
P2234R0

Document Number: P2234R0
Date: 2020-10-14
Reply-to: Scott Schurr: s dot scott dot schurr at gmail dot com
Author: Scott Schurr
Audience: SG12 and EWGI

Consider a UB and IF-NDR Audit
Abstract: In the C++ language undefined behavior (UB) and ill-formed no
diagnostic required (IF-NDR) situations set traps for intermediate programmers.
These traps tend to be subtle, poorly documented, and hard to debug.

Of course it is not possible, or even desirable, to remove all UB and IF-NDR
situations. But there may be ways that the committee can reduce its occurrence
in the standard without compromising performance. This paper:

• Explores motivations for these kinds of changes,
• Discusses some kinds of changes to the standard that might help, and
• Suggests a potential process for identifying and introducing those changes.

Quotes from and references to the Standard for Programming Language C++ all come
from the C++20 Draft International Standard ISO/IEC DIS 14882:2020[1].

Revision History

Revision 0
The initial revision uses P1407R1, "Tell Programmers About Signed Integer Overflow
Behavior"[2], as a starting point. But the new document has significantly larger scope than
P1470R1 and changes its approach to possible solutions.

Why Look at All of IF-NDR and UB?
Taken in isolation, each instance of UB or IF-NDR is a small thing. Additionally, individuals
often have firmly held opinions regarding UB and IF-NDR, both in general and regarding
specific cases.

Individual papers addressing single cases of UB and IF-NDR would probably be considered
"small" papers, which are discouraged by P0559R0, Operating Principles for Evolving C++ [3].

1

P2234R0

Furthermore P2000R1, Direction for ISO C++ [4] also discourages '… isolated "cute"
proposals.'

But, in the author's opinion, the total mass of all UB and IF-NDR is a significant problem for
intermediate users of the language. If small isolated proposals are not acceptable then perhaps a
larger proposal that suggests auditing all of UB and IF-NDR can be a successful approach.

A Motivating Example
Imagine you are a programmer with a background in electrical engineering. You have never
worked on compiler internals or C++ standard libraries. You are developing an embedded
product on a small team for a small company. You are coding a helper function that clips on
integer overflow. Which of these two implementations do you choose?

You, as a member of the C++ Standards Committee, of course start out by saying, “I would
never write that code.” Yes, but you were asked to have some imagination. If you had to pick
the code that would behave in the expected fashion, you’d pick the code on the right. That’s
because you know that the code on the left contains undefined behavior.

Pause and think about how subtle the distinction is between the two code snippets. The choice
between using a signed or unsigned integer has silently signaled the optimizer whether or not the
programmer's code may be removed.

Additionally, debugging the error which may be introduced at high optimization could be
extremely difficult.

• Any logging statements added inside the conditional may be removed by the optimizer.

• When the optimization level is reduced so the code can run easily in the debugger then the
problem may go away.

A beginner, someone unacquainted with how two's complement hardware works, would never
have written this code.

2

int
add_100_without_wrap (int a)
{
 using namespace std;
 int const ret = a + 100;
 if (ret < a)
 return
 numeric_limits<int>::max();
 return ret;
}

unsigned int
add_100_without_wrap (unsigned int a)
{
 using namespace std;
 unsigned int const ret = a + 100u;
 if (ret < a)
 return
 numeric_limits<unsigned int>::max();
 return ret;
}

P2234R0

An expert in C++, someone who knows about the many aspects of undefined behavior in C and
C++, would never have written this code. And, if an intermediate programmer asked a C++
expert what was going on, the expert would identify the problem in short order.

The unassisted intermediate programmer, on the other hand, is in for a long road of debugging,
cursing, and confusion.

How About Tools Like ASan and UBSan?
You betcha. These runtime tools are really helpful when they can be applied. However there are
plenty of situations where C++ is used and these tools cannot be used effectively.

• Many embedded platforms do not have these tools available.

• All these tools have runtime and memory overhead. So they may be hard or impossible to use
in memory or time constrained environments.

• The undefined behavior must be exercised while the analyzer is running in order for the
analyzer to detect the problem. If the problem is hard to exercise then it will stay hidden.

So the biggest barrier for many intermediate programmers is that these tools are either not
available on their platforms or will not run in their environments.

Still, there are static analyzers which impose no runtime overhead. And turning on all warnings
in the compiler helps, since this acts as a form of limited static analysis.

But, even where these tools are available and usable, the second hurtle is that programmers must
be aware of the availability and usefulness of these tools before they will use them. In effect, by
relying on these tools to detect undefined behavior we're already biasing our efforts toward
helping expert C++ programmers. Experts are the ones who know about and understand the
value of these tools. The experts are not the people that need the help. It's the intermediate
programmers who have problems that they are not even aware of. There are a surprising
number of programming shops that don't even turn on all compiler warnings. It's not reasonable
to expect such shops to sink a lot of additional effort into sanitizers when they don't even use all
the tools already easily at their fingertips.

So in summary, yes, tools outside of the standard can help tame undefined behavior. Yes, since
undefined behavior will never be eliminated from the standard, these tools need to continue to
improve and gain wider adoption. However when one bit of UB or IF-NDR is removed from
the standard, then that particular pitfall has been removed from all consideration. Rather than
belatedly patching around the problem with the help of a tool, we can entirely remove that one
problem. Removing the problem, when possible, is the stronger position.

3

P2234R0

Undefined Behavior is Ubiquitous
As shown earlier, the undefined behavior of signed integer overflow can be confusing. Does
undefined behavior stop here?

There is no compendium of UB and IF-NDR in the standard. There is a project afoot to
produce a list of UB for the core part of the language [5], but that project is not complete. So, for
now, we can't easily determine how much UB and IF-NDR is present. But here's a quick
sampling of undefined behavior that an intermediate programmer could easily stumble over:

The result of accessing a non-common-initial sequence and non-active member of a
union is undefined. This situation is described in DIS 14882:2020 section 6.7.3 Lifetime
[basics.life] paragraph 1:

… The lifetime of an object of type T begins when:

— storage with the proper alignment and size for type T is obtained,
and

— its initialization (if any) is complete (including vacuous
initialization) (9.4)

except that if the object is a union member or subobject thereof, its
lifetime only begins if that union member is the initialized member in the
union (9.4.1, 11.10.2), or as described in 11.5 and 11.4.4.2, and except as
described in 20.10.10.1.

The result of accessing an indeterminate value other than through unsigned char*
or std::byte* is undefined. DIS 14882:2020 section 6.7.4 Indeterminate values [basic.indet]
paragraph 2 describes the situation. The section is too long to quote.

Any race condition results in undefined behavior. DIS 14882:2020 section 6.9.2.1 Data races
[intro.races] paragraph 21 says:

The execution of a program contains a data race if it contains two
potentially concurrent conflicting actions, at least one of which is not
atomic, and neither happens before the other, except for the special case
for signal handlers described below. Any such data race results in
undefined behavior.

4

P2234R0

An infinite loop with no side effects results in undefined behavior. This can be inferred
from DIS 14882:2020 section 6.9.2.2 Forward progress [intro.progress] paragraph 1 which, in a
non-normative note, says:

[Note: This is intended to allow compiler transformations such as
removal of empty loops, even when termination cannot be proven. —end
note]

The result of signed integer overflow is undefined. This is inferred from a section on
mathematical operations. DIS 14882:2020 section 7.1 Preamble [expr.pre] paragraph 4 says:

If during the evaluation of an expression, the result is not mathematically
defined or not in the range of representable values for its type, the
behavior is undefined.

The result of subtracting two pointers that are not from the same array object is
undefined. DIS 14882:2020 section 7.6.6 Additive operators [expr.add] paragraph 5 says:

When two pointer expressions P and Q are subtracted…

— If P and Q both evaluate to null pointer values, the result is 0.

— Otherwise, if P and Q point to, respectively, array elements i and j of
the same array object x, the expression P - Q has the value i - j.

— Otherwise the behavior is undefined…

The result of a shift that is negative or exceeds an integer's size is undefined. DIS
14882:2020 section 7.6.7 Shift operators [expr.shift] paragraph 1 says:

The shift operators << and >> group left to right…

… The behavior is undefined if the right operand is negative, or greater
than or equal to the width of the promoted left operand.

Flowing off the end of most non-void returning functions is undefined. DIS
14882:2020 section 8.7.3 [stmt.return] paragraph 2 says:

5

P2234R0

Flowing off the end of a constructor, a destructor, or a non-coroutine
function with a cv void return type is equivalent to a return with no
operand. Otherwise, flowing off the end of a function other than main
(6.9.3.1) or a coroutine (9.5.4) results in undefined behavior.

The result of modifying a non-mutable const value is undefined. DIS 14882:2020 section
9.2.8.1 The cv-qualifiers [dcl.type.cv] paragraph 4 says:

Any attempt to modify (7.6.19, 7.6.1.5, 7.6.2.2) a const object (6.7.3)
during its lifetime (6.6.3) results in undefined behavior.

In general, user specialization of a function template defined in namespace std is
undefined behavior. This is specified by DIS 14882:2020 section 16.5.4.2.1 Namespace std
[namespace.std] paragraph 1 which says,

Unless otherwise specified, the behavior of a C++ program is undefined if
it adds declarations or definitions to namespace std or to a namespace
within namespace std.

Are we close to the end? No. There are approximately 195 direct references to undefined
behavior in DIS 14882:2020. Sometimes those references are to identical sources of undefined
behavior. But sometimes a single reference to undefined behavior introduces a list of multiple
sources. And not every occurrence of undefined behavior is associated with the word
"undefined."

In the library portion of DIS 14882:2020 section 16.5.4.11 Expects paragraph [res.on.expects]
paragraph 1 says:

Violation of any preconditions specified in a function’s Preconditions:
element results in undefined behavior.

So every instance of Preconditions: in the library portion of the standard declares some kind
of undefined behavior.

There are 620 instances of Preconditions: in the library section of DIS 14882:2020.

So, between

• 195 direct references to undefined behavior, and
• 620 uses of Preconditions:,

6

P2234R0

we've now identified that there may be on the order of 815 instances of overt undefined behavior
mentioned in DIS 14882:2020. And anywhere that the standard does not define any behavior is
also undefined behavior. Instances of this kind of implicit undefined behavior are not easy to
count. But it does mean that the 815 overt instances that we've counted are likely a lower bound
to all of the undefined behavior in the standard.

There may be individuals who argue that undefined behavior in the library section of the
standard is qualitatively different from undefined behavior in the core section of the standard.
Some people refer to them as "soft" vs "hard" undefined behavior.

The standard itself makes no such distinction. As far as the standard is concerned any undefined
behavior is just that: undefined. Claiming that there is a distinction between library and
language UB is dangerous from a program security perspective. Many of the instances of UB in
the library section of the standard result from efficient implementations that can, if misused, run
afoul of core undefined behavior. For example, the effect of calling front() or back() for a
zero-sized std::array is undefined. This is an efficiency trade-off to avoid checking the array
size in every call to front() or back(). But violating the assumption may result in serious core
undefined behavior.

There may be any number of instances of undefined behavior that an optimizer has not yet
taken advantage of. But there is currently nothing in the standard that would prevent an
optimizer (or library implementation) from taking advantage of undefined behavior in the library.
In fact, given that STL interfaces are designed to be easily inlined, the optimizer already has
visibility of many cases of core undefined behavior that can result from misuse of the standard
library.

Therefore we should not dismiss the 620 identified cases of undefined behavior in the library
section of the standard. Most of those may be "soft" undefined behavior for now. But there is no
guarantee that they will remain so for any given implementation.

Ill-Formed No Diagnostic Required
Undefined behavior (UB) which is a runtime occurrence, has a close cousin in ill-formed no
diagnostic required (IF-NDR). DIS 14882:2020 section 4.1 Implementation compliance
[intro.compliance] paragraph 2.3 says,

If a program contains a violation of a rule for which no diagnostic is
required, this document places no requirement on implementations with
respect to that program.

7

P2234R0

So IF-NDR is an attribute of an entire program. If the program is ill-formed and translation
produces an executable the resulting program may do anything at all, much like undefined
behavior. In those cases the programmer has created a program that could do any arbitrary
thing, and the programmer probably has no visibility that they have a problem.

There are approximately 64 distinct instances of IF-NDR in DIS 14882:2020.

If we're going to consider "doing something" to improve the situation with UB, then we owe it to
the users of the language to at least consider what can be done to reduce the occurrence of IF-
NDR as well.

What Can Be Done?
Even if the standard were to provide a definitive list of UB and IF-NDR, such a list would not
help intermediate programmers. There are too many instances in too many obscure corners.
No intermediate programmer with a reasonable work-life balance will remember and recognize
all the members of such a list.

Any approach to the undefined behavior problem must start with the realization that it has, at
least in part, a social aspect. Inertia of the status quo plays a part, as does inertia of a platform's
application binary interface (ABI). These are both factors that will tend to keep pre-existing
instances of UB and IF-NDR unchanged.

Additionally, people who are fond of the optimizations that they get from undefined behavior will
put in a lot of effort to retain those optimizations. This is in part a consequence of a human
psychological phenomenon called "loss aversion" [6]. In short, for humans, losses loom larger
than gains. People work approximately twice as hard to prevent a loss as they work to obtain a
comparable gain.

So, given that 80% of the committee must agree that a change is not detrimental, those
undefined behavior-based optimizations are probably here to stay. Losing the optimizations
would not be acceptable.

Are we stuck then?

No, the situation could potentially be improved even though it cannot be completely solved. But
to get a handle on that we need to look at all of the currently available "behavior" options for a
C++ program.

Available States/Behaviors for a C++ Program
The standard recognizes two fundamental states that a C++ program can be in. Those states
are:

8

P2234R0

1. well-formed program (DIS 14882:2020 section 3.32 [defns.well.formed]). A C++
program constructed according to the syntax rules, diagnosable semantic rules, and the one-
definition rule.

2. ill-formed program (DIS 14882:2020 section 3.12 [defns.ill.formed]) is a program that is
not well formed. There are two kinds of ill-formed programs:

a. ill-formed no diagnostic required is an ill-formed program that may or may not
complete translation. If translation does complete the standard offers no guarantees
for how the program runs.

b. ill-formed program that is guaranteed by the standard to produce a
diagnostic. Such a program may still complete translation and issue a warning. If
translation completes then the standard offers no guarantees for how the program
runs.

All C++ programs fit into one of these three categories, although it may be difficult for a
programmer to know whether their program is well-formed or ill-formed no diagnostic required.

If the program is ill-formed, then the standard has little else to say about the program. The
program may not complete translation. If it does complete translation then the program may do
anything—it may crash, return erroneous results, or perform exactly as the programmer hoped.

If the program is well formed, then there are four kinds of behaviors that various places within
the program may exhibit:

1. defined behavior is behavior that is specifically permitted and described by the standard.

2. unspecified behavior (DIS 14882:2020 section 3.31 [defns.unspecified]), which is still
well-formed, but depends on the implementation. Therefore unspecified behavior is not
portable.

3. implementation-defined behavior (DIS 14882:2020 section 3.13 [defns.impl.defined])
which is usually well formed, depends on the implementation, and is required to be
documented by the implementation. Implementation defined behavior occasionally leads to
undefined behavior, since an implementation is allowed to introduce data races (DIS
14882:2020 section 26.6.9 Low-quality random number generation [c.math.rand] paragraph
3) or specify which functions in the C++ standard library may be recursively reentered (DIS
14882:2020 section 19.5.5.9 Reentrancy [reentrancy] paragraph 1).

4. undefined behavior (DIS 14882:2020 section 3.30 [defns.undefined]) is behavior for which
the standard imposes no requirements.

9

P2234R0

Notice that the preceding available behaviors for a program are run-time characteristics of that
program. A program may, or may not, exhibit undefined behavior based on its inputs. Some
inputs may result in undefined behavior and other inputs may not.

When committee members describe a construct in the standard, they may have more than one
choice for which behavior describes it. In the next sections we'll explore the option of using
choices other than UB and IF-NDR more often in the standard.

Please note that the following examples are not intended to be comprehensive. The author
suspects there are more examples to be found simply by looking a little deeper.

Preferring Unspecified Over Undefined Behavior
A poster child for this approach is DIS 14882:2020 section 27 Time library [time]. Due to the
concerted effort of that section's primary author, there is only one explicit occurrence of
undefined behavior in that entire section. Section 27.4.4 Class template is_clock
[time.traits.is.clock] paragraph 2 says,

The behavior of a program that adds specializations for is_clock is
undefined.

Beyond that there are 9 Preconditions: specifications in that section, for a total of 10 instances
of undefined behavior in that 90 page section of the standard. In contrast, there are 19 instances
of unspecified behavior in the same section. This low undefined behavior count is because the
primary author made a conscious decision to prefer unspecified behavior over undefined
behavior.

So it's important to remember when wording the standard that there are choices other than
undefined behavior when a specific construct is not precisely defined. Simply by making other
choices, such as unspecified or implementation-defined behavior, when adding new features to
the specification, or when editing it, it is possible to reduce the amount of undefined behavior in
C++.

Making Selected UB or IF-NDR Ill-Formed
First, why might it be preferable for a program to be ill-formed rather than contain undefined
behavior? A program that is ill-formed (usually) fails to compile and produces a diagnostic. This
allows the programmer to see that there is a problem and identify ways to correct it. Undefined
behavior, on the other hand, may simply allow the program to run and produce unexpected
results. Which would you choose?

10

P2234R0

On the other hand, there are certainly existing programs that currently contain UB or IF-NDR
code and work well enough with a specific compiler and with specific compile switches to suit
their purpose. If the UB or IF-NDR code in those programs becomes ill-formed, then users
would be forced to fix such programs. Some people might object to this sort of backwards
incompatibility, even though the code has UB or is IF-NDR. They might object strenuously if
the program has UB that is never exercised.

Backwards incompatibility is a legitimate concern. Addressing that concern would need to be
done on a case-by-case basis.

User Specializations of Certain Templates in Namespace std
There are quite a number of cases of undefined behavior in the library section of the standard
when a user specializes a template defined in namespace std. Just a few examples include:

• 17.11.5 Result of three-way comparison [cmp.result] paragraph 1
• 17.12.3 Class template coroutine_handle [coroutine.handle] paragraph 2
• 20.15.1 Requirements [meta.rqmts] paragraph 4
• 20.18.3 Execution policy type trait [execpol.type] paragraph 3
• 27.4.4 Class template is_clock [time.traits.is.clock] paragraph 2

The committee might consider defining some form of decoration, possibly an attribute, that
could optionally be applied to primary templates such that specializing the template is ill-formed.
Once such a decoration existed then it could be applied within the standard library. That could
potentially make many of these cases of undefined behavior ill-formed instead. Programmers
would be told, at compile time, that they had written bad code.

Such a change would also be possible without standardizing a new decoration. If the standard
said that a user specializing a template defined in namespace std must be diagnosed, then each
implementation could define its own decoration.

The Preprocessor and UB and IF-NDR
There are a few places where the preprocessor stumbles into UB or IF-NDR cases. For example,
DIS 14882:2020 section 5.7 Comments [lex.comment] paragraph 1 says that in certain
circumstances a form-feed or vertical-tab character in a comment is IF-NDR. Have our parsers
now become good enough that some of the preprocessing concerns can simply be ill-formed?
Just wondering…

11

P2234R0

Flowing Off the End of a Non-void Returning Function
DIS 14882:2020 section 8.7.3 [stmt.return] paragraph 2 says flowing off the end of most non-
void returning functions is undefined behavior. Usually this is a programming error that is easily
detected by the compiler. And it is a very easy mistake for a programmer to make. However
there are situations where the programmer knows that a function will never flow off the end, but
it looks to the compiler like it might happen. Should we let these few situations make the
language a more dangerous place for all users?

One approach to this problem would be to require programmers to mark situations where
flowing off the end of a function is programmatically not possible. The mark could be a new
decoration of some sort, or it could be a call to a preexisting construct such as std::abort(), or
any other function with a [[noreturn]] attribute. As long as the source code is available and
modifiable then placing the selected decoration at the end of the non-void returning function
solves it.

There are, admittedly, at least three reasons that this possible change could be rejected by the
committee:

1. Pre-existing code that flows off the end of a non-void function would become malformed if
no source code modifications were made. That's a legitimate concern that would require
discussion.

2. Adding a call to std::abort(), or any function with a [[noreturn]] attribute, changes a
function from "always returns" to "might not return", which can affect code reordering in the
caller.

3. There are members of the committee that are clever enough that they would never make a
mistake like this. They may object to the required extra text in their programs. To those
members of the committee the author suggests that they can consider a requirement like this
to be similar to wearing a mask during the COVID-19 pandemic. You would be making a
sacrifice to increase the safety of a more vulnerable part of the population.

The One Definition Rule
DIS 14882:2020 section 6.3 One-definition rule [basic.def.odr] paragraph 10 says

Every program shall contain exactly one definition of every non-inline
function or variable that is odr-used in that program outside of a
discarded statement (8.5.1); no diagnostic required.

12

P2234R0

Consider that we now live in a world with modules. In certain situations with modules the
translation process may have visibility of the entire program. In those situations could violating
the ODR rule become simply ill-formed, rather than IF-NDR?

Making Selected Undefined Behavior Well-Formed
It's possible that certain undefined behavior could be made well-formed.

memcpy
Consider memcpy. Passing a nullptr or other unusable pointer to memcpy results in undefined
behavior, even if the length of the copy is zero. DIS 14882:2020 doesn't say much about
memcpy, but the C11 Standard identifies this undefined behavior [7]. C11 Standard section
7.24.1 String function conventions paragraph 2 states:

Where an argument declared as size_t n specifies the length of the array
for a function, n can have the value zero on a call to that function. Unless
explicitly stated otherwise in the description of a particular function in
this subclause, pointer arguments on such a call shall still have valid
values, as described in 7.1.4.

Then C11 Standard section 7.1.4 Use of library functions paragraph 1 states:

If an argument to a function has an invalid value (such as a value outside
the domain of the function, or a pointer outside the address space of the
program, or a null pointer, or a pointer to non-modifiable storage when
the corresponding parameter is not const-qualified) or a type (after
promotion) not expected by a function with variable number of
arguments, the behavior is undefined.

Well, C++ is not the same language as C. If we wanted to make memcpy considerably easier to
use, then C++ could specify that if the length of a memcpy is zero then the pointer values are
irrelevant. And that little bit of undefined behavior would be eliminated from the language.

There would certainly be complexities. It would probably be undesirable to have different
implementations for ::memcpy and std::memcpy. So if this change were made, every C++
implementation would be forcing a particular memcpy implementation on the associated C
library. This could potentially be done in concert with the C Standard Committee. Or, since the

13

P2234R0

C++ implementation would also be compatible with the C standard, we could simply let each
compiler/library implementation solve the problem however it sees fit.

Infinite Loops
Also consider infinite loops with no side effects (DIS 14882:2020 section 6.9.2.2 Forward progress
[intro.progress] paragraph 1). This paragraph states the assumption that any thread will
terminate. That's a poor assumption for quite a number of existing embedded programs that
run until the power is removed or there is a (not visible to the program) hardware reset.

To further expand on the usefulness of infinite loops, not all embedded environments have easy
access to traditional I/O, or even breakpoints. When such a platform runs into a truly
unexpected situation an easy debugging technique is to simply go into an infinite loop at the
address where the problem is discovered. The embedded system hardware can then be probed
externally, for example using a logic analyzer, to discover the address where the failure was
detected. The author has worked on such deeply embedded systems and used the infinite loop
technique to great effect.

If the optimizer removes such a loop then the person who inserted the loop will be left puzzling
why the system crashed without getting stuck in the loop. Vast confusion ensues.

It's worth pointing out that the debugging loop can be made un-removable in the current state of
the standard by putting a volatile access inside the loop. And an expert would make such a
transformation. An intermediate programmer might never figure out that such a work-around
was required or even exists.

Also the compiler may not be able to determine whether a given loop terminates. In that case
the solution is simple; if the optimizer can't figure out whether the loop terminates, then it should
leave the loop in place. The optimizer would be allowed to remove loops that it can prove
terminate.

In summary, it might make sense for infinite loops with no side effects to be well-formed.
Certainly, whether or not a thread (or program) terminates could easily be considered observable
behavior.

Refine Proscription Wording Within the Standard
Consider DIS 14882:2020 section 16.5.4.2.1 Namespace std [namespace.std] paragraph 6:

Let F denote a standard library function (16.5.5.4), a standard library
static member function, or an instantiation of a standard library function
template. Unless F is designated an addressable function, the behavior

14

P2234R0

of a C++ program is unspecified (possibly ill-formed) if it explicitly or
implicitly attempts to form a pointer to F.

As this paragraph stands, the behavior of a program is unspecified if a programmer takes the
address of a standard library function. Possibly the paragraph could be rephrased to be less
dangerous. Consider…

… Unless F is designated an addressable function, the result of explicitly
or implicitly forming a pointer to F has an unspecified type and value; it
is also unspecified whether a program that forms such a pointer is ill-
formed.

With the current phrasing of the standard, the behavior of a program that simply forms a
pointer to F is unspecified. With this possible rewording the unspecified behavior is postponed
until the pointer is actually used (by using a pointer of unspecified type and value). And an
implementation is still allowed to notice the creation of such a pointer and declare the program
ill-formed.

Wherever such a refinement in wording can be applied, and this instance is only one example, it
has the potential to reduce the surface area of UB and IF-NDR within the standard.

Consider Adding a New Term of Art
It is possible that some forms of UB or IF-NDR could be transformed by introducing a new term
of art to the standard. For example the Core working group has bandied about a term of art
(tentatively "unspeciformed") to describe a construct that is exactly one of two things:

• Ill-formed in a way that can be detected by the compiler and linker, or
• If the code is not detected as ill-formed, the code is well-formed.

It's possible that this approach would help remove some kinds of IF-NDR. Here's how Joshua
Berne has described a potential use case:

Consider the case where there are zero definitions of a one-definition-rule-used
function. This case is currently IF-NDR. But in practice you only get two
possible outcomes:

1. Either all references to the function get optimized away so your program
links and behaves correctly, or

2. You have references to the function and your program fails to link.

15

P2234R0

Currently, I believe a compliant compiler is allowed to link such a program and
give you a chicken instead. Making this unspeciformed instead would better
reflect existing practice and make the world a safer place.

So if we had the right term of art, then this form of IF-NDR could turn into a much better
situation for programmers. As Joshua says, we would make the world a safer place. The addition
of such a term of art to the standard should certainly be on the table as we look for ways to
reduce UB and IF-NDR in the standard.

A Process to Identify Useful Changes to the Standard
Suppose we agreed that it might be possible to tame some of the UB and IF-NDR in the C++
Standard using the proposed techniques, or with other techniques that have not yet been
identified. That leaves the larger question of how the specific changes would be identified. Here
is one potential multi-phase approach.

1. The process will take a while; there's a lot to look at. In order to work from a stable base, the
process would anchor itself to the C++20 DIS. Final conclusions from the process would
then need to be forward ported into a future working draft.

2. The process would look at both UB and IF-NDR.

3. Three small teams would be identified:

a. One or two people would build a spreadsheet of instances of UB and IF-NDR in the
C++20 DIS. This team would also have responsibility for maintaining the
spreadsheet throughout the effort. This team can coordinate their efforts with the
people working on P1705 Enumerating Core Undefined Behavior [5].

b. A small team of compiler internals experts and at least one wordsmith would focus on
the core part of the standard. This team would be responsible for determining
whether each specific instance of UB or IF-NDR could be reduced to something
easier for a programmer to reason about.

c. A different small team of standard library implementation experts and at least one
wordsmith would focus on the library portion of the standard. This team would be
responsible for determining whether each specific instance of UB or IF-NDR could
be reduced to something easier for a programmer to reason about.

4. The first team would create a spreadsheet listing all overt cases of undefined behavior and ill-
formed no diagnostic required situations. The format of the spreadsheet would be negotiated
with the other two teams. At a minimum the spreadsheet would contain for each UB or IF-
NDR instance:

16

P2234R0

a. The page number (which will be stable since we're locking to the C++20 DIS),
b. Section and paragraph, and
c. A short description of the situation, to make the spreadsheet easier to read.

5. Once the initial list is built, additional non-explicit undefined behavior can also be
incorporated into the spreadsheet. The two teams of experts would help to identify any non-
explicit undefined behavior. Since non-explicit undefined behavior is harder to locate in the
standard, it is anticipated that the final list will be incomplete.

6. Once the initial spreadsheet is filled in, the first team will examine it to attempt to create sets
of UB and IF-NDR that may be treated identically. For example, all instances of user
specializations of primary templates defined in namespace std could be handled as one case.
Similarly, all instances of p is a valid iterator on *this can be handled as a single case.
This coalescing is done in an effort to reduce the work load on the two teams of experts.

7. Starting from that list, the teams of experts will audit the identified UB and IF-NDR to
determine whether, and how, any of it can be reduced to something easier for a programmer
to reason about. The method for reduction would be up to the team members and would
vary from instance to instance. Methods may include the ones described earlier in this paper.
Additional, not yet identified, methods may also be used. For each form of UB or IF-NDR
one of three results is expected:

a. The UB or IF-NDR is correctly labeled. No change suggested.

b. The UB or IF-NDR could trivially be changed to another (specific) more desirable
behavior with no negative impact. Or the scope of the UB or IF-NDR could be
trivially reduced. A short justification for the change would be included along with
proposed standard wording changes and mention of any risks.

c. The UB or IF-NDR could be changed to another (specific) more desirable behavior
with little or no negative impact given some non-trivial work. An outline of that non-
trivial work would be included along with mention of any possible negative impact
the change might have.

8. When the experts arrive at consensus about their conclusions, then the outcome is presented
to the working groups including recommendations for changes if any.

a. Any UB and IF-NDR that could be trivially changed to another specific behavior or
have its scope reduced would be incorporated into an omnibus paper and sent
through the committee, starting with SG12.

b. Any UB or IF-NDR that requires non-trivial work to change would require
additional, hopefully small, papers and further committee work.

17

P2234R0

Proposal Checklist
The following questions have been suggested as a proposal checklist [8].

What is the problem to be solved? Reducing the likelihood that intermediate C++
programmers stumble into undefined behavior or write ill-formed no diagnostic required code.

What kinds of users will be served? Intermediate C++ programmers.

What are alternative solutions? 1) Improve undefined behavior detection with static
analyzers and 2) improve education about UB and IF-NDR. None of the alternative solutions
preclude the approach proposed in the paper. All approaches used in concert would further
improve the usability of C++.

Why does the solution need to be in the standard? If the changes are not standardized
then different implementation's optimizers and libraries will lead to different results.

What are the barriers to adoption? It is possible that turning some cases of UB or IF-NDR
into ill-formed code would cause some programs to no longer compile. Different users will
consider this either a blessing or a curse.

Has it been implemented? No, however the C++ Standards Committee has in the past
been amenable to creating subgroups that build recommendations regarding specific topics of
interest.

Will there be significant compile-time or run-time overhead? None is expected. Any
possible changes that would introduce noticeable overhead would certainly be rejected by the
small team of experts or by the committee.

Does the feature fit into the framework of existing tools and compilers? Yes.
However it may have ripple effects with static analyzers and tools like UBSan.

Will there be compatibility problems? Potentially. See barriers to adoption.

Is the solution teachable? One goal of this proposal is to make C++ more teachable by
reducing pitfalls. If this approach is successful then there will be (slightly) less to teach.

How will the standard library be affected? There is the potential for small changes to the
standard library which improve compile-time checking or make small (backwards compatible)
changes to prerequisites.

Will the proposal lead to demands for further extension in future standards? Not
in any obvious fashion.

18

P2234R0

What mistakes are users likely to make with the new feature? If the proposal is
successful there will be a slight reduction in mistakes that can be made with the C++ language.

Is the proposal for a general mechanism to solve a class of problems, or a specific
solution to a specific problem? If to a class, which class of problems? The proposed
approach is intended to address the broad class of instances of UB and IF-NDR in the standard.

Is the proposal coherent with the rest of the language in terms of semantics,
syntax, and naming? Yes.

Summary
This paper argues that undefined behavior (UB) and ill-formed no diagnostic required (IF-NDR)
situations make it difficult for an intermediate C++ programmer to reason about their program.

The paper proposes a process whereby much of the UB and all of the IF-NDR in the C++20
Standard would be audited by a small team of experts. The point of the audit would be to
identify situations that are currently UB or IF-NDR and could potentially be converted to some
more benign behavior. Each identified potential change would include an outline for how the
change could be made and list any possible associated risks.

Thanks and Gratitude
The author would like to offer thanks to the plenitude of people who contributed to (but may not
endorse) this paper. Specific important contributions came from: Aaron Ballman, Joshua Berne,
Botond Ballo, J. F. Bastien, Walter Brown, Marc Glisse, Davis Herring, Howard Hinnant, Erich
Keane, Jens Maurer, John McFarlane, Melissa Mears, Robert Ramey, Gabriel Dos Reis, Hubert
Tong, Ville Voutilainen, and JC van Winkle. That list is not complete. My thanks to you all,
identified or not. All mistakes are the sole property of the author.

References
[1] C++20 Draft International Standard ISO/IEC DIS 14882:2020. Voting began on June 11, 2020.

[2] Schurr, Scott. P1407R1. Tell Programmers About Signed Integer Overflow Behavior. March 8, 2019.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1407r1.pdf

[3] van Winkel et al. P0559R0. Operating Principles for Evolving C++. January 31, 2017. http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0559r0.pdf

[4] Hinnant et al. P2000R1. Direction for ISO C++. January 13, 2020. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2020/p2000r1.pdf

19

P2234R0

[5] Yaghmour, Shafik. P1705R1. Enumerating Core Undefined Behavior. September 29, 2019.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html

[6] Kahneman, Daniel. Thinking, Fast and Slow. Farrar, Straus, and Giroux, 2011, pp. 283 - 286.

[7] Committee Draft N1570. ISO/IEC 9899:201x Programming Languages — C. April 12, 2011.

[8] Stroustrup, Bjarne. Thriving in a crowded and changing world: C++ 2006-2020. Proceedings of
the ACM on Programming Languages, June 2020, article No.: 70, pp. 70:28-29. https://
dl.acm.org/doi/abs/10.1145/3386320.

20

	Consider a UB and IF-NDR Audit
	Revision 0
	User Specializations of Certain Templates in Namespace std
	The Preprocessor and UB and IF-NDR
	Flowing Off the End of a Non-void Returning Function
	The One Definition Rule
	memcpy
	Infinite Loops

