
is requested by users and consistent with source_location, stacktrace, ... We would have
considered a null-terminated string_view as proposed in P1402R0 [?] if such a thing was
available.

When constructed from the unknown mib, name returns a nullptr rather than an empty
string.

Freestanding

For this class to be compatible with freestanding environments, care has been taken to avoid
allocation and exceptions. As such, we put an upper bound on the length of the name of
encodings passed to text_encoding constructor of 63+1 characters. Per rfc2978, the names
must not exceed 40 characters. There is, however, a name of 45 characters in the database.
64 has been arbitrarily chosen, being the smallest power of 2 number that would fit all the
names with some extra space for future-proofing (there are ABI concerns here).

However, no wording for freestanding is provided as there are currently missing pieces
(notably string_view). We propose that making this facility freestanding can be bundled with
the wider work by Ben Craig.

10

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98576#c2
https://wg21.link/P1402R0

Name comparison

Names and aliases are compared ignoring case and non-alphanumeric characters, in a way
that follows Unicode recommendations

This leads to a couple of ambiguities (”iso-ir-9-1” and ”iso-ir-9-2” match ”iso-ir-91” and ”iso-ir-
92”, respectively). The two problematics encodings have been excluded from our proposal
entirely. They were designed in 1975 for use in newspapers in Norway and are no longer
in use. Supporting them would either require a perfect match, even though we know from
experience that users will find 20 creative ways to spell UTF-8, or to perform in sequence a
perfect match and a loose match; we do not this is a reasonable cost to pay for algorithms
that fell into disuse long ago:

Reference: iso-ir-9-1 iso-ir-9-2

Note that these are different from ISO646-NO2 which is the long obsoleted Norwegian ances-
tor to ISO 8859-1

Implementation

The following proposal has been prototyped using a modified version of GCC to expose the
encoding information.

OnWindows, the run-time encoding can be determined by GetACP - and thenmap toMIB values,
while on a POSIX platform it corresponds to value of nl_langinfo_l when the environment (””)
locale is set - before the program’s locale is set to C.

While exposing the literal encoding is novel, a few libraries do expose the environment
encoding, including Qt and wxWidget, and use the IANA registry.

Part of this proposal is available on Compiler explorer.

• Literal encodings are only supported on recent version of clang and GCC

• no std::locale integration

• Compiler Explorer limitations prevent the implenentation to be immune to calls to setenv

(literal and wide_literal are not supported)

Handling mutation of LC_CTYPE at runtime

On POSIX, the environment encoding is derived from the default locale "", which itself is
derived from the value of the environment variables LC_CTYPE, LC_ALL and LANG (in that order).
Whichmeans a call to setenvmight affect the value returned by text_encoding::environmemt().
While this would be conforming, it would be more helpful if the implementation was impervi-
ous to such modification of the environment. We can achieve that by:

• On Linux and freebsd, parsing /proc/self/environ to use these values instead off the
one returned by getenv

11

https://www.unicode.org/reports/tr22/tr22-8.html#Charset_Alias_Matching
https://www.itscj.ipsj.or.jp/iso-ir/009-1.pdf
https://www.itscj.ipsj.or.jp/iso-ir/009-2.pdf
https://compiler-explorer.com/z/KMPeGnEje

• On OSX, parsing the memory where the environment is stored, as returned by sysctl({
CTL_KERN, KERN_PROCARGS, pid}).

• On Windows, GetACP is not affected by this issue.

On implementations where the implementers also control the libc, better strategies may be
available.

It is useful to get the locale of the environment as this represents the encoding that command-
line arguments, environment variables and non-redirected standard streams are likely to
use.

The encoding of the current locale may be different - because the global locale is initially set
to ”C”, and users can set an arbitrary global locale, and therefore, that global locale-associated
encoding may be different from the environment encoding.

The global locale associated encoding can be queried with locale().encoding().

It would be hard for users to implement this function as it is not portably implementable. Of
course, on some platforms, the recommended behavior may not be implementable, in which
case implementations could return the encoding using the values of LC_ at the point of call.

Storing aliases

We found that aliases can be efficiently stored and looked up in a sorted list of alias/mib pairs.
Making a common_range of aliases_view would force an implementation to find the end of the
list of aliases for a particular encoding, which is slightly efficient than what is possible, so this
is not proposed. Mostly, we found little use for it to be a common_range.

Compatibility with third-party systems

Qt

// Get a QTextCodec able to convert the environment encoding to QString
auto codec = QTextCodec::codecForMib(std::text_encoding::environment().mib());

ICU

// Get a UConverter object able to convert to and from the environment encoding to
// ICU's internal encoding.
UErrorCode err;
UConverter* converter = ucnv_open(std::text_encoding::environment().name(), &err);

// Check whether a UConverter converts to the environment encoding
bool compatibleWithenvironmentEncoding(UConverter* converter)
{

UErrorCode err;
const char* name == ucnv_getName(converter, &err);
assert(U_SUCCESS(err));
return std::text_encoding(name) == std::text_encoding::environment();

}

12

ICONV

// Convert from UTF-8 to the environment encoding, transliterating if necessary
iconv_t converter

= iconv_open(std::format("{}//TRANSLIT", std::text_encoding::literal()).c_str(), "utf-8");

FAQ

Why rely on the IANA registry ?

The IANA registry has been picked for several reasons:

• It can be referenced through an RFC in the standard

• It has wide vendor buy-in

• It is used as a primary source for many tools, including ICU and iconv, and many pro-
gramming languages and libraries.

• It has an extensive number of entries which makes it uniquely suitable for the wide
portability requirements of C++. Notably, it supports IBM codepages.

• It provides stable enum values designed for efficient and portable comparison in pro-
gramming languages

• There is a well-specified support for unregistered encodings

• There is a well-specified process to register new encodings

We also considered the WHATWG Encoding specification. But this specification is designed
specifically for the web and has no provision for EBCDIC encodings, provides no numerical
values, etc.

Annex A provides a comparative list of IANA and WHATWG lists.

Extensive research did not found any other registry worth considering. It would be possible to
maintain our own list in the standard, but this would put an undue burden on the committee
and risks reducing portability with existing tools, libraries, and other languages.

Why not return a text_encoding::id rather than a text_encoding object?

Some implementations may need to return a non-register encoding, in which case they would
return mib::other and a custom name.

text_encoding::environment() and text_encoding::environment_mib() (not proposed) would
generate the same code in an optimized build.

But handling names is expensive?

To ensure that the proposal is implementable in a constrained environment, text_encoding
has a limit of 63 characters per encoding name which is sufficient to support all encodings we
are aware of (registered or not)

13

It seems like names and mib are separate concerns?

Not all encodings are registered (even if most are). It is therefore not possible to identify all
encoding uniquely by mib. Encodings may have many names, but some platforms will have a
preferred name.

The combination of a name + a mib covers 100% of use cases. Aliases further help with
integration with third-party libraries or to develop tools which need encoding names.

Why can’t there be vendor provided MIBs?

This would be meaningless in portable code. mib is only useful as a mechanism to identify
encodings portably and to increase compatibility across third-party libraries.

It does not prevent the support of unregistered encodings:

text_encoding wtf8("WTF-8");
assert(wtf8.name() == "WTF-8"sv);
assert(wtf8.mib() == text_encoding::id::other);

Why can’t there be a text_encoding(name, mib) constructor?

Same reason, if users are allowed to construct text_encoding from registered names or names
otherwise unknown from the implementation with an arbitrary mib, it becomes impossible to
maintain the invariant of the class (the relation between mib and name), which would make
the interface much harder to use without providing any functionality.

I just want to check that my platform is utf-8 without paying for all these other
encodings?

we added environment_is to that end.

int main() {
assert(text_encoding::environment_is<text_encoding::id::UTF8>

&& "Non UTF8 encoding detected, go away");
}

This can be implemented in a way that only stores in the program the necessary information
for that particular encoding (unless aliases is called at runtime).

On Windows and OSX, only calling encoding::aliases would pull any data in the program,
even if calling environment.

What is the cost of calling aliases?

My crude implementation pulls in 30Ki of data when calling aliases or the name constructor,
or environment() (on POSIX).

14

Why do name() and aliases() return const char* rather than string_view?

Oneof the design goals is to be compatiblewithwidely deployed libraries such as ICU and iconv,
which are, on most platforms, the defacto standards for text transformations, classification,
and transcoding. These are C APIs that expect null-terminated strings. Returning a null-
terminated string_view of which end() is dereferenced would be UB. Returning a string and
hopping that SBO kicks in would add complexity for little reason and would preclude the name
function from being provided in freestanding implementations. LEWG previously elected to
use const char* in source_location, stack trace, etc

Wide functions

The standard mandates that wchar_t encodes all characters of its associated encoding as
a single code unit. This, for example, precludes that wchar_t associated encoding is UTF-
16. However, this does not match existing practices. Namely, on windows, the associated
encoding of wchar_t is always UTF-16. This is addressed by P2460R0.

In any case, to be helpful, the paper intends for implementation to return the encoding they
expect, rather than trying to abide by other standard-mandated constraints.

More generally, there is no constraint that the encoding returns by the environment be
suitable for use by the c standard ”character functions” although this will generally be the
case.

There is also no relation between the returned encodings and the nature of character types.
For example, on Linux, wchar_tmay be two bytes, but the wide environment encoding might
still be UTF-32.

Because there is no standard interface to get to the wide environment encoding, that method
might return unknown onmany non-windows/non-POSIX platforms, although the author hopes
that implementations that do not use UTF-16 or UTF-32 as the wide encoding will expose
that information. In addition, it is worth pointing out that many wide encodings in use are
currently either not registered or have no name. This stems from the fact that wide encodings
are mostly a C and C++ invention.

The following registered encodings are wide:

• UTF-32, UTF-16 and similar, UCS2, UCS4

• Extended_UNIX_Code_Fixed_Width_for_Japanese

FreeBSD, IBM implementations, and others use unregistered double bytes encodings, al-
though the information on those. Some information on wide EBCDIC encodings can be found
in IBM’s documentation.

Therefore the wide methods are less useful than the narrow ones. Still, we think they are
worth providing for consistency, encouraging improvements in this area, and differentiating
the UTF-16/UTF-32 cases from other scenarios.

15

https://www.ibm.com/docs/en/zos/2.4.0?topic=ccsids-encoding-scheme

0-padded wide encoding

Similarly, it is left as implementation whether a narrow encoding extended to 2 bytes to
represent a wide encoding is still that encoding. In the general case, the size of code units
of individual encodings is not exposed by IANA, but most encodings are sufficiently defined
to understand 0-padded forms as not being that encoding: IANA encodings should be un-
derstood to describe encoding schemes whose endianness is not part of the text_encoding
object.

For example, the specification of UTF-8 reads:

UTF-8 is a variable-width encoding form, using 8-bit code units.

A good implementation strategy for the wide methods is to return unknown or some form of
custom scheme like x-utf-8 for these scenarios that a library like iconv could not make sense
of. An implementation strategy is to maintain a list of encodings known-to-be-wide and return
either a custom name or unknown for other situations.

For implementations that do not have use for wide-encodings outside of the standard libraries,
such that users never have to handle wide characters directly, it is possible to return unknown
even for the wide literal encoding, if using a custom naming scheme would prove impractical.

NATS-DANO and NATS-DANO-ADD

Both these ISO 646 characters encodings have aliases that conflict with other aliases under
COMP_NAME and are excluded, as they fell into disuse a long time ago. This was necessary to
allow compatibility with the Unicode-recommended name matching.

UTF-16 vs UTF16-LE/UTF-16BE

Unicode provides UTF-16, UTF-16LE and UTF-16BE (same for UTF-32). UTF-16 designates both
the encoding form and an alias for UTF-16LE/BE depending on the presence of a BOM and
”higher protocol protocol” This is a distinction that is not necessary to make in a context where
the endianness of encodings is known (as is the case for C++ string outside of serialization),
nor is it a distinction that most users understand or find useful.

At the same time, SG16 wanted a predictable, consistent answer. We therefore decided
that the satic methods of text_encoding should always return UTF-16 rather than UTF-16LE/BE,
which matches existing practices.

We should note that some APIs, notably iconv, when given ”UTF-16” rather than ”UTF-16LE”
string will look for a BOM, before defaulting to the platform endianness.

We also note that the ISO 10646 definition of ”UTF16” does not allow an implementation-
defined interpretation of the endianness of a UTF-16 string without BOM, contradicting
Unicode and existing practices. The wording assumes a Unicode definition while avoiding
contradicting ISO 10646.

16

Relevant passages from the Unicode 13 standard:

The UTF-16 encoding scheme may or may not begin with a BOM. However,
when there is no BOM, and in the absence of a higher-level protocol, the byte
order of the UTF-16 encoding scheme is big-endian.

Where the byte order is explicitly specified, such as in UTF-16BE or UTF-16LE,
then all U+FEFF characters—even at the very beginning of the text—are to
be interpreted as zero width no-break spaces. Similarly, where Unicode text
has known byte order, initial U+FEFF characters are not required, but for
backward compatibility are to be interpreted as zero-width no-break spaces.
For example, for strings in an API, the memory architecture of the processor
provides the explicit byte order. For databases and similar structures, it is
much more efficient and robust to use a uniform byte order for the same field
(if not the entire database), thereby avoiding use of the byte order mark.

Relevant passages from ISO 10646:

The UTF-16 encoding scheme serializes a UTF-16 code unit sequence by order-
ing octets in a way that either the less significant octet precedes or follows the
more significant octet. In the UTF-16 encoding scheme, the initial signature
read as <FE FF> indicates that the more significant octet precedes the less
significant octet, and <FF FE> the reverse. The signature is not part of the tex-
tual data. In the absence of signature, the octet order of the UTF-16 encoding
scheme is that the more significant octet precedes the less significant octet.

SG-16 Polls - 6 october 2021

SG16 POLL: The values returned by the literal() and wide_literal() functions
must indicate the encoding scheme associated with the object representa-
tion of ordinary and wide string literals respectively; UTF-16 & UTF-32 are
interpreted as having native endianness, and the LE and BE forms are never
returned.
SF F N A SA

4 6 0 0 0

SG16 POLL: Notwithstanding the specification in ISO10646, we suggest to
return UTF-16,32 from literal() or wide_literal() with the understanding that
string literals in the compiled program may not actually begin with a BOM
and that library facilities [e.g. iconv()] may consume a BOM if present.
SF F N A SA

0 8 1 0 0

17

Wording strategy

The followings were important points of discussions for the elaboration of the wording:

• text_encoding is described as holding an encooding scheme,

• text_encoding::literal and text_encoding::wide_literaldescribe the encoding scheme
of the object representation.

• In particular, an encoding scheme is a sequence of octets (independently ofCHAR_BITS),
the general idea being that reinterpreting an encoded string as a char*, along with the
encoding name should be decodable by iconv, assuming the encoding name is known
of iconv.

• Because ISO 10646 definition of UTF16 is not consistent with that of Unicode, and
because SG16 prefers UTF-16 to be returned over UTF-16LE, for example, we introduce a
wordingmechanism to substitute UTF16-LE by UTF16. The goal is to provide a consistent,
useful result to users while conforming to ISO.

• The determination of what the encoding schemes are is implementation-defined, but
we provide recommended practices.

• Naming of non-registered encoding is implementation-defined with no recommended
practice as these are not portable and should remain at the discretion of implementa-
tions.

Future work

Exposing the notion of text encoding in the core and library language gives us the tools to
solve some problems in the standard.

Notably, it offers a sensibleway to do locale-independent, encoding-aware padding in std::format
as described in [P1868].

Proposed wording

[Editor’s note: Add the header <text_encoding> to the ”C++ library headers” table in [headers],
in a place that respects the table’s current alphabetic order] .

[Editor’s note: Add the macro __cpp_lib_text_encoding to [version.syn], in a place that re-
spects the current alphabetic order] :

#define __cpp_lib_text_encoding 2030XX (**placeholder**) // also in text_encoding

[Editor’s note: Add a new header <text_encoding>] .

[text.encoding] describes an interface for accessing the IANA Character Sets reg-
istry.

18

namespace std {

struct text_encoding {

inline constexpr size_t max_name_length = 63;

enum class id : int_least32_t {
other = 1,
unknown = 2,
ASCII = 3,
ISOLatin1 = 4,
ISOLatin2 = 5,
ISOLatin3 = 6,
ISOLatin4 = 7,
ISOLatinCyrillic = 8,
ISOLatinArabic = 9,
ISOLatinGreek = 10,
ISOLatinHebrew = 11,
ISOLatin5 = 12,
ISOLatin6 = 13,
ISOTextComm = 14,
HalfWidthKatakana = 15,
JISEncoding = 16,
ShiftJIS = 17,
EUCPkdFmtJapanese = 18,
EUCFixWidJapanese = 19,
ISO4UnitedKingdom = 20,
ISO11SwedishForNames = 21,
ISO15Italian = 22,
ISO17Spanish = 23,
ISO21German = 24,
ISO60DanishNorwegian = 25,
ISO69French = 26,
ISO10646UTF1 = 27,
ISO646basic1983 = 28,
INVARIANT = 29,
ISO2IntlRefVersion = 30,
NATSSEFI = 31,
NATSSEFIADD = 32,
ISO10Swedish = 35,
KSC56011987 = 36,
ISO2022KR = 37,
EUCKR = 38,
ISO2022JP = 39,
ISO2022JP2 = 40,
ISO13JISC6220jp = 41,
ISO14JISC6220ro = 42,
ISO16Portuguese = 43,
ISO18Greek7Old = 44,
ISO19LatinGreek = 45,

19

ISO25French = 46,
ISO27LatinGreek1 = 47,
ISO5427Cyrillic = 48,
ISO42JISC62261978 = 49,
ISO47BSViewdata = 50,
ISO49INIS = 51,
ISO50INIS8 = 52,
ISO51INISCyrillic = 53,
ISO54271981 = 54,
ISO5428Greek = 55,
ISO57GB1988 = 56,
ISO58GB231280 = 57,
ISO61Norwegian2 = 58,
ISO70VideotexSupp1 = 59,
ISO84Portuguese2 = 60,
ISO85Spanish2 = 61,
ISO86Hungarian = 62,
ISO87JISX0208 = 63,
ISO88Greek7 = 64,
ISO89ASMO449 = 65,
ISO90 = 66,
ISO91JISC62291984a = 67,
ISO92JISC62991984b = 68,
ISO93JIS62291984badd = 69,
ISO94JIS62291984hand = 70,
ISO95JIS62291984handadd = 71,
ISO96JISC62291984kana = 72,
ISO2033 = 73,
ISO99NAPLPS = 74,
ISO102T617bit = 75,
ISO103T618bit = 76,
ISO111ECMACyrillic = 77,
ISO121Canadian1 = 78,
ISO122Canadian2 = 79,
ISO123CSAZ24341985gr = 80,
ISO88596E = 81,
ISO88596I = 82,
ISO128T101G2 = 83,
ISO88598E = 84,
ISO88598I = 85,
ISO139CSN369103 = 86,
ISO141JUSIB1002 = 87,
ISO143IECP271 = 88,
ISO146Serbian = 89,
ISO147Macedonian = 90,
ISO150 = 91,
ISO151Cuba = 92,
ISO6937Add = 93,
ISO153GOST1976874 = 94,
ISO8859Supp = 95,
ISO10367Box = 96,

20

ISO158Lap = 97,
ISO159JISX02121990 = 98,
ISO646Danish = 99,
USDK = 100,
DKUS = 101,
KSC5636 = 102,
Unicode11UTF7 = 103,
ISO2022CN = 104,
ISO2022CNEXT = 105,
UTF8 = 106,
ISO885913 = 109,
ISO885914 = 110,
ISO885915 = 111,
ISO885916 = 112,
GBK = 113,
GB18030 = 114,
OSDEBCDICDF0415 = 115,
OSDEBCDICDF03IRV = 116,
OSDEBCDICDF041 = 117,
ISO115481 = 118,
KZ1048 = 119,
UCS2 = 1000,
UCS4 = 1001,
UnicodeASCII = 1002,
UnicodeLatin1 = 1003,
UnicodeJapanese = 1004,
UnicodeIBM1261 = 1005,
UnicodeIBM1268 = 1006,
UnicodeIBM1276 = 1007,
UnicodeIBM1264 = 1008,
UnicodeIBM1265 = 1009,
Unicode11 = 1010,
SCSU = 1011,
UTF7 = 1012,
UTF16BE = 1013,
UTF16LE = 1014,
UTF16 = 1015,
CESU8 = 1016,
UTF32 = 1017,
UTF32BE = 1018,
UTF32LE = 1019,
BOCU1 = 1020,
UTF7IMAP = 1021,
Windows30Latin1 = 2000,
Windows31Latin1 = 2001,
Windows31Latin2 = 2002,
Windows31Latin5 = 2003,
HPRoman8 = 2004,
AdobeStandardEncoding = 2005,
VenturaUS = 2006,
VenturaInternational = 2007,

21

DECMCS = 2008,
PC850Multilingual = 2009,
PC8DanishNorwegian = 2012,
PC862LatinHebrew = 2013,
PC8Turkish = 2014,
IBMSymbols = 2015,
IBMThai = 2016,
HPLegal = 2017,
HPPiFont = 2018,
HPMath8 = 2019,
HPPSMath = 2020,
HPDesktop = 2021,
VenturaMath = 2022,
MicrosoftPublishing = 2023,
Windows31J = 2024,
GB2312 = 2025,
Big5 = 2026,
Macintosh = 2027,
IBM037 = 2028,
IBM038 = 2029,
IBM273 = 2030,
IBM274 = 2031,
IBM275 = 2032,
IBM277 = 2033,
IBM278 = 2034,
IBM280 = 2035,
IBM281 = 2036,
IBM284 = 2037,
IBM285 = 2038,
IBM290 = 2039,
IBM297 = 2040,
IBM420 = 2041,
IBM423 = 2042,
IBM424 = 2043,
PC8CodePage437 = 2011,
IBM500 = 2044,
IBM851 = 2045,
PCp852 = 2010,
IBM855 = 2046,
IBM857 = 2047,
IBM860 = 2048,
IBM861 = 2049,
IBM863 = 2050,
IBM864 = 2051,
IBM865 = 2052,
IBM868 = 2053,
IBM869 = 2054,
IBM870 = 2055,
IBM871 = 2056,
IBM880 = 2057,
IBM891 = 2058,

22

IBM903 = 2059,
IBM904 = 2060,
IBM905 = 2061,
IBM918 = 2062,
IBM1026 = 2063,
IBMEBCDICATDE = 2064,
EBCDICATDEA = 2065,
EBCDICCAFR = 2066,
EBCDICDKNO = 2067,
EBCDICDKNOA = 2068,
EBCDICFISE = 2069,
EBCDICFISEA = 2070,
EBCDICFR = 2071,
EBCDICIT = 2072,
EBCDICPT = 2073,
EBCDICES = 2074,
EBCDICESA = 2075,
EBCDICESS = 2076,
EBCDICUK = 2077,
EBCDICUS = 2078,
Unknown8BiT = 2079,
Mnemonic = 2080,
Mnem = 2081,
VISCII = 2082,
VIQR = 2083,
KOI8R = 2084,
HZGB2312 = 2085,
IBM866 = 2086,
PC775Baltic = 2087,
KOI8U = 2088,
IBM00858 = 2089,
IBM00924 = 2090,
IBM01140 = 2091,
IBM01141 = 2092,
IBM01142 = 2093,
IBM01143 = 2094,
IBM01144 = 2095,
IBM01145 = 2096,
IBM01146 = 2097,
IBM01147 = 2098,
IBM01148 = 2099,
IBM01149 = 2100,
Big5HKSCS = 2101,
IBM1047 = 2102,
PTCP154 = 2103,
Amiga1251 = 2104,
KOI7switched = 2105,
BRF = 2106,
TSCII = 2107,
CP51932 = 2108,
windows874 = 2109,

23

windows1250 = 2250,
windows1251 = 2251,
windows1252 = 2252,
windows1253 = 2253,
windows1254 = 2254,
windows1255 = 2255,
windows1256 = 2256,
windows1257 = 2257,
windows1258 = 2258,
TIS620 = 2259,
CP50220 = 2260

};

constexpr text_encoding() = default;
constexpr explicit text_encoding(string_view name) noexcept;
constexpr text_encoding(id mib) noexcept;

constexpr id mib() const noexcept;
constexpr const char* name() const noexcept;

struct aliases_view;
constexpr aliases_view aliases() const noexcept;

constexpr friend bool operator==(const text_encoding& encoding, const text_encoding & other) noexcept;
constexpr friend bool operator==(const text_encoding& encoding, id mib) noexcept;

static consteval text_encoding literal() noexcept;
static consteval text_encoding wide_literal() noexcept;

static text_encoding environment();
static text_encoding wide_environment();

template<id id_>
static bool text_encoding::environment_is();

template<id id_>
static bool text_encoding::wide_environment_is();

private:
id mib_ = id::unknown; // exposition only
char name_[max_name_length+1] = {0}; // exposition only

};

// hash support
template<class T> struct hash;
template<> struct hash<text_encoding>;

}

24

A registered character encoding is a character encoding scheme in the IANA Character Sets
registry. [Note: The IANA Character Sets registry refers to character sets rather than character
encodings. —end note]

The set of known registered character encoding contains every registered character encoding
specified in the IANA Character Sets registry except for the following:

• NATS-DANO (33)

• NATS-DANO-ADD (34)

Each known registered character encoding is identified by an enumerator in text_encoding::id,
has a unique primary name and has a set of zero or more aliases. The primary name of a
registered character encoding is the name of that encoding specified in the IANA Character
Sets registry.

[Editor’s note: The term primary name appears in RFC2978]

The set of aliases of a registered character encoding is an implementation-defined superset
of the aliases specified in the IANA Character Sets registry. No two registered character
encodings share any identical alias when compared by COMP_NAME.

[Note: The text_encoding::id enumeration contains an enumerator for each known registered
character encoding. For each encoding, the corresponding enumerator is derived from the
alias beginning with ”cs”, as follows

• the ”cs” prefix is removed from each name

• csUnicode is mapped to text_encoding::id::UCS2

• csIBBM904 is mapped to text_encoding::id::IBM904

—end note]

How a text_encoding object is determined to be representative of a character encoding
implemented in the translation or execution environment is implementation-defined.

Recommended practice:

• Implementations should not consider registered encodings to be interchangeable [Ex-
ample:Shift_JIS and Windows-31J denote different encodings].

• Implementations should not refer to a registered encoding to describe another similar
yet different non-registered encoding unless there is a precedent on that implementation
(Example: Big5).

• The encodings returned from wide_literal and wide_environments should describe en-
codings in the native endianness.

• The encodings returned from wide_literal and wide_environments should describe en-
codings whose code unit types is represented by sizeof(wchar_t) octets.

Let bool COMP_NAME (string_view a, string_view b) be a function that returns true if the two
strings a and b encoded in the ordinary literal encoding are equal ignoring, from left-to-right,

25

https://datatracker.ietf.org/doc/html/rfc2978#section-2.3

• all elements which are not digits or letters [character.seq.general],

• character case, and

• any sequence of one or more ’0’ character not immediately preceded by a sequence
consisting of a digit in the range [1-9] optionally followed by one or more elements which
are not digits or letters.

Given a text_encoding object E, let SUBSTITUTE_UTF_ENCODING(E) denote

• an implementation-defined text_encodingobject n such as n == text_encoding::id::UTF16
is true if E == text_encoding::id::UTF16LE || E == text_encoding::id::UTF16BE is true,

• otherwise if e == text_encoding::id::UTF132LE || e == text_encoding::id::UTF32BE is
true, an implementation-defined text_encoding n such as n == text_encoding::id::UTF32
is true,

• otherwise E.

[Note: This comparison is identical to the ”Charset Alias Matching” algorithm described in the
Unicode Technical Standard 22. —end note]

[Example:

assert(COMP_NAME("UTF-8", "utf8") == true);
assert(COMP_NAME("u.t.f-008", "utf8") == true);
assert(COMP_NAME("ut8", "utf8") == false);
assert(COMP_NAME("utf-80", "utf8") == false);

—end example]

constexpr explicit text_encoding(string_view name) noexcept;

Preconditions:

• name represents a string in the ordinary literal encoding,

• all elements in name are in the basic source character set,

• name.size() <= max_name_length is true, and

• name.contains('\0') is false.

Postconditions:

• If there exists a primary name or alias a of a known registered character encoding
such that COMP_NAME (a, name) is true, mib_ has the value of the enumerator of id
associated with that registered character encoding. Otherwise, mib_ == id::other
is true.

• name.compare(name_) == 0 is true

constexpr text_encoding(id mib) noexcept;

26

Preconditions: mib has the value of one of the enumerators of id.

Postcondition:

• mib_ == mib is true.

• If (mib_ == id::unknown || mib_ == id::other) is true, strlen(name_) == 0 is true.
Otherwise, ranges::find(aliases, string_view(name_)) != aliases().end().

constexpr id mib() const noexcept;

Returns: mib_.

constexpr const char* name() const noexcept;

Returns: name_ if (name_[0] != '\0'), nullptr otherwise;

Remarks: If name() == nullptr is false, name() is an NTMBs and accessing elements of
name_ outside of the range [name(), strlen(name())+1] is undefined behavior.

constexpr aliases_view aliases() const noexcept;

Let r denote an instance of aliases_view.

If *this represents a known registered character encoding then:

• r.front() is the primary name of the registered character encoding,

• r contains the aliases of the registered character encoding,

• r does not contain duplicate values when compared with strcmp.

Otherwise, r is an empty range.

All elements in r are non-null, non-empty NTBS encoded in the literal character encoding
and comprised only of characters from the basic character set.

Returns: r.

[Note: The order of elements in r is unspecified. —end note]

static consteval text_encoding literal() noexcept;

Let E be Returns: a text_encoding object representing the encoding scheme of the object
representation of ordinary string literals [lex.charset].

Returns: SUBSTITUTE_UTF_ENCODING(E).

static consteval text_encoding wide_literal() noexcept;

Let E be Returns: a text_encoding object representing the encoding scheme of the object
representation of wide string literals [lex.charset].

Returns: SUBSTITUTE_UTF_ENCODING(E).

27

[Note: The encoding represented by the returned value of this function, if any, is not
required to meet the preconditions of all the standard wide-character functions. —end
note]

static text_encoding environment();

Let E be a text_encoding object representing the implementation-defined character
encoding scheme of the environment. On a POSIX implementation, this is the encoding
associated with the POSIX locale denoted by the empty string "".

Returns: SUBSTITUTE_UTF_ENCODING(E).

[Note: This function is not affected by calls to setlocale. It is unspecified whether this
function is affected by changes to environment variables during the lifetime of the
program. —end note]

Recommended practice: Implementations should return a value that is not affected by calls
to the POSIX functions setenv and other functions which can modify the environment
[support.runtime].

static text_encoding wide_environment();

Let E be a text_encoding object representing the implementation-defined wide character
encoding scheme of the environment. On a POSIX implementation, this is the encoding
associated with the POSIX locale denoted by the empty string "".

Returns: SUBSTITUTE_UTF_ENCODING(E).

On a POSIX implementation, this is the wide encoding associated with the POSIX locale
denoted by the empty string "".

[Note: This function is not affected by calls to setlocale. It is unspecified whether this
function is affected by changes to environment variables during the lifetime of the
program. The encoding represented by the returned value of this function, if any, is not
required to meet the preconditions of all the standard wide-character functions. —end
note]

template<id id_>
static bool text_encoding::environment_is();

Returns: environment() == id_

template<id id_>
static bool text_encoding::environment_wide_is();

Returns: wide_environment() == id_

�? class text_encoding::aliases_view [text.encoding.aliases]

struct text_encoding::aliases_view : ranges::view_interface<text_encoding::aliases_view> {
using iterator = implementation-defined;
using sentinel = implementation-defined;

28

constexpr iterator begin() const;
constexpr sentinel end() const;

};

text_encoding::aliases_view models copyable, ranges::view, ranges::random_access_range,
and ranges::borrowed_range. Both ranges::range_value_t<text_encoding::aliases_view> and
ranges::range_reference_t<text_encoding::aliases_view>model same_as<const char*>.

[Editor’s note: Tomasz suggested that the definitions of begin/end are not necessary as we
already say that text_encoding::aliases_viewmodels ranges::view]

�? Comparison functions [text.encoding.comp]

constexpr bool operator==(const text_encoding & a, const text_encoding & b) noexcept;

Returns:

If a.mib_ == id::other && b.mib_ == id::other is true, then COMP_NAME (a.name_, b.name_-
).

Otherwise, a.mib_ == b.mib_.

constexpr bool operator==(const text_encoding & encoding, id mib) noexcept;

Returns: encoding.mib_ == mib.

Remarks: This operator induces an equivalence relation on its arguments
if and only if i != id::other is true.

�? Hash specialization [text.encoding.hash]

template<class T> struct hash;
template<> struct hash<text_encoding>;

The specialization is enabled ([unord.hash]).

�? Locale [locale]

namespace std {
class locale {
public:
[...]

// locale operations
string name() const;

text_encoding encoding() const;
text_encoding wide_encoding() const;

};
}

29

In [locale.members]:

string name() const;

Returns: The name of *this, if it has one; otherwise, the string "*".

text_encoding encoding() const;

Let E be a text_encoding object representing the implementation-defined encoding
scheme associated with the locale *this.

Returns: SUBSTITUTE_UTF_ENCODING(E).

text_encoding wide_encoding() const;

Let E be a text_encoding object representing the implementation-defined wide encoding
scheme associated with the locale *this.

Returns: SUBSTITUTE_UTF_ENCODING(E).

Bibliography

— ISO 4217:2015, Codes for the representation of currencies

— ISO/IEC 10967-1:2012, Information technology — Language independent arithmetic — Part
1: Integer and floating point arithmetic

— ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-
Point arithmetic

— The Unicode Consortium. Unicode Standard Annex, UAX #29, Unicode Text Segmenta-
tion [online]. Edited by Mark Davis. Revision 35; issued for Unicode 12.0.0. 2019-02-
15 [viewed 2020-02-23]. Available from: http://www.unicode.org/reports/tr29/tr29-35.
html

— IANA Character Sets Database.
Available from: https://www.iana.org/assignments/character-sets/, 2021-04-01

— Unicode Character Mapping Markup Language [online]. Edited by Mark Davis and Markus
Scherer. Revision 5.0.1; 2017-05-31 Available from: http://www.unicode.org/reports/
tr22/tr22-8.html

— IANA Time Zone Database. Available from: https://www.iana.org/time-zones

— Bjarne Stroustrup, The C++ Programming Language, second edition, Chapter R. Addison-
Wesley Publishing Company, ISBN 0-201-53992-6, copyright ©1991 AT&T

— Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Appendix A.
Prentice-Hall, 1978, ISBN 0-13-110163-3, copyright ©1978 AT&T

— P.J. Plauger, The Draft Standard C++ Library. Prentice-Hall, ISBN 0-13-117003-1, copyright
©1995 P.J. Plauger)

The arithmetic specification described in ISO/IEC 10967-1:2012 is called LIA-1 in this document.

30

http://www.unicode.org/reports/tr29/tr29-35.html
http://www.unicode.org/reports/tr29/tr29-35.html
https://www.iana.org/assignments/character-sets/
http://www.unicode.org/reports/tr22/tr22-8.html
http://www.unicode.org/reports/tr22/tr22-8.html
https://www.iana.org/time-zones

Acknowledgments

Many thanks to Victor Zverovich, Thiago Macieira, Jens Maurer, Tom Honermann, Tomasz
Kamiński, Hubert Tong, and others for reviewing this work and providing valuable feedback.

Annex: Registered encodings

IANA WHATWG

ANSI_X3.110-1983

ASMO_449

Adobe-Standard-Encoding

Adobe-Symbol-Encoding

Amiga-1251

BOCU-1

BRF

BS_4730

BS_viewdata

Big5 Big5

Big5-HKSCS

CESU-8

CP50220

CP51932

CSA_Z243.4-1985-1

CSA_Z243.4-1985-2

CSA_Z243.4-1985-gr

CSN_369103

DEC-MCS

DIN_66003

DS_2089

EBCDIC-AT-DE

EBCDIC-AT-DE-A

EBCDIC-CA-FR

EBCDIC-DK-NO

EBCDIC-DK-NO-A

EBCDIC-ES

EBCDIC-ES-A

EBCDIC-ES-S

EBCDIC-FI-SE

EBCDIC-FI-SE-A

EBCDIC-FR

EBCDIC-IT

EBCDIC-PT

EBCDIC-UK

31

EBCDIC-US

ECMA-cyrillic

ES

ES2

EUC-JP EUC-JP

EUC-KR EUC-KR

Extended_UNIX_Code_Fixed_Width_-
for_Japanese

GB18030 gb18030

GB2312

GBK GBK

GB_1988-80

GB_2312-80

GOST_19768-74

HP-DeskTop

HP-Legal

HP-Math8

HP-Pi-font

HZ-GB-2312

IBM-Symbols

IBM-Thai

IBM00858

IBM00924

IBM01140

IBM01141

IBM01142

IBM01143

IBM01144

IBM01145

IBM01146

IBM01147

IBM01148

IBM01149

IBM037

IBM038

IBM1026

IBM1047

IBM273

IBM274

IBM275

IBM277

IBM278

IBM280

32

IBM281

IBM284

IBM285

IBM290

IBM297

IBM420

IBM423

IBM424

IBM437

IBM500

IBM775

IBM850

IBM851

IBM852

IBM855

IBM857

IBM860

IBM861

IBM862

IBM863

IBM864

IBM865

IBM866 IBM866

IBM868

IBM869

IBM870

IBM871

IBM880

IBM891

IBM903

IBM904

IBM905

IBM918

IEC_P27-1

INIS

INIS-8

INIS-cyrillic

INVARIANT

ISO-10646-J-1

ISO-10646-UCS-2

ISO-10646-UCS-4

ISO-10646-UCS-Basic

ISO-10646-UTF-1

33

ISO-10646-Unicode-Latin1

ISO-11548-1

ISO-2022-CN

ISO-2022-CN-EXT

ISO-2022-JP ISO-2022-JP

ISO-2022-JP-2

ISO-2022-KR

ISO-8859-1

ISO-8859-1-Windows-3.0-Latin-1

ISO-8859-1-Windows-3.1-Latin-1

ISO-8859-10 ISO-8859-10

ISO-8859-13 ISO-8859-13

ISO-8859-14 ISO-8859-14

ISO-8859-15 ISO-8859-15

ISO-8859-16 ISO-8859-16

ISO-8859-2 ISO-8859-2

ISO-8859-2-Windows-Latin-2

ISO-8859-3 ISO-8859-3

ISO-8859-4 ISO-8859-4

ISO-8859-5 ISO-8859-5

ISO-8859-6 ISO-8859-6

ISO-8859-6-E

ISO-8859-6-I

ISO-8859-7 ISO-8859-7

ISO-8859-8 ISO-8859-8

ISO-8859-8-E

ISO-8859-8-I ISO-8859-8-I

ISO-8859-9

ISO-8859-9-Windows-Latin-5

ISO-Unicode-IBM-1261

ISO-Unicode-IBM-1264

ISO-Unicode-IBM-1265

ISO-Unicode-IBM-1268

ISO-Unicode-IBM-1276

ISO_10367-box

ISO_2033-1983

ISO_5427

ISO_5427:1981

ISO_5428:1980

ISO_646.basic:1983

ISO_646.irv:1983

ISO_6937-2-25

ISO_6937-2-add

34

ISO_8859-supp

IT

JIS_C6220-1969-jp

JIS_C6220-1969-ro

JIS_C6226-1978

JIS_C6226-1983

JIS_C6229-1984-a

JIS_C6229-1984-b

JIS_C6229-1984-b-add

JIS_C6229-1984-hand

JIS_C6229-1984-hand-add

JIS_C6229-1984-kana

JIS_Encoding

JIS_X0201

JIS_X0212-1990

JUS_I.B1.002

JUS_I.B1.003-mac

JUS_I.B1.003-serb

KOI7-switched

KOI8-R KOI8-R

KOI8-U KOI8-U

KSC5636

KS_C_5601-1987

KZ-1048

Latin-greek-1

MNEM

MNEMONIC

MSZ_7795.3

Microsoft-Publishing

NATS-DANO

NATS-DANO-ADD

NATS-SEFI

NATS-SEFI-ADD

NC_NC00-10:81

NF_Z_62-010

NF_Z_62-010_(1973)

NS_4551-1

NS_4551-2

OSD_EBCDIC_DF03_IRV

OSD_EBCDIC_DF04_1

OSD_EBCDIC_DF04_15

PC8-Danish-Norwegian

PC8-Turkish

35

PT

PT2

PTCP154

SCSU

SEN_850200_B

SEN_850200_C

Shift_JIS Shift_JIS

T.101-G2

T.61-7bit

T.61-8bit

TIS-620

TSCII

UNICODE-1-1

UNICODE-1-1-UTF-7

UNKNOWN-8BIT

US-ASCII

UTF-16

UTF-16BE UTF-16BE

UTF-16LE UTF-16LE

UTF-32

UTF-32BE

UTF-32LE

UTF-7

UTF-8 UTF-8

VIQR

VISCII

Ventura-International

Ventura-Math

Ventura-US

Windows-31J

dk-us

greek-ccitt

greek7

greek7-old

hp-roman8

iso-ir-90

latin-greek

latin-lap

macintosh macintosh

us-dk

videotex-suppl

windows-1250 windows-1250

windows-1251 windows-1251

36

windows-1252 windows-1252

windows-1253 windows-1253

windows-1254 windows-1254

windows-1255 windows-1255

windows-1256 windows-1256

windows-1257 windows-1257

windows-1258 windows-1258

windows-874 windows-874

Annex B: Known encodings not present in IANA

Lists of encoding known to some platforms but not registered to IANA. This might be incom-
plete as generating the list proved challenging. These might still be supported through the
othermib but are not suitable for interexchange.

Windows

• 710 Arabic - Transparent Arabic

• 72 DOS-720 Arabic (Transparent ASMO); Arabic (DOS)

• 737 ibm737 OEM Greek (formerly 437G); Greek (DOS)

• 875 cp875 IBM EBCDIC Greek Modern

• 1361 Johab Korean (Johab)

• 57002 x-iscii-de ISCII Devanagari

• 57003 x-iscii-be ISCII Bangla

• 57004 x-iscii-ta ISCII Tamil

• 57005 x-iscii-te ISCII Telugu

• 57006 x-iscii-as ISCII Assamese

• 57007 x-iscii-or ISCII Odia

• 57008 x-iscii-ka ISCII Kannada

• 57009 x-iscii-ma ISCII Malayalam

• 57010 x-iscii-gu ISCII Gujarati

• 57011 x-iscii-pa ISCII Punjabi

Iconv

• CP1131

37

• CP1133

• GEORGIAN-ACADEMY

• GEORGIAN-PS

• CN-GB-ISOIR165

• Johab

• MacArabic

• MacCentralEurope

• MacCroatian

• MacCyrillic

• MacGreek

• MacHebrew

• MacIceland

• MacRoman

• MacRomania

• MacThai

• MacTurkish

• MacUkraine

References

[N4830] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.link/n4830

[N2346] Working Draft, Standard for Programming Language C
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2346.pdf

[rfc3808] I. McDonald IANA Charset MIB
https://tools.ietf.org/html/rfc3808

[ianacharset-mib] IANA IANA Charset MIB
https://www.iana.org/assignments/ianacharset-mib/ianacharset-mib

[rfc2978] N. Freed IANA Charset Registration Procedures
https://tools.ietf.org/html/rfc2978

[Character Sets] IANA Character Sets
https://www.iana.org/assignments/character-sets/character-sets.xhtml

[iconv encodings] GNU project Iconv Encodings
http://git.savannah.gnu.org/cgit/libiconv.git/tree/lib/encodings.def

38

https://wg21.link/n4830
 http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2346.pdf
https://tools.ietf.org/html/rfc3808
https://www.iana.org/assignments/ianacharset-mib/ianacharset-mib
https://tools.ietf.org/html/rfc2978
https://www.iana.org/assignments/character-sets/character-sets.xhtml
http://git.savannah.gnu.org/cgit/libiconv.git/tree/lib/encodings.def

[P1868] Victor Zverovich Clarifying units of width and precision in std::format
http://wg21.link/P1868

39

http://wg21.link/P1868

	1 Target
	2 Abstract
	3 Examples
	3.1 Listing the encoding
	3.2 LWG3314
	3.3 Asserting a specific encoding is set
	3.4 User construction
	3.5 Unregistered encoding

	4 Revisions
	5 Use cases
	5.1 Non goals

	6 The many text encodings of a C++ environment
	7 Identifying Encodings
	8 Design Considerations
	8.1 Encodings are orthogonal to locales
	8.2 Naming
	8.3 MIBEnum
	8.4 Name and aliases
	8.5 Unique identification of encodings
	8.6 Implementation flexibility
	8.7 const char*
	8.8 Freestanding
	8.9 Name comparison

	9 Implementation
	9.1 Handling mutation of LC_CTYPE at runtime
	9.2 Storing aliases

	10 Compatibility with third-party systems
	10.1 Qt
	10.2 ICU
	10.3 ICONV

	11 FAQ
	11.1 Why rely on the IANA registry ?
	11.2 Why not return a text_encoding::id rather than a text_encoding object?
	11.3 But handling names is expensive?
	11.4 It seems like names and mib are separate concerns?
	11.5 Why can't there be vendor provided MIBs?
	11.6 Why can't there be a text_encoding(name, mib) constructor?
	11.7 I just want to check that my platform is utf-8 without paying for all these other encodings?
	11.8 What is the cost of calling aliases?
	11.9 Why do name() and aliases() return const char* rather than string_view?
	11.10 Wide functions
	11.11 0-padded wide encoding
	11.12 NATS-DANO and NATS-DANO-ADD

	12 UTF-16 vs UTF16-LE/UTF-16BE
	12.1 SG-16 Polls - 6 october 2021

	13 Wording strategy
	14 Future work
	15 Proposed wording
	15.0.1 class text_encoding::aliases_view
	15.0.2 Comparison functions
	15.0.3 Hash specialization

	16 Locale
	16.1 Bibliography

	17 Acknowledgments
	18 Annex: Registered encodings
	19 Annex B: Known encodings not present in IANA
	19.1 Windows
	19.2 Iconv

