

Document:P2062R0

Revises: (original)
Date: 01-11-2020

Audience: SG7
Authors: Wyatt Childers (wchilders@lock3software.com)

Andrew Sutton (asutton@lock3software.com)
Faisal Vali (faisalv@yahoo.com)
Daveed Vandevoorde (daveed@edg.com)

The Circle Meta-model

Introduction
During the November 2019 meeting in Belfast, some of the SG7 participants enthusiastically
mentioned Circle as providing a more intuitive compile-time programming model and suggested 1

that SG7 investigate overhauling the de-facto SG7 approach (P1240+P1733) to follow Circle's 2

general approach (to reflection and metaprogramming).

This paper describes a framework for understanding metaprogramming systems and provides a
high-level overview of some of Circle's main characteristics, contrasting them to P1240's
approach augmented with an injection mechanism along the lines of P1717.

While we appreciate some of Circle’s powerful capabilities, we also raise some concerns with its
underlying model and provide arguments in support of P1240’s choices as being a more
suitable fit for C++’s evolution.

The Dimensions of Reflective Programming
In P0633, we identified three “dimensions” of compile-time reflective metaprogramming:

1. Control:
How are compile-time computations effected/interpreted? What are metaprograms?

2. Reflection:
How are source constructs are made available as data for use in metaprograms?

3. Synthesis:
How can “code” be generated from a programmatic representation?

1 https://www.circle-lang.org/ Circle is an impressive project: Sean Baxter developed a brand new
C++17-like front end on top of LLVM, incorporating a variety of new compile-time capabilities that align
closely with SG7's goals. For Sean’s motivations, see
https://github.com/seanbaxter/circle/blob/master/examples/README.md#why-i-wrote-circle.

2 P1733 suggests building a type hierarchy on top of the monotype representation suggested by P1240.
That was in principle agreed on by SG7 and work is ongoing to make that possible.

mailto:wchilders@lock3software.com
mailto:asutton@lock3software.com
http://wg21.link/P1240R1
http://wg21.link/P1733R0
http://wg21.link/P1240r1
http://wg21.link/P1717
http://wg21.link/P1240R1
http://wg21.link/P0633
https://www.circle-lang.org/
https://github.com/seanbaxter/circle/blob/master/examples/README.md#why-i-wrote-circle
http://wg21.link/P1733
http://wg21.link/P1240r1

These dimensions can help us understand metaprogramming systems by decomposing them
into largely independent core components.

Current proposals for metaprogramming are already “layered” in these terms. We have a
number of proposals to extend constant expression evaluation (control), P1240 defines a
comprehensive system for compile-time reflection and reification (reflection), and P1717
proposes a template-like mechanism for code injections (synthesis) . 3

The adoption of Circle would represent a significant addition to the language and its design
incorporates specific choices for each of the three questions above. We think that examining
those choices independently is useful to shed light on whether those choices are desirable for
C++.

Reflection
P1240’s approach to reflection introduces a single keyword (reflexpr) to create an expression
reflecting a source construct, and then transform those values using (consteval) functions.
For example, to get a representation of the members of a class X, you could use the expression
members_of(reflexpr(X)), which produces a vector of reflections for the members of X.

Circle approaches this differently.

The first observation is that Circle has carved out a separate namespace for keywords by
introducing the character @ to the basic source character set: This allows the introduction of
dozens of new keywords such as @meta.

The second observation is that Circle does not actually provide true reflection in the sense of
introducing one or more types that correspond to reflections. Instead, it combines reflection and
reification into new operators called “introspection keywords”. For example, @member_type(X,
3) is a type-specifier that produces the type for the fourth nonstatic data member of X. Doing
the same in the P1240 model requires both reflection and reification:

typename(members_of(reflexpr(X), is_data_member)[3]).

The latter is more verbose, but also more composable.

There are currently about a dozen documented introspection keywords in Circle, which fall in
three categories:

1. Introspecting nonstatic data members
(@member_count, @member_name, @member_ptr, @member_value,
@member_type)

3 This injection mechanism was also presented at CppCon 2019. See
https://www.youtube.com/watch?v=kjQXhuPX-Ac.

http://wg21.link/P1240r1
http://wg21.link/P1717
http://wg21.link/P1240r1
http://wg21.link/P1240r1

2. Introspecting enumerators
(@enum_count, @enum_name, @enum_value, @enum_type)

3. Conversions between string values (e.g., “int*”) and types (e.g., int*)
(@type_string, @type_id)

In its current form, this is considerably more limited than the nearly-exhaustive API proposed in
P1240, but plenty of additional introspection keywords could be added to the Circle set. The
fundamental difference is that Circle does not traffic in a reflected representation; there is no
first class reflection value.

Synthesis
P1240 currently provides a handful of reification primitives to turn reflections back into source
constructs, and otherwise depends on the template instantiation mechanism (including
expansion statements; see P1306) to compose reifications into more complex constructs.
Additional work is being done to explore “code injection”. Previous presentations to SG7
suggested both string injection (compose a compile-time string value and inject it in the source
code) and token-sequence injection (allow injecting a sequence of tokens containing reification
primitives in various contexts), but those options were voted against. Andrew Sutton and his
colleagues at Lock3 Software are working on a higher-level “semantic injection” mechanism that
builds on the P1240 ideas. This approach is documented in P1717.

Circle essentially uses token-sequence injection as previously presented to SG7 (but rejected at
the time). There is however an important difference in composability. To explain this, let’s look at
a bit of Circle injection code:

@meta for(size_t i = 0; i < @member_count(arg_t); ++i) {
 push(@member_value(object, i));
}

Here the @meta for statement is executed at compile time and the statement it controls is
“injected” in its surroundings. “Surroundings” for Circle-style injection means “floating up past
@meta scopes”. For example:

void f(X &object) {
 @meta if (sizeof(X)<100) {
 @meta for (size_t i = 0; i < @member_count(arg_t); ++i) {
 push(@member_value(object, i));
 }
 }
}

http://wg21.link/P1240r1
http://wg21.link/P1240r1
http://wg21.link/P1306
http://lock3software.com/
http://wg21.link/P1240r1
https://wg21.link/p1717

Here the token sequence “push(@member_value(object, i));” is injected (or, “floats up”)
zero or more times into the outermost block of function f, with @member_value(object, i)
replaced by an expression that produces an lvalue for the (i+1)st member of object.

What if we wanted to create an abstraction for this injection? A Circle injection cannot be moved
to a function because the injection would now inject in that function instead of in its caller, but it
does introduce its own kind of hygienic macros (defined with @macro) to work around that. So,
we could write:

@macro m(X &object) {
 @meta if (sizeof(X)<100) {
 @meta for(size_t i = 0; i < @member_count(arg_t); ++i) {
 push(@member_value(object, i));
 }
 }
}
void f(X &object) {
 m(object);
}

Note, however, that that is fundamentally different from the other approaches contemplated in
SG7: The macro invocation doesn’t just re-parse the injected code, but also the control code.
In contrast, all the consteval-based injection methods that are being considered inject either in
the last consteval-block that was entered (in temporal terms), or in a specific context that is
specified as part of the injection primitive. The example above might be written in P1717 as
follows:

#include <meta>
using std::meta::info;
consteval m(info object) {
 if (byte_size_of(object)<100) {
 for (member : members_of(object, is_data_member)) {
 -> fragment {
 push(exprid(object).exprid(member));
 }
 }
 }
}
void f(X &object) {
 consteval { m(reflexpr(object)); }
}

Unlike in the Circle macro-based approach, the function m is only parsed once. In fact, even the
fragment itself is also parsed just once, but every time the injection operator (prefix ->) is

http://wg21.link/P1717

evaluated, the fragment is queued up to be expanded (an AST expansion in the current
implementation). This expansion occurs in the context just following the last
consteval {...} block that was entered.

Control
The “control” dimension of reflective metaprogramming is where Circle most fundamentally
differs from the consteval-based metaprogramming models SG7 has looked at before.
The Circle compiler integrates an interpreter that is bit-accurate with respect to the C++ ABI with
which the Circle compiler is implemented (the “host environment”). This interpreter will evaluate
expressions, including calls to any function whose definition is available (i.e., not just constexpr
functions).

Because it is bit-accurate, the Circle interpreter can also call functions compiled natively in the
host environment. That in turn, for example, makes the <iostream> implementation of the host
environment available to meta-code; compiling the following bit of code:

#include <iostream>
void f() {
 @meta std::cout << “Hello, world!\n”;
}

will output “Hello, world!” to the console in which the compiler is invoked, and produce object
code for

#include <iostream>
void f() {
}

The Circle compiler has options to specify additional shared libraries that can be loaded and
invoked from meta code. So, while the Circle interpreter itself is not particularly fast, it is
possible to separately compile code into a shared library for the host environment, and other
translation units can then invoke that (fast) shared library during compile-time evaluation . The 4

compiler mightlink calls to shared libraries for use at compile time using the ABI (e.g., calling
convention) of the platform that the compiler is executing on, while generating an executable
image for the target consistent with the target's ABI (and its calling convention)

4 This adds an interesting question to the C++ program model. Is a shared library used only for
compile-time evaluation considered to be part of a program? With C++ constant-evaluation, the
answer is always “yes”: A program can only execute the functions it declares. With Circle, the answer
could conceivably be “no”.

Currently, the publically-available Circle compiler has a “target environment” that is mostly
identical to its host environment. That allows the scheme described above to work seamlessly.
For a similar scheme to work in a full cross-compiler , however, new challenges arise. Consider: 5

template<size_t N> struct X;
template<> struct X<sizeof(vector<int>)> { ... };

In C++, currently, that specialization is for the size of a vector<int> in the target environment.
In the host environment, that may be a different size.

Similarly, if we were compiling code for some big-endian target using a compiler hosted on a
little-endian machine, the compile-time code would execute under the host-platform (i.e.,
little-endian), thus the same expression could give us wildly different results at compile time vs.
run time:

int f() { int num = 1; return *(unsigned char*)# }

assert(f() == 0); // Fails at run-time (big-endian).
@meta assert(f() == 0); // Okay at compile-time (little-endian).

A Circle-like compiler could compile the code twice, but in that case the programmer must be
careful to always keep in mind the dual nature of all types (e.g., vector<int> could have two
distinct sizes). Alternatively, the compiler could integrate a low-level virtual machine emulating
the target architecture, but that is likely not practical (e.g., the emulated architecture might not
itself have std::cout) and discards the performance advantage of native host-side execution.
It would also require the development of a virtual machine for every target architecture, which is
likely economically prohibitive.

In contrast, the constexpr evaluation model has always been in terms of the target environment.
The host environment is simply not exposed to the formal source code . A constexpr evaluator 6

need not be (and typically isn’t) bit accurate, but that also means it can be significantly faster
than a bit-accurate interpreter. Programmers in that model do not have to concern themselves
with every type potentially having dual representations.

Opinion
Circle is an awesome project, all the more so because it is also a C++17 implementation
developed “from scratch” by a single dedicated programmer in just a few years.

5 By “full cross compilation”, we mean that the host and target machines are completely disjoint. The
Circle implementation does have the ability to generate code for CUDA devices, which involves a kind of
cross compilation. However, compile-time native code invocation still requires native host-side support.
6 The host environment is of importance to the physical source code since character encodings matter.
Fortunately, those encodings are largely independent from specific environments. See also P1953.

http://wg21.link/P1953

However, we do not believe its metaprogramming model is the right direction for C++’s future.
We raise the following concerns:

● Executing code in the host environment considerably complicates cross compilation
(which is a very common scenario). 7

● The ability (and potential need) to call into shared libraries from the compiler raises the
kinds of security concerns that led SG7 to discard std::embed (P1040).

● Host-side native shared libraries also make it more difficult to have reproducible builds
and constrain the tool ecosystem in general (in practice, every significant tool would
want to be implemented using the same ABI/compiler as the compiler itself).

● The injection mechanism is overly dependent on (hygienic) macro expansions, which
limits scalability.

● The inability to separate reflection and reification limits the flexibility and scalability of the
introspective facilities.

During the discussions in Belfast, and in private discussions afterward, one argument that has
been made is that having the ability to use the <iostream> interface for compile-time I/O is
desirable. We believe that that is achievable within the framework we propose , but also that it is 8

a sizeable project. Meanwhile, we can develop a smaller useful interface on top of which
“compile-time streams” can be developed.

In conclusion, we argue that SG7 should continue with the P1240+P1733 model for reflective
metaprogramming, with the addition of a suitable injection model such as the fragment-based
solution described in P1717 (a simpler token-based injection system has advantages, too, but it
makes certain kinds of tools difficult or impossible).

7 We don’t have specific numbers for the fraction of C++ projects that rely on cross compilation, but it
includes most of mobile application development, embedded application development, and even some
server applications.
8 Not through std::cout, std::cin and the like, which remain handles to the target environment, but
through some other “host streams” that implement the <iostream> interfaces.

http://wg21.link/P1240r1
http://wg21.link/P1733
http://wg21.link/P1717

