
Atomic minimum/maximum
Document #: P0493R3
Date: 2021-12-15
Project: Programming Language C++
Audience: WG21 SG1 (Concurrency and Parallelism)
Reply-to: Al Grant

<al.grant@arm.com>
Bronek Kozicki
<brok@spamcop.net>
Tim Northover
<tnorthover@apple.com>

Contents
1 Abstract 1

2 Changelog 1

3 Introduction 2

4 Background and motivation 2

5 The problem of conditional write 3

6 Infix operators in <atomic> and min/max 4

7 Motivating example 4

8 Implementation experience 6

9 Benchmarks 6

10 Acknowlegments 7

11 Changes to the C++ standard 7

12 References 9

1 Abstract
Add integer max and min operations to the set of operations supported in <atomic>. There are minor adjust-
ments to function naming necessitated by the fact that max and min do not exist as infix operators.

2 Changelog
— Revision R3, published 2021-12-15

— Change formatting
— Revert to read-modify-write semantics, based on SG1 feedback
— Remove replace_key functions, based on SG1 feedback
— Simplify wording

1

mailto:al.grant@arm.com
mailto:brok@spamcop.net
mailto:tnorthover@apple.com

— Add floating numbers support to wording
— Add feature test macro
— Remove one (exceedingly long) motivating example
— Rewrite other motivating example in modern C++
— Rebase on draft [N4901]
— Add example implementation based on CAS loop
— Add benchmark comparing hardware vs CAS-loop implementation

— Revision R2, published 2021-05-11
— Change proposal to make the store unspecified if the value does not change
— Align with C++20

— Revision R1, published 2020-05-08
— Add motivation for defining new atomics as read-modify-write
— Clarify status of proposal for new-value-returning operations.
— Align with C++17.

— Revision R0 pulished 2016-11-08
— Original proposal

3 Introduction
This proposal extends the atomic operations library to add atomic maximum/minimum operations. These were
originally proposed for C++ in [N3696] as particular cases of a general “priority update” mechanism, which
atomically combined reading an object’s value, computing a new value and conditionally writing this value if it
differs from the old value.

In revision R2 of this paper we have proposed atomic maximum/minimum operations where it is unspecified
whether or not the store takes place if the new value happens to be the same as the old value. This has caused
contention in LEWG, but upon further discussion in SG1 turned out to be unnecessary - as discussed in section
5.

4 Background and motivation
Atomic addition (fetch-and-add) was introduced in the NYU Ultracomputer [Gottlieb 1982], has been imple-
mented in a variety of hardware architectures, and has been standardized in C and C++. Atomic maxi-
mum/minimum operations (fetch-and-max , fetch-and-min) have a history almost as long as atomic addition,
e.g. see [Lipovski 1988], and have also been implemented in various hardware architectures but are not currently
standard in C and C++. This proposal fills the gap in C++.

Atomic maximum/minimum operations are useful in a variety of situations in multithreaded applications:

— optimal implementation of lock-free shared data structures - as in the motivating example later in this
paper

— reductions in data-parallel applications: for example, OpenMP supports maximum as a reduction operation
— recording the maximum so far reached in an optimization process, to allow unproductive threads to termi-

nate
— collecting statistics, such as the largest item of input encountered by any worker thread.

Atomic maximum/minimum operations already exist in several other programming environments, including
OpenCL, and in some hardware implementations. Application need, and availability, motivate providing these
operations in C++.

The proposed language changes add atomic max/min to <atomic> for builtin types, including integral, pointer
and floating point.

2

https://computing.llnl.gov/tutorials/openMP/#REDUCTION/minimum
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf

5 The problem of conditional write
The existing atomic operations (e.g. fetch_and) have the effect of a read-modify-write, irrespective of whether
the value changes. This is how atomic max/min are defined in several APIs (OpenCL, CUDA, C++AMP, HCC)
and in several hardware architectures (ARM, RISC-V). However, some hardware (POWER) implements atomic
max/min as an atomic read-and-conditional-store. If we look at an example CAS-loop implementation of this
proposal, it is easy to see why such read-and-conditional-store can be more efficient.

Following the discussion in SG1 the authors are convinced that such an implementation can be conforming, with
some adjustments, without the catch all wording such as “it is unspecified whether or not the store takes place”.

5.1 Example CAS-loop implementation with read-modify-write
In this version we are performing an unconditional store, which means all writers need exclusive cache line access.
This may result in excessive writer contention.
template <typename T>
T atomic_fetch_max_explicit(atomic<T>* pv,

typename atomic<T>::value_type v,
memory_order m) noexcept {

auto t = pv->load(m);
while (!pv->compare_exchange_weak(t, max(v, t), m, m))

;
return t;

}

5.2 Example CAS-loop implementation with read-and-conditional-store
Note the condition of the while loop below. It skips skip write entirely if pv is already equal to max(v, t).
This significantly reduces writer contention.
template <typename T>
T atomic_fetch_max_explicit(atomic<T>* pv,

typename atomic<T>::value_type v,
memory_order m) noexcept {

auto t = pv->load(m);
while (max(v, t) != t) {

if (pv->compare_exchange_weak(t, v, m, m))
break;

}
return t;

}

If we require read-modify-write, this would be a non-conforming implementation. Such implementation can be
easily fixed:

— if the user requested memory order is not a release, then store is not required
— otherwise, a conforming implementation may add a dummy write such as fetch_add(0, m).

This is demonstrated below:
template <typename T>
T atomic_fetch_max_explicit(atomic<T>* pv,

typename atomic<T>::value_type v,
memory_order m) noexcept {

auto t = pv->load(m);
while (max(v, t) != t) {

if (pv->compare_exchange_weak(t, v, m, m))

3

return t;
}

// additional dummy write for release operation
if (m == std::memory_order_release ||

m == std::memory_order_acq_rel ||
m == std::memory_order_seq_cst)

pv->fetch_add(0, m);

return t;
}

Similarly, given an architecture which implements atomic minimum/maximum in hardware with read-and-
conditional-store semantics, a conforming read-modify-write fetch_max() can be implemented on top of such
instruction, with very little overhead.

For this reason and for consistency with all other atomic instructions, we have decided to use read-modify-write
semantics for the proposed atomic minimum/maximum.

6 Infix operators in <atomic> and min/max
The current <atomic> provides atomic operations in several ways:

— as a named non-member function template e.g. atomic_fetch_add returning the old value
— as a named member function template e.g. atomic<T>::fetch_add() returning the old value
— as an overloaded compound operator e.g. atomic<T>::operator+=() returning the new value

Adding ‘max’ and ‘min’ versions of the named functions is straightforward. Unlike the existing atomics, max/min
operations exist in signed and unsigned flavors. The atomic type determines the operation. There is precedent for
this in C, where all compound assignments on atomic variables are defined to be atomic, including sign-sensitive
operations such as divide and right-shift.

The overloaded operator atomic<T>::operator key =(n) is defined to return the new value of the atomic object.
This does not correspond directly to a named function. For max and min, we have no infix operators to overload.
So if we want a function that returns the new value we would need to provide it as a named function. However,
for all operators the new value can be obtained as fetch_key(n) key n, (the standard defines the compound
operator overloads this way) while the reverse is not true for non-invertible operators like ‘and’ or ‘max’.

Thus new functions returning the new result would add no significant functionality other than providing one-
to-one equivalents to <atomic> existing compound operator overloads. Revision R2 of this paper tentatively
suggested such functions, named replace_key (following some of the early literature on atomic operations -
[Kruskal 1986] citing [Draughon 1967]). Having discussed this in SG1, the authors have decided not to propose
addition of extra functions and correspondingly they have been removed in revision R3. This same result can be
obtained by the user with a simple expression such as max(v.fetch_max(x), x) or min(v.fetch_min(x), x).

During the discussion in SG1, it was suggested that a new paper could be written proposing key_fetch functions
returning new values. This is not such paper.

7 Motivating example
Atomic fetch-and-max can be used to implement a lockfree bounded multi-consumer, multi-producer queue.
Below is an example based on [Gong 1990]. Note, the original paper assumed existence of EXCHANGE operation
which in practice does not exist on most platforms. Here this was replaced by a two-step read and write, in
addition to translation from C to C++. For this reason the correctness proof from [Gong 1990] does not apply.

4

template <typename T, size_t Size>
struct queue_t {
static_assert(std::is_nothrow_default_constructible_v<T>);
static_assert(std::is_nothrow_copy_constructible_v<T>);
static_assert(std::is_nothrow_swappable_v<T>);

using elt = T;
static constexpr int size = Size;

struct entry {
elt item {}; // a queue element
std::atomic<int> tag {-1}; // its generation number

};

entry elts[size] = {}; // a bounded array
std::atomic<int> back {-1};

friend void enqueue(queue_t& queue, elt x) noexcept {
int i = queue.back.load() + 1; // get a slot in the array for the new element
while (true) {

// exchange the new element with slots value if that slot has not been used
int empty = -1; // expected tag for an empty slot
auto& e = queue.elts[i % size];
// use two-step write: first store an odd value while we are writing the new element
if (std::atomic_compare_exchange_strong(&e.tag, &empty, (i / size) * 2 + 1)) {
using std::swap;
swap(x, e.item);
e.tag.store((i / size) * 2); // done writing, switch tag to even (ie. ready)
break;

}
++i;

}
std::atomic_fetch_max(&queue.back, i); // reset the value of back

}

friend auto dequeue(queue_t& queue) noexcept -> elt {
while (true) { // keep trying until an element is found

int range = queue.back.load(); // search up to back slots
for (int i = 0; i <= range; i++) {
int ready = (i / size) * 2; // expected even tag for ready slot
auto& e = queue.elts[i % size];
// use two-step read: first store -2 while we are reading the element
if (std::atomic_compare_exchange_strong(&e.tag, &ready, -2)) {
using std::swap;
elt ret{};
swap(ret, e.item);
e.tag.store(-1); // done reading, switch tag to -1 (ie. empty)
return ret;

}
}

}
}

};

5

8 Implementation experience
The required intrinsics have been added to Clang.

9 Benchmarks
We have implemented two sets of benchmarks bench1 and bench2 and made them available on [Github].

— bench1 is populating a fixed size queue, using the [Gong 1990] algorithm presented above. We have decided
to drop the results from this benchmark due to excessive standard deviation of results. We attribute this
standard deviation to the CAS operation of the algorithm main loop (looking for the next free entry),
which is inherently non-deterministic and dominates the algorithm execution time.

— bench2 is finding a maximum value from a PRNG. We were able to achieve acceptably low standard
deviation of results for this test. The selected PRNG is a linear distribution 2e9 wide, using 10’000 PRNG
samples per run. In this benchmark, the fetch_max updates were relatively infrequent.

The results presented below are from bench2. We have measured the nanosecond time of two different implemen-
tations of atomic_fetch_max_explicit(&max, i, std::memory_order_release), where i is generated by the
PRNG. The benchmarks capture the cost of contention to max from varying number of cores. The benchmarks
were run on AWS EC2 instance type c6gd.16xlarge (i.e. 64 cores ARMv8.2 Graviton2 CPU). The machine was
running Linux kernel 5.10 and was configured for complete isolation of cores 1-63:
$ cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-5.10.0-9-cloud-arm64 ... isolcpus=1-63 nohz_full=1-63 rcu_nocbs=1-63

We used core 0 only when running the benchmark across all 64 cores, in which case the samples from this core
were dropped (to avoid the noise caused by the normal operating system operation).

The benchmark parameters were:

— -m 0.5 : maximum std. deviation for PRNG cost calibration
— -i 1e6 : number of iterations (this translates to 100 runs, each sampling the PRNG 10’000 times)

The table below compares two fetch_max implementations:

— -t t : CAS-loop based algorithm presented at the bottom of 5.2 (we call this “smart”)
— -t h : hardware instruction ldsmaxl available in ARM8.1 instruction set

CAS-loop “smart” Hardware instruction

Cores Time ns Std. deviation
2 33 6
4 57 6
8 185 22
16 480 30
24 825 53
32 1144 61
40 1479 75
48 1777 81
56 2130 101
64 2417 110

Time ns Std. deviation
12 1
19 2
54 11
244 24
446 32
648 37
857 33
1052 38
1260 39
1436 45

During benchmarking, we have observed that the time of read-and-conditional-store CAS-loop algorithm (as
presented at the top of 5.2, we call this “weak” in benchmarks) was almost immeasurable, irrespective of the
number of cores. We explain this by how rarely the PRNG sampling benchmark updates the max value.

6

This indicates that users on some platforms might benefit from yet another implementation, which was not
benchmarked here. Such a hypothetical implementation would rely on atomic hardware read-modify-write in-
struction when release was requested, and fallback to simple CAS-loop otherwise. It could be considered a QoI
issue, although users can also write such a CAS-loop easily enough.

10 Acknowlegments
This paper benefited from discussion with Mario Torrecillas Rodriguez, Nigel Stephens, Nick Maclaren, Olivier
Giroux and Gašper Ažman.

11 Changes to the C++ standard
The following text outlines the proposed changes, based on [N4901].

17 Language support library

17.3.2 Header <version> synopsis

Add feature test macro:
#define __cpp_lib_atomic_min_max 202XXXL // also in <atomic>

31: Atomic operations library [atomics]

31.2: Header <atomic> synopsis [atomics.syn]

— Add following functions, immediately below atomic_fetch_xor_explicit:
namespace std {
// [atomic.nonmembers], non-member functions
...
template<class T>
T atomic_fetch_max(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_max(atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_max_explicit(volatile atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_max_explicit(atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_min(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_min(atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_min_explicit(volatile atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
template<class T>
T atomic_fetch_min_explicit(atomic<T>*, typename atomic<T>::value_type,

memory_order) noexcept;
...

}

31.7.3: Specializations for integral types [atomics.ref.int]

— Add following public functions, immediately below fetch_xor:

7

namespace std {
template <> struct atomic_ref<integral> {
...
integral fetch_max(integral, memory_order = memory_order_seq_cst) const noexcept;
integral fetch_min(integral, memory_order = memory_order_seq_cst) const noexcept;
...

};
}

— Change:
6 Remarks: For Except for fetch_max and fetch_min, for signed integer types, the result is as if the object

value and parameters were converted to their corresponding unsigned types, the computation performed
on those types, and the result converted back to the signed type.

31.7.4: Specializations for floating-point types [atomics.ref.float]

— Add following public functions, immediately below fetch_sub:
namespace std {
template <> struct atomic_ref<floating-point> {
...
floating-point fetch_max(floating-point, memory_order = memory_order_seq_cst) const noexcept;
floating-point fetch_min(floating-point, memory_order = memory_order_seq_cst) const noexcept;
...

};
}

31.7.5: Partial specialization for pointers [atomics.ref.pointer]

— Add following public functions, immediately below fetch_sub:
namespace std {
template <class T> struct atomic_ref<T *> {
...
T* fetch_max(T *, memory_order = memory_order::seq_cst) const noexcept;
T* fetch_min(T *, memory_order = memory_order::seq_cst) const noexcept;

};
}

31.8.3: Specializations for integers [atomics.types.int]

— Add following public functions, immediately below fetch_xor:
namespace std {
template <> struct atomic<integral> {
...
integral fetch_max(integral, memory_order = memory_order_seq_cst) volatile noexcept;
integral fetch_max(integral, memory_order = memory_order_seq_cst) noexcept;
integral fetch_min(integral, memory_order = memory_order_seq_cst) volatile noexcept;
integral fetch_min(integral, memory_order = memory_order_seq_cst) noexcept;
...

};
}

— In table 148, [tab:atomic.types.int.comp], add the following entries:

8

key Op Computation
max std::max maximum
min std::min minimum

— Change:
8 Remarks: For Except for fetch_max and fetch_min, for signed integer types, the result is as if the object

value and parameters were converted to their corresponding unsigned types, the computation performed
on those types, and the result converted back to the signed type.

31.8.4: Specializations for floating-point types [atomics.types.float]

— Add following public functions, immediately below fetch_sub:
namespace std {
template <> struct atomic<floating-point> {
...
floating-point fetch_max(floating-point, memory_order = memory_order_seq_cst) volatile noexcept;
floating-point fetch_max(floating-point, memory_order = memory_order_seq_cst) noexcept;
floating-point fetch_min(floating-point, memory_order = memory_order_seq_cst) volatile noexcept;
floating-point fetch_min(floating-point, memory_order = memory_order_seq_cst) noexcept;
...

};
}

31.8.5: Partial specialization for pointers [atomics.types.pointer]

— Add following public functions, immediately below fetch_sub:
namespace std {
template <class T> struct atomic<T*> {
...
T* fetch_max(T*, memory_order = memory_order_seq_cst) volatile noexcept;
T* fetch_max(T*, memory_order = memory_order_seq_cst) noexcept;
T* fetch_min(T*, memory_order = memory_order_seq_cst) volatile noexcept;
T* fetch_min(T*, memory_order = memory_order_seq_cst) noexcept;
...

};
}

— In table 149, [tab:atomic.types.pointer.comp], add the following entries:

key Op Computation
max std::max maximum
min std::min minimum

12 References
[Draughon 1967] E. Draughon, Ralph Grishman, J. Schwartz, and A. Stein. Programming Considerations for

Parallel Computers.
https://nyuscholars.nyu.edu/en/publications/programming-considerations-for-parallel-computers

[Github] Al Grant, Bronek Kozicki, and Tim Northover. Atomic maximum/minimum.
https://github.com/Bronek/wg21-p0493

[Gong 1990] Chun Gong and Jeanette M. Wing. A Library of Concurrent Objects and Their Proofs of Correct-

9

https://nyuscholars.nyu.edu/en/publications/programming-considerations-for-parallel-computers
https://github.com/Bronek/wg21-p0493

ness.
http://www.cs.cmu.edu/~wing/publications/CMU-CS-90-151.pdf

[Gottlieb 1982] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry Rudolph, and
Marc Snir. The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel Computer.
https://ieeexplore.ieee.org/document/1676201

[Kruskal 1986] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. Efficient Synchronization on Multiprocessors
with Shared Memory.
https://dl.acm.org/doi/10.1145/48022.48024

[Lipovski 1988] G. J. Lipovski and Paul Vaughan. A Fetch-And-Op Implementation for Parallel Computers.
https://ieeexplore.ieee.org/document/5249

[N3696] Bronek Kozicki. 2013-06-26. Proposal to extend atomic with priority update functions.
https://wg21.link/n3696

[N4901] Thomas Köppe. 2021-10-22. Working Draft, Standard for Programming Language C++.
https://wg21.link/n4901

10

http://www.cs.cmu.edu/~wing/publications/CMU-CS-90-151.pdf
https://ieeexplore.ieee.org/document/1676201
https://dl.acm.org/doi/10.1145/48022.48024
https://ieeexplore.ieee.org/document/5249
https://wg21.link/n3696
https://wg21.link/n4901

	Abstract
	Changelog
	Introduction
	Background and motivation
	The problem of conditional write
	Infix operators in <atomic> and min/max
	Motivating example
	Implementation experience
	Benchmarks
	Acknowlegments
	Changes to the C++ standard
	References

