
Page 1 of 27

P2035R0
2020-01-12

Pablo Halpern : phalpern@halpernwightsoftware.com
John Lakos : jlakos@bloomberg.net

Value Proposition: Allocator-Aware (AA) Software

NOTE: This white paper (i.e., this is not a proposal) is intended to motivate continued investment
in developing and maturing better memory allocators in the C++ Standard as well as to counter
misinformation about allocators, their costs and benefits, and whether they should have a
continuing role in the C++ library and language.

ABSTRACT
The performance benefits of employing local memory allocators are well known and
substantial. Still, the real-world costs associated with integrating allocators
throughout a code base, including related training, tools, interface and contract
complexity, and increased potential for inadvertent misuse, cannot be ignored. A
fully allocator-aware (AA) software infrastructure (SI) offers a convincing value
proposition despite substantial upfront costs. The collateral benefits for clients, such
as object-based instrumentation and effective means of testing allocations, make
investing in AASI even more compelling. Yet many other unwarranted concerns —
based on hearsay or specious conjecture — remain.

In this paper, we discuss all three currently available AA software models, C++11,
BDE, and PMR (C++17)1 — each of which provides basically the same essential
benefits but requires widely varying development and maintenance effort. We then
separate real from imagined costs, presenting some of the many collateral benefits of
AASI along the way. After all aspects are considered, we continue to advocate for the
adoption of AA software today for all libraries that potentially have performance-
sensitive clients and specifically for the BDE/PMR model, even as we continue to
research a language-based solution that might someday all but eliminate the costs
while amplifying the benefit.

INTRODUCTION
Allocating memory dynamically is an inherent aspect of practically every significant
software system. Although the language-supplied allocation primitives (new and
delete) typically provide acceptable performance, employing a custom allocation
strategy would be advantageous, if not absolutely necessary, in many important
cases. This paper explains why custom memory allocation supported via an
allocator-aware (AA) software infrastructure (SI) can be practical, cost effective, and

1 The BDE (Bloomberg Development Environment) and PMR (polymorphic memory resource) models
are very similar (the latter being derived from the former), and we often refer to them together as the
BDE/PMR model.

Page 2 of 27

strategically advantageous today, just as it has at Bloomberg and elsewhere since
1997.2

Using thoughtfully-chosen local (“arena”) memory allocators to provide custom
allocation strategies is well known — both anecdotally and through repeated
controlled experiments3 — to potentially yield significant (sometimes order-of-
magnitude) performance improvements over simply relying on even the most
efficient state-of-the-art, general-purpose global allocators. This performance boost
should come as no surprise since, when choosing an allocation strategy, developers
can leverage in-depth knowledge of their application and its operational environment
— an option that is clearly unavailable to any general-purpose allocator.

The two most common ways of achieving high-performing memory management in
C++ today are to (1) write custom data structures (from scratch) each time a distinct
allocation strategy is deemed necessary, and (2) build on AA components (provided
by library developers) that readily support use of arbitrary per-object allocators as
needed. The costs and benefits for option (1) are extreme: Custom data structures
produce the highest possible levels of performance and flexibility yet have
prohibitively high development and maintenance costs; are inherently not reusable
(nor interoperable with their less-efficient counterparts); and introduce a steep
learning curve (and typically a high bug rate).4 Option (2) offers nearly the same
performance advantages of option (1) and provides many other, collateral benefits
yet requires from clients of AASI libraries only a tiny fraction of the engineering
effort.

The introduction of an AASI can, by analogy, be compared to that of a middle-tier
class of service in the airline industry, such as premium economy or business class.
Many customers who would otherwise have flown economy might now opt for
premium economy, which offers extra legroom or laptop room as well as other
amenities at minimal increased cost. Other customers whose need for comfort would
have necessitated flying first class can now get nearly the same accommodations by
opting for business class at a fraction of the cost. Analogously, many software
subsystems that would have performed acceptably without custom memory
allocation might now, with little marginal client cost, be optimized (often
significantly) by exploiting an AASI, and subsystems that would otherwise have been
forced to create custom data structures can now get substantially the same
exceptional performance, instrumentation, and placement capabilities at a fraction

2 The polymorphic memory allocator model used at Bloomberg and now part of C++ was developed for
real-world financial software applications in the F.A.S.T. (Financial Analytics & Software
Transactions) Group at Bear Stearns & Co., Inc., in 1997, and has been in use at Bloomberg since
2001.
3 lakos16, bleaney16, lakos17b
4 Such bespoke data structures could use generic components customized by policies to reduce the
effort. The decision on which policies to use, however, is either made once per class, limiting the
ability of clients to customize allocations according to their needs, or is exposed as a template
parameter, essentially replicating the C++11 allocator model and thus sharing its same deficiencies.
Moreover, such policy-based generic components are themselves notoriously difficult to write,
maintain, and test thoroughly.

Page 3 of 27

of the development effort for the client. Despite its simplicity, this analogy offers
considerable depth of insight into the sound microeconomic arguments for adopting
a robust AASI at large-scale software-development companies such as Bloomberg
(see Appendix I).

ALTERNATIVE MODELS FOR AA SOFTWARE
The engineering costs associated with developing, maintaining, and using AA
components vary widely with the model. We have extensive experience implementing
and using three distinct interface models for AA software currently employed in C++
today. These models differ primarily in the syntactic details by which custom
memory-allocation logic is injected when constructing a new object.

• C++11 model (high cost). The custom allocator’s implementation is embedded
(at compile time) directly in the object’s type, thereby delivering the most general
and high-performing of these allocator models. This compile-time-centric model
guarantees zero runtime and space overheads when using the default (global)
allocator type5 and enables the placement of objects in memory having
nonstandard address types.6 Widespread use of this model would, however,
severely impede client productivity. Because the allocator affects the object’s
type, much of the code (including the application layer) would need to be
templated, resulting in reduced maintainability due to acute compile-time
coupling. Moreover, interoperability among subsystems using distinct allocator
types would be suffer profoundly.7 In fact, when even a small fraction of
subsystems requires a distinct allocator, the development and usability costs
required to support this model are so high that many organizations (including the
C++ Standards Committee8) will not adopt it universally.

• BDE model (moderate cost). A pointer to an allocator base class is embedded in
every object that might directly allocate memory, even when using the default
allocator. Although somewhat less general than the C++11 model,9 the
engineering effort required to manually “plumb” these polymorphic allocators
throughout an object’s constructors is substantially reduced. Moreover, because
polymorphic allocators do not invade their (compile-time) types, objects using
distinct allocator types can interoperate naturally in nontemplated contexts.10
Furthermore, this classically object-oriented model enables clients to request an

5 Other models could be made to approach zero space overhead by encoding the default allocator as a
single bit; doing so, however, is counter-indicated by benchmarks of typical use cases.
6 E.g., only the C++11 model supports shared memory.
7 E.g., a function template expecting two arguments of (exactly) the same type would fail to
instantiate if instead passed, for example, two vectors employing different allocator types.
8 C++11-model allocators are not currently used in every class within the Standard Library where
allocators would be appropriate (e.g., std::path).
9 BDE allocators do not support placement in shared memory, which is a rare and highly specific use
case.
10 In particular, objects employing BDE-model allocators can serve as output parameters where proxy
objects, such as std::string_view, would be unsuitable.

Page 4 of 27

object’s allocator (via its base-class address) without the clients themselves being
templates.

• PMR model (moderate cost). This model, sometimes also referred to as the
C++17 model,11 is derived from — and behaves essentially the same as — the
BDE model; the only (syntactic) difference is that the pointer to the polymorphic
base class is wrapped in an object that meets the requirements of a C++11
allocator (and hence can also serve as an adapter to C++11 code that uses
allocators).12 Moving forward, this PMR model is expected to increasingly
supplant the older BDE model at Bloomberg.13

By maintaining an appropriate AA subset of our code base using any one of the
aforementioned models, we provide essentially all the benefits typically sought from
custom solutions at greatly reduced client effort and (depending on the model)
greatly reduced overall engineering cost.

PERFORMANCE BENEFITS
Reductions in overall run times resulting from local (“arena”) memory allocation can
manifest both during memory allocation/deallocation itself and also during access
to allocated memory (irrespective of the manner or cost of its allocation); the
modality of use (e.g., short-running versus long-running) will govern which aspect of
reduced run time dominates. Unlike general-purpose global allocators, which must
perform acceptably in all circumstances, special-purpose local allocators (such as
monotonic allocators), where applicable, can afford unique advantages.14

1) Allocation/Deallocation. Memory-allocation profiles vary widely across
applications. One common pattern for short-running programs is to build up
a data structure, access it briefly (often without modification), and then
destroy it. In such cases, maintaining an ability to delete individual parts (as
required of a general-purpose allocator) is unnecessarily costly in both time
and space. In contrast, using a local monotonic allocator instead,15 for which
deallocation is a no-op (no operation) and memory is reclaimed only when the

11 Although C++17 supports the entire C++11 model, we sometimes use the term C++17 model as
shorthand for the polymorphic-memory-allocator (PMR) model within C++17.
12 halpern14, halpern17
13 A joint management-sponsored initiative between the BDE (Bloomberg Development Environment)
and the recently announced Bloomberg Software Engineering teams is the creation of what is being
tentatively dubbed bde4.0. This inclusive effort — explicitly involving London and New York — is
intended to produce a “stepping stone” that will allow us to bring the older in-house versions of
(mostly) standard-compliant libraries in sync with modern C++ facilities, eliminating incompatibilities
(e.g., resulting from nonstandard namespaces) and thereby facilitating easy integration with open-
source, third-party, and other standard-compliant libraries.
14 For expert advice on how to design an effective local allocator, see weis20.
15 Paul Williams observed (c. 2006) the first widely recognized (albeit anecdotal) evidence of the
dramatic performance benefits afforded by monotonic allocators at Bloomberg in Bloomberg’s front
end [lakos17b, Part I, approximately 7:28].

Page 5 of 27

allocator is destroyed, affords significant performance benefits.16 Depending
on the data structure, improvements of up to 5 times have been realized.17

Another common pattern is to repeatedly allocate and deallocate memory
blocks having a few distinct sizes (e.g., for distinct object footprints)
throughout the lifetime of the program. Such memory-allocation profiles
benefit from the use of a local multipool allocator, which internally manages
dynamically growing pools of fixed-size memory chunks, caching any
deallocated chunks for efficient reuse, with or without thread synchronization
(see item 3).

Each of these kinds of local allocators is a form of managed allocator, which
supports reclaiming all memory allocated by it in a single (client-invokable)
operation. Thus, memory blocks allocated via managed allocators need not be
deallocated individually, and objects that manage no resources other than
memory need not even be destroyed!18 Using this (admittedly advanced) en
masse technique, which we will hereafter refer to as winking-out), additional
runtime performance gains of as much as 20% have been observed.19

2) Access Locality. To realize high runtime performance, modern computers
organize memory hierarchically into multiple levels — L1, L2, and L3 caches,
main memory, and secondary storage (disk or flash memory) — where each
level of the hierarchy is typically one to four orders of magnitude slower than
the one above it. The more densely packed the memory blocks within a
working set,20 the less likely the program is to overflow a specific cache and
rely on a slower layer of the memory hierarchy. Additionally, (hardware or
software) prefetching, which heuristically anticipates the next line to be
brought into cache or the next page to be brought into main memory, provides
benefits only when the data items being accessed are close together in the
address space.21

Achieving locality (i.e., physical proximity of separately allocated memory
blocks accessed repeatedly over a relatively short period of time) often plays
an even greater role in reducing overall run time than does efficient

16 BDE-model monotonic allocators were first employed at Bear Stearns (c. 1997) where they reduced
the destruction time of complex financial-model objects from over 9 seconds to such a small time
interval that it didn’t even show up on the IBM/Rational Quantify (formerly Pure Quantify) profiler
[lakos17b, Part I, approximately 5:10].
17 bleaney16, lakos16
18 Per the C++ Language Standard, reusing undestroyed object memory is explicitly not undefined
behavior as long as the abandoned object never again accesses such reused memory.
19 bleaney16, lakos16
20 The working set of a process is the collection of information referenced by the process in a specific
period of time [denning68].
21 Locality of reference [denning05] enables the processor to bring data into or to keep data in faster
layers of the memory hierarchy when they are likely to be accessed in the immediate future
[stallings10]. An easy-to-read (albeit less definitive) description of locality of reference can be found
in wikipedia19.

Page 6 of 27

allocation/deallocation of the memory itself — especially for long-running
programs. Absent the “corralling effect” of internal memory boundaries
afforded by local arenas, the initially high-locality memory organization of
tightly accessed subsystems may, over time, diffuse22 across virtual memory,
leading to performance degradation often exceeding an order of magnitude.23
Using local memory arenas to ensure locality of reference allows us to realize
(and to maintain throughout the lifetime of the process) the full runtime-
performance potential of the underlying hardware.24

3) Thread Locality. Multithreaded programming introduces additional
inefficiencies to memory allocation and access that can be mitigated using
local allocators. Whenever a structure or set of related structures is to be used
(i.e., created, accessed, modified, or destroyed) by only a single thread at a
time, costly synchronization (e.g., via mutexes or atomic instructions) required
of general-purpose allocators can be avoided through judicious use of local
allocators. Microbenchmarks of such scenarios consistently demonstrate
performance improvements of roughly 4 times.25 Moreover, by sequestering
(into a separate arena) memory that is known a priori to be accessed by only a
single thread at a time, local allocators naturally avoid accidental cache-line
contention (also called false sharing) caused by inadvertently interleaved
allocations of small unrelated memory blocks that might subsequently be
accessed by distinct concurrent threads.26

Maximizing performance, therefore, requires global knowledge of the application as
well as a solid understanding of both when to use which kinds of allocators and how
to do so correctly.27

COSTS
Two meaningfully distinct types of costs naturally form when creating and effectively
exploiting an AASI: (1) the upfront costs to library developers of creating (and
maintaining) an AASI, and (2) the incremental costs to application clients of

22 Diffusion is the spreading out of related memory blocks and should not be confused with
fragmentation, which is a phenomenon that occurs (most typically in coalescing allocators) when
ample memory is available but not as sufficiently large contiguous blocks.
23 bleaney16, lakos16
24 Local arenas typically ensure that all blocks within a page have been allocated from the same
arena. Additionally, because most local arenas are intended for use within a single thread, blocks can
be packed tightly into contiguous cache lines without fear of creating false sharing. Indeed, multiple
(complete or partial) blocks sharing a cache line can be beneficial in this case, as the blocks
belonging to the arena are likely to be used together.
25 bleaney16, lakos16
26 In other words, when objects “travel” among threads together with their local allocator (e.g.,
tasks dispatched to a thread pool), cross-thread synchronization, false sharing, and other needless
pessimizations (such as padding that deliberately wastes space in local cache lines) are naturally and
effortlessly eliminated.
27 To learn much more about how to make effective use of local allocators in application as well as
infrastructure development, see halpern20a.

Page 7 of 27

exploiting (or ignoring) AA aspects of the SI. While this section details the costs as
they exist today, an effort is underway to integrate allocators into the C++ language
such that both the upfront and incremental costs are drastically reduced — and in
many cases eliminated — for both the library and application development teams,
shifting essentially all of the burden onto the compiler itself.28

Upfront Costs

The upfront costs to create an AASI include making each memory-allocating
infrastructure class AA, e.g., by applying a scripted series of modifications to a
previously allocator-unaware class. Such modifications typically29 amount to adding
an optional trailing pointer-to-allocator parameter to every constructor and
assiduously forwarding those parameters to base classes, data members, and any
other managed subobjects as well as tagging the overall type as being AA via an
allocator-trait metafunction.30

• The principle upfront cost is the added maintenance burden. Making software
AA using BDE-model allocators, albeit tedious and potentially error prone, is
straightforward, increasing line-count by 4 to 17 percent,31 with 10 percent
commonly recognized as typical source-code overhead. Training developers on
how to write AA types (let alone how to test AA types properly) is
incontrovertibly a significant upfront cost. Moreover, any time spent on
allocator mechanics imposes a real opportunity cost on the organization as
those same experienced software engineers become less available for other
tasks.

• The concomitant additional risk of introducing AA-related software defects is
mitigated by the use of static-analysis tools such as bde_verify,32 which can
alert developers to missing or misapplied transformations. A prototype of
bde_verify that automatically transforms typical33 components to BDE-

28 An approach being considered for integrating allocators into the C++ language is described in
meredith19. The effort to develop a compiler supporting these new features — much like the effort to
develop self-driving cars — requires significant upfront investment yet (when finally available) will so
dramatically lower barriers to creating and maintaining an AASI (similar to autonomously operating a
vehicle) as to be dispositive toward this paper’s thesis.
29 Class templates require metaprogramming in their constructors to correctly handle objects of
dependent type that are not known to be AA until instantiation time. Container class templates must
further add metaprogramming to their insertion methods for propagating allocators to potentially AA
elements of dependent type. The implementation of these more difficult AA class templates is typically
performed by standard-library suppliers or core development groups (e.g., BDE at Bloomberg) and is
facilitated by library utilities such as those described in halpern18.
30 To learn how to augment classes to make them AA in the BDE model, see halpern20b.
31 This data pertains to BDE (library) source code (c. May 2017).
32 bde_verify is a Bloomberg tool that checks code for deviations from a number of best practices
and style guidelines, in particular ensuring that AA components are put together correctly.
33 I.e., components that are not especially difficult, e.g., those not implementing (general-purpose)
generic, templated, or container types.

Page 8 of 27

model allocator awareness is available today. Enhancing bde_verify is a one-
time technological-advancement cost that, although substantial, is expected
to substantially reduce risk along with other upfront costs.

Incremental Costs

The incremental costs for a typical client of an AASI over an allocator-unaware SI are
relatively small. An application client that chooses to take an active role in managing
the memory of an AASI class need merely supply the address of the desired allocator
to the class’s constructor. Clients who elect not to partake simply ignore all mention
of allocators and write their code as usual.

• While the substantial net savings in development effort for application clients
who currently exploit AA software is clear, the overall savings for all
application developers, including the many who don’t exploit AA features
(currently an overwhelming majority), is less so. Beyond just the initial
upfront development costs (typically born by SI developers), making an
infrastructure class AA enlarges its (programmatic) interface and (English)
contract34; the additional parameters and methods required to support AA
software impose new complexities, thereby increasing the cognitive burden on
clients — even when they are indifferent to the benefits afforded by an AASI.

• Naïvely or otherwise carelessly supplying local allocators will invariably lead to
client misuse via programmer errors, some of which can be surprisingly
subtle. An obvious (albeit infrequent) user error is for the lifetime of an object
to be allowed to exceed that of its allocator.35 Much more commonly, however,
a client will try to employ a special-purpose allocator that is ill-suited to their
needs.36 For example, declaring a monotonic allocator outside of a loop and
then using that allocator to construct an object defined within the loop’s body
(and hence recreating that object on each iteration) might cause memory
consumption to grow without bound. The likelihood of client misuse is
exacerbated when a (substandard) implementation unexpectedly allocates
temporary memory.37 Even when the misuse is not catastrophic,

34 khlebnikov19
35 The effect of an object outliving its local allocator is similar to that of returning (from a function) a
“dangling” pointer (to an automatic variable). When using the scoped allocator model [halpern08, pp.
2–6], however, a local allocator is typically created on the program stack just prior to creating the
object (or objects) consuming memory from that allocator. Hence, when using this common idiom, the
C++ language itself automatically guarantees that the lifetime of the allocator spans that of all such
objects that depend on it.
36That monotonic allocators necessarily consume excessive memory when used with containers, such
as std::vector and std::string, that grow geometrically is a popular misconception; the
consumption of memory for such a container when coupled with a monotonic allocator is in fact
always just a constant factor larger (i.e., similar in magnitude to that of a single extra reallocation).
37An especially insidious case of this sort of inadvertent “misuse” involved assignment between two
BitArray objects within a loop. Assuming two BitArray objects hold the same number of bits, no
reallocation is needed. As a development expedient, however, it is not uncommon to use the idiom of

Page 9 of 27

misapplication of AA technology can easily increase both development and
maintenance costs without improving runtime performance.

• Making C++ types AA sometimes comes at the price of incompatibility with C++
language features, inhibiting the programmer’s ability to use some of the more
modern features of the C++ language.38 For example, creating AA types
requires additional consideration during construction and assignment and
therefore cannot currently take advantage of compiler-generated constructors
or assignment operators (a problem exacerbated in C++11 by rvalue
overloads), nor can such types be constructed using aggregate initialization.

• To properly dispose of the memory used by an AA object, the lifetime of the
object must not exceed the lifetime of its allocator. This lifetime management
not only requires additional care from the developer, but also limits allocator
applicability when using standard-library facilities that manage object
lifetimes, such as shared_ptr and weak_ptr, since they neither track nor
extend allocator lifetime. This cost, though non-zero, is typically less than the
cost of avoiding dangling pointers or references in general because the normal
structure of a program that uses local allocators is such that an allocator and
the objects that use it are created and destroyed in a nested fashion within
the same scope. Preventing dangling allocators when using shared_ptr is
simply a matter of using the default allocator or, better, designing the program
well enough that the maximum scope of the shared objects is well understood.

• Using allocators effectively in large industrial settings will of necessity incur
significant administrative costs in education, tools, and governance. Code
reviews, proper training, and allocator-use policies are essential costs that
must be borne by any organization hoping to realize the full advantage
afforded by an AASI. Investment in static-analysis tools (such as bde_verify)
that detect erroneous or unwise allocator use (such as objects that outlive
their allocators or a monotonic allocator servicing objects created repeatedly
within a loop) are essential to reducing the burden on client programmers and
to improving the robustness of the application codebase in their charge.

Despite all these very real and substantial upfront and incremental costs, a credible
value proposition remains.

always first creating a temporary object (using the original object’s allocator) to build the result before
swapping it with the object being assigned to (thereby automatically establishing the strong-
exception-safety guarantee). The combination of such low QoI (Quality of Implementation) and an
unrealized (though not unrealistic) expectation on the part of the caller led eventually to memory
exhaustion (thereby forcing process termination). See halpern20a and halpern20b.
38 The erroneous conjecture that allocators do not interact well with modern C++’s move semantics is,
however, debunked in the “Common (But Unfounded) Concerns” section of this paper.

Page 10 of 27

COLLATERAL BENEFITS
If the aforementioned performance benefits alone were insufficient to justify the
added costs associated with AA types, consider that several important collateral ones
— not necessarily related to performance — go well beyond what even fully custom
data structures can provide.39

Rapid prototyping and enhanced predictability. Maintaining a hierarchically
reusable40 AASI (along with a set of useful predefined allocators) encourages
proactive experimentation. One could posit, for example, that a particular allocation
strategy should yield an order-of-magnitude performance boost for a given
subsystem. Having an AASI makes it easy for a developer to quickly inject into the
subsystem a (typically off-the-shelf) allocator implementing the identified strategy.41
If this quick-and-dirty experiment fails to produce the anticipated gains, the
allocator can just as easily be removed or replaced by a different one. Such
pragmatically valuable experimentation would be exorbitantly expensive if it
required modifying a custom data structure with a hard-coded allocation strategy.
Moreover, the business value of readily determining if (and to what extent) one or
another custom allocation strategy would be beneficial should not be
underestimated: Such prototyping removes much of the guesswork — and therefore
the risk — associated with estimating the true effort needed to develop a product.

Modularity and composition (reuse). BDE/PMR allocators are typically chainable,
i.e., one allocator provides some memory-management functionality and goes to
another backing allocator when additional memory is needed. Chaining allows
specialized allocators to be readily combined in myriad useful ways. For example, it
is trivially easy to layer an allocation strategy that excels at allocating many small
equal-sized blocks on top of one that is tuned for arbitrarily large ones. Moreover,
chaining can incorporate various forms of instrumentation, e.g., for testing, metrics
gathering, and monitoring.

Testing and instrumentation. A test allocator42 can be an indispensable tool for
ensuring the correctness of AA types. A bslma::TestAllocator,43 for example, can
be used to log memory-management-related activity, match deallocation with known
allocations, check for memory leaks, or confirm exception safety, e.g., by throwing
bsl::bad_alloc exceptions at strategic points in test scenarios. Using the allocator

39Changing the allocate/deallocate code path has been awkward due to its heretofore global nature.
Some of the additional benefits of AA derive directly from the runtime polymorphism afforded by the
BDE/PMR model, which enable an object’s owner to inject arbitrary logic into this vital code path

without having to restructure or even recompile the code that uses those objects.
40 lakos20, section 0.4
41 halpern20a
42Since Lakos (employed at the time by the F.A.S.T. group at Bear Stearns & Co., Inc.) first conceived
(c. 1997) of the BDE-model test allocators, they have caught innumerable memory- and exception-
related bugs early in the software development life cycle.
43A proposal for a PMR-model test allocator — based on our bslma::TestAllocator — has been
submitted for consideration as part of the C++ Standard Library [feher18].

Page 11 of 27

interface also makes possible the adding of instrumentation for debugging (e.g.,
detecting leaks or logging allocations), gathering metrics, and discovering the usage
patterns needed to tune memory allocators in production systems.44 Although off-
the-shelf tools can be used to profile running programs, such external tools are
often too heavyweight for use in production and are invariably incapable of providing
object-specific information. The plug-in nature of polymorphic allocators, however,
makes using an instrumented allocator straightforward and practical in every
conceivable context, from the smallest of unit tests to the largest of production
programs.

Whole-object placement and garbage collection. Allocators enable client control
over the placement of (entire) objects in special types of memory with relative ease.
One can readily arrange for objects to reside in high-bandwidth memory, memory
that is hardware protected (no read and/or write access), or persistent or file-
mapped (mmap) memory.45 The same wink-out mechanism typically used to avoid
calling individual destructors on a collection of AA objects can also be used for non-
performance-related purposes, such as a form of garbage collection: An entire set of
objects having related lifetimes can be reclaimed at once by releasing them from a
managed allocator, even when some of the objects are no longer referenceable. In
contrast, consider a temporary graph of interconnected nodes that uses shared_ptr
and weak_ptr to represent the edges of a graph such that deleting a key node
causes the smart pointers to delete all of the connected nodes in a recursive
destructor cascade. Using raw pointers to represent the graph’s edges, allocating
graph nodes from an arena allocator, and disposing of the entire graph at once
simply by destroying the allocator would be simpler, less error prone, and far more
efficient.46

Pluggable customization. The utility of allocators for obtaining both performance
and nonperformance benefits is open-ended. These benefits depend largely (albeit
indirectly) on the ability to plug new allocators into existing infrastructure at run
time, though many of the benefits remain available (in whole or in part) when using

44The ubiquitous BDE-model AASI at Bloomberg was leveraged particularly effectively by what is
known as the tagged allocator store (TAS), a framework Brock Peabody invented at Bloomberg (c.
2011) to track memory usage within individual instances of subsystems of a running application. In
addition to bslma::Allocator, the custom allocator (which was also inherited from
gtkma::AllocatorStore) allowed client objects that were aware of the possibility of such
instrumentation to attempt a lateral dynamic_cast. If the cast succeed, client objects could use the
alternate interface to report their subsystem memory usage on a per-object basis. These fine-grained
per-object metrics (compared to typical static, scoped, or type-based ones) readily enabled real-time,
at-scale monitoring of individual production subsystem instances that might potentially be overusing
memory. The conspicuously successful TAS framework remains in active production use today
[halpern20a; halpern20b].
45 BDE-model allocators were a natural fit with Bloomberg’s home-grown approach to saving/sharing
(identical) process state on disk via saverange on fnch memory using the GmallocAllocator, which
implements the bslma::Allocator protocol [lakos17b, Part I, approximately 6:40].
46A recursive destructor cascade resulting from smart pointers is not typically tail recursive and is
hence susceptible to program-stack overflow; the wink-out approach, however, is always safe.

Page 12 of 27

even C++11-model allocators. Absent an AA infrastructure, realizing even a fraction
of these benefits would require a prohibitively large expenditure of effort, especially
when it involves modifying custom data structures. In particular, bespoke data
structures lack the seamless interoperability necessary to be practicable at scale.

COMMON (BUT UNFOUNDED) CONCERNS
Those new to BDE/PMR-model memory allocators might (understandably) be
skeptical of adopting a ubiquitous AASI compared with other less invasive and more
targeted approaches that claim similar performance gains.

State-of-the-Art Global Allocators

Advances in global memory allocators47 have led to dramatic performance
improvements, especially with respect to real-world multithreaded applications.48,49
Wouldn’t replacing the compiler-supplied global memory allocator with a newer, state-
of-the-art allocator achieve most (if not all) of the real benefits derived from assiduous
use of local allocators designed into a program?

The short answer is no.50 The design of every general-purpose allocator is still driven
by the assumptions regarding specific runtime patterns; tcmalloc,51 for example, is
optimized for multithreaded programs where the allocation pattern within each
thread is not known in advance and allocations from one thread might be freed from
another. Moreover, a global allocator that is linked as part of a library cannot
significantly influence code generation, e.g., by reserving (automatic) storage on the
program stack. In contrast, local allocators chosen for a specific usage pattern (e.g.,
many same-size allocations, single-threaded, or all-at-once teardown) that is known
in advance to the application programmer can both avoid pessimistic assumptions
and obviate runtime analysis. What’s more, even when a global allocator would
provide adequate performance, it would provide none of the collateral benefits
afforded by an AASI.

Zero-Overhead-Principle Compliance

For all but the C++11 model, AA objects require maintaining extra state, even for the
most common case (i.e., where the default allocator is used), and necessarily employ
virtual-function dispatch when allocating and deallocating memory. Don’t these
overheads violate the zero-overhead principle?

47 E.g., since the seminal coalescing memory-allocation strategy proposed by Doug Lea in the late
1980s [lea89].
48 Examples of smart multithreading global allocators are tcmalloc [ghemawat07], ptmalloc, Hoard
[berger00], and jemalloc [evans02]. Each has applications at which they excel and situations in
which they are less adept, although our informal testing shows that jemalloc is slightly better than
the others as a general-purpose choice. For optimal performance, these allocators should be tested
and compared using your specific application.
49 berger02
50 lakos16, Section 2, p. 4; bleaney16; lakos17b
51 ghemawat07

Page 13 of 27

Not at all. The parts of a program that do not make use of AASI components do not
pay even the demonstrably small cost for extra allocator state or virtual function
calls. Therefore, having an AASI available does not violate the zero-overhead
principle (ZOP) any more than would, say, providing a class having virtual functions.

This concern is misguided based on two separate aspects: object size and run time.

1) The overall object-size overhead that typically (but not necessarily) results
when employing the underlying allocation model need not necessarily increase
object footprint size. Some or all of it (and potentially even other object state
that would normally reside in the footprint) may be relocated to the
dynamically allocated memory itself.52,53 This relocation, however, is always
subject to a space/time tradeoff, and such compressed-footprint
implementations are rarely found in highly tuned code because performance
measurements seldom favor them.54

2) Runtime overhead due to virtual dispatch is (perhaps counterintuitively) all
but nonexistent. With simple, short-lived, allocate-use-deallocate patterns
(where the overhead would matter most), the client’s compiler typically has
full (source-level) visibility into the implementations of both the container and
the allocation functionality being injected and is therefore able to devirtualize
the calls, eliminating entirely any runtime cost of virtual dispatch.55,56
Conversely, locality (or lack thereof) typically dominates runtime performance
for longer-running processes, irrespective of any allocation/deallocation
suboptimality (e.g., due to virtual dispatch).57

52 On older Sun platforms supporting natural alignment [lakos96, Section 10.1.1, “Natural
Alignment,” pp. 662–665], for example, the footprint of an std::vector consisted of just a single
word (e.g., four bytes) unless the sizeof the contained element was 1, in which case the template
was specialized to yield two words instead of one. This design tradeoff favors compactness for the
empty vector and therefore immense performance gains for sparse matrices (i.e., vectors of vectors)
but at the expense of (more typical) nonsparse ones.
53 Consider that general-purpose allocators commonly prepend small amounts of bookkeeping
storage just below the (starting) address of the returned memory; storing the address of the allocator
itself there is no different.
54 For example, a too-clever-by-half design for short-string optimization (SSO) was conceived of
separately by Lakos and Alexandrescu c. 2000 (see, e.g., alexandrescu04). Using this design, the last
byte in the SSO buffer was intended to hold the bookkeeping state in such a way that it would
become 0 (and hence dually serve as the terminating null character) for a maximally long string
fitting into the footprint. This design is not used in BDE today because it was measured to be
significantly slower for its intended clients than a more horizontal (less space-efficient) encoding.
55 lakos16, Section 7, pp. 12–28; bleaney16
56 As a demonstration of devirtualization [halpern19], we defined a simple string-like class that uses
a BDE-model allocator, and we observed that the compiler inlines the allocate and deallocate
calls rather than invoking them through the vtbl. Some current compilers, however, surprisingly fail
to devirtualize nearly identical code that uses a pmr::polymorphic_allocator, which simply wraps
a pointer to pmr::memory_resource.
57 lakos16, Section 8, pp. 28–47; bleaney16

Page 14 of 27

As a source of design guidance, the ZOP is less useful for library features than for
language features. As SI developers, we often make practical performance-related
choices and tradeoffs during library design.

1) An example of a tradeoff that offers benefits to some with (essentially) no cost
for any (i.e., a “Pareto-optimal” performance improvement, which would not
actually be a tradeoff) is the replacement of an O(N) algorithm with an O(log N)
one for cases invariably involving only sufficiently large values of N.

2) An example of solid benefits for some but at a small cost to many or all is the
Standard’s requirement that std::list<T>::size() be O(1), which
effectively mandates a larger footprint size for all such list objects.

3) And lastly, an example of a stark performance tradeoff, having benefits for the
expected case, with significant cost for less-typical cases, is short-string (aka
small-string) optimization (SSO). The increased footprint of a string that
supports SSO is wasteful for strings that are either empty or too large to fit in
the short-string buffer. Nevertheless, the benefit for the typical or expected
case is so large that the specification for std::string was designed to permit
implementation using SSO, and all major library vendors do so.

In addition to pure performance tradeoffs, we sometimes make design choices that
trade off functionality for ease of use. An example of a design tradeoff heavily
favoring functionality over ease of use is that of the C++11 allocator model. In
addition to always guaranteeing absolutely zero runtime and space overhead when
using global allocators, the C++11 allocator model is maximally general (e.g., enough
so to support allocating even shared memory) but is also considered all but
unusable for most programmers. On the other hand, a BDE/PMR-based AASI,
which restricts usage to just conventional memory addresses, is an example of
making this tradeoff in the opposite direction: A few hearty souls will fend for
themselves, so that all can thrive.

In addition to deliberately excluding some forms of alternative (e.g., shared) memory,
BDE/PMR-based AASI also makes another tradeoff: The cost of maintaining an
extra allocator pointer (the so-called “allocator tax”) is similar to mandating that
everyone purchase automobile insurance, a modest cost required of all drivers so
that funds are available in case of accident. Keep in mind that this runtime
overhead where no special allocator is needed is typically negligible — e.g.,
compared with that of, say, SSO.

Developing highly performant (hierarchically) reusable libraries requires
performance tradeoffs that necessarily impose some degree of undesirable costs on
some class of potential users. Would a library that is not somehow AA be considered
to violate the ZOP because it imposes the cost of global (suboptimal, untunable)
memory allocation on all users of that library? By that metric, every reusable library
would violate ZOP, which is clearly an absurd assertion! We maintain that the
tradeoff favoring a BDE/PMR-model AASI over either a C++11-model AASI or no
AASI at all is sound.

Page 15 of 27

Verification/Testing Complexity

Failure to properly annotate types or propagate allocators can undermine the
effectiveness of the allocation strategy and can lead to memory leaks, especially when
winking-out memory. Aren’t extensive verification, testing, and/or peer review
required to avoid such errors?

Use of virtually any new C++ library or language feature adds some amount of
testing burden for the client. Use of allocators is entirely opt-in; client developers
unconcerned with employing alternative allocators can simply ignore any optional
allocator arguments and use the currently installed default allocator automatically,
thus requiring no change to verification or testing methodology. Winking-out
memory — with or without invoking destructors — is admittedly a powerful and
potentially dangerous technique; like many other expert-level C++ features, engineer
training and discipline will be essential to avoid inadvertently misapplying it.

Compared to other, more irregular techniques, correct use of allocators with a
consistent AASI can, precisely because of their regularity, be more readily checked
at compile time via static-analysis tools, such as bde_verify, or at run time (in test
drivers) using, for example, bslma::TestAllocator. On the client side, quotidian
use of bde_verify can prevent common errors, such as returning an object
constructed using a local allocator on the program stack or repeated use of the same
monotonic allocator from within a loop. Thus, BDE-model allocators can, in
practice, be substantially less error prone than many other, less regular forms of
custom memory allocation.

Compatibility with Modern C++ Style

C++11 encourages a style of programming where objects are more often passed and
returned by value, sometimes relying on rvalue references to move these objects
efficiently. In contrast, BDE style relies on passing AA objects (by address) as
arguments to achieve optimal efficiency and control over the allocator employed.

Whether or not an object returned from a function is AA has absolutely no effect on
the effectiveness or advisability of passing and returning objects by value.

Employing solely the return-by-value style significantly impedes performance in
cases where a function returning an allocating object is used repeatedly, regardless
of whether allocator customization is desired.58 For example, if a function returning
a vector by value is called in a loop, then that vector object must necessarily be
created and destroyed on each iteration, thus obviating any possibility of object
pooling (an oft touted “alternative” to AA software, see “Compared to non-AA
Alternatives,” below).

By contrast, if the address of the resulting object is passed into the function as a
modifiable argument, internal memory will typically be allocated during the first call

58 For exactly this reason, the BDE style guidelines discourage returning objects (by value) that
allocate memory (irrespective of whether or not it is AA).

Page 16 of 27

to the function, occasionally grow (when necessary) during subsequent calls up to
some high-water mark, and be repeatedly reused thereafter.

Entirely separately, to support non-default allocators, the function should accept
the would-be returned AA object as a pointer parameter (return-by-argument) so that
the caller can construct (using the desired local allocator) the object that is to hold
the result. A return-by-value–style interface (if desired for clients who are content
with using default allocators) can then be built on top of an underlying pass-by-
argument interface (but not vice versa).59

Move vs. Allocate

When two objects use different allocators, move assignment degenerates to a copy
operation and swap has undefined behavior; doesn’t that imply that local allocators
should be avoided to enable such operations?

On the contrary, because the time to access memory often overshadows the time
needed to allocate and deallocate it,60 copies commonly provide better overall
runtime performance than moves61 — particularly in large, long-running systems
where smaller, densely packed subclusters of data are accessed (repeatedly) in
bursts. Modern computer architectures exploit such locality to improve runtime
performance62; indiscriminate use of move operations tends to degrade performance
by reducing locality of reference.63

When the current working set is sufficiently small (e.g., it can fit into main memory
or perhaps even cache), the overhead due to diffusion is far less pronounced and
might well favor moves over copies as is typically the case within a single container.
If the entire program is sufficiently small, a single, global allocator — possibly even
the default one64 — will usually suffice. Conversely, when the working set is too
large to fit within a specific level of the memory hierarchy (e.g., L1 cache, L3 cache,
or main memory), the loss in performance (due to loss of temporal locality and
thrashing) will invariably overwhelm any runtime overhead of copying data into a
local arena.65 Moreover, if the objects being accessed are smaller than an atomically

59 Having both styles colocated within the same scope, however, would needlessly clutter the interface
for both sets of clients and would impose on clients of the lower-level interface an unnecessary
physical dependency on the higher-level interface.
60 lakos16, bleaney16
61 halpern20d
62 See Item 2, “Access Locality,” in the “Performance Benefits” section of this paper.
63 E.g., when the (overall) system size exceeded L3 cache size, one benchmark using move performed
only one third as fast as the same program using copy [halpern20d]. When system size approached
twice the size of physical memory, the move version was only one tenth as fast.
64 Note that a performance improvement of roughly 4 times was observed [lakos16, Section 10, pp.
53–57] using an unsynchronized local multipool allocator compared to the default global one.
65 A recent test of moves and copies [halpern20d] conducted at Bloomberg showed a 1.5 to 2.5 times
speedup of copy over move for data sets from 4MB to 32MB with either a large number of small
subsystems or a small number of large subsystems when each element was accessed 512 to 8096
times. The root cause of this effect is not yet fully understood, but hardware prefetching is suspected
to have played a role in speeding up access to elements stored close together in physical memory.

Page 17 of 27

fetched block of memory, such as a cache line or (more commonly) a page, then a
significant speed-up (due to spatial locality and constructive interference) occurs
when objects that are used together share a common block (irrespective of any
specific access pattern or prefetching algorithms).66

The BDE/PMR allocator model directly facilitates optimizing moves (and swaps) by
copying data when it is most likely to be beneficial to performance and eliminating
copies otherwise. In particular, because a container using the BDE/PMR model
propagates its allocator to each of its contained elements, moves within such a
container (e.g., during insert, delete, or sorting operations) never degenerate to
copies and swaps remain O(1).67 If different subsystems (i.e., architecturally
significant subregions of a program having independent access patterns) use
different allocators (as they typically should), logical move operations across
subsystems result in data being physically copied, thus preserving locality within
each subsystem, whereas moves within an arena (where locality already exists) do
degrade to copies.

Because access time rather than move/copy time typically dominates runtime
performance for large systems, programmers must manufacture a domain of locality
for each subsystem. This need for locality, achieved via local (arena) memory
allocation, naturally takes precedence over preferring moves to copies.

Compared to Non-AA Alternatives

Object pools and factories serve to reduce overhead caused by allocating memory, so
why aren’t these other approaches good (if not better) alternatives to allocators?

First, while these other more specialized (perhaps more familiar) higher-level
techniques serve a valuable purpose, they are not a general substitute for fine-
grained, articulate memory allocation. Where applicable, object pools avoid creating
and destroying objects across disparate uses, thereby also reducing the frequency
with which individual piece parts are allocated. Object pools and associated factories
are often ideal for application-level purposes. For innumerable other purposes,
however — e.g., implementing contiguous-storage containers, such as std::vector
or std::deque — they are simply not applicable. Moreover, their utility in programs
having high utilization (U) of the type being pooled would be dubious.68

66 Given a sufficiently large L3 cache, the entire working set (in terms of cache lines) would
theoretically fit in L3 and yet (due to pathological diffusion throughout virtual memory pages) fail to
fit within physical memory, thereby resulting in page thrashing.
67 When swapping individual objects that might not share a common allocator, however, using
alternative (e.g., > O(1) and/or potentially throwing) swap routines that do not require allocator
equality is appropriate. As with move, such an alternative swap would make full copies of the objects
being swapped if and only if their allocators do not compare equal, i.e., exactly those circumstances
where copying elements is likely to be preferred over simply swapping pointers.
68 Memory utilization and its effects on performance are described in detail at 55:15 in Part I of
lakos17b. See also lakos16 and bleaney16.

Page 18 of 27

Second, even when these more specialized techniques are applicable, they are never
significantly faster and often are less performant than the standard pieces of a well-
designed and well-implemented AASI. Unlike AA containers, ad hoc containers that
are specialized to use these techniques are not ubiquitously interoperable and do
not scale as well to large code bases. Other than where having such higher-level
specialized constructs offers clear usability gains,69 the development (e.g., training)
overhead of maintaining multiple ways of accomplishing the same task is reason
enough to generally avoid them.

Third, when object pools and factories are a good fit, they are most appropriately
built on top of hierarchically reusable AASI components, such as an adaptive
memory pool (which, of course, is naturally AA already). Given that the hard work
has already been done, the object pool would naturally be AA as well. A factory or
object pool that does not use a (plug-in) allocator is, in effect, doing the job of both
the pool and the allocator, thus gratuitously reducing the modularity of the
software.

Finally, even when these alternative approaches are the right answer, unless they
themselves are AA, they forfeit all the collateral benefits of an AASI and are therefore
hardly better — and often significantly slower — than their fully custom
counterparts.

CONCLUSION
Custom memory-allocation strategies imbued in C++ software can have tremendous
beneficial impact, principally in the form of enhanced runtime performance but also
in flexible object placement, instrumentation, and so on. Historically, however,
application clients have realized these various benefits only through use of custom
data structures at truly exorbitant development and maintenance costs.

Whether to make use of custom memory allocation is an economic decision that
affects both the developer making the decision and the business as a whole. When
an application developer determines that the benefits of employing custom memory
allocation outweigh the costs, then such custom allocation is indicated. Thus, more
software will reap the benefits of custom memory allocation if the costs — both real
and perceived — are kept low.

In this paper, we proposed having an (appropriately) AASI as an alternative way for
application developers to realize nearly the same advantages of fully customized
memory management but at a tiny fraction of the client cost. Furthermore, having
such AASI in place affords less-needful clients these very same advantages with
minimal added effort.

Supporting an enterprise-wide AASI does introduce associated fixed engineering
costs. These extra costs are borne largely by SI developers, but they also result from
added operational overhead (e.g., developer-facing tools, training, and

69 E.g., object pools used in long-running programs in which complex objects are routinely recycled to
avoid the (gratuitous) runtime cost of repeatedly destroying and then recreating them.

Page 19 of 27

documentation) and/or added risk due to accidental (client) misuse. Other concerns
might call into question the desirability of having AASI at all. When looking at the
BDE and PMR models, however, these understandable objections (and other, less
well-reasoned ones) are readily dispatched by real-world experience and empirical
data.

When all of the costs of having an AASI are weighed against its demonstrated
benefits, one might reverse the question and ask, “Can we afford not to invest in an
AASI?” By committing to maintaining an appropriate AA subset of our code base
now, we stand to gain most of the benefits otherwise possible only through custom
client solutions, while improving application-development time, interoperability, and
stability. We hope to do better though; in the future, we can eliminate virtually all of
the fixed SI costs by promoting our language-based solution and bringing it to
fruition by investing in compiler development via the BB20V initiative70. Investing in
such compiler development — just like investing in the development of self-driving
cars — will dramatically reduce the effort required from infrastructure developers to
make software AA while improving both the quality and the performance of the
resulting components.

70 Conceived by John Lakos in early 2018, Bloomberg’s 2020 Vision (BB20V) initiative [lakos18] is
jointly supported by Bloomberg’s Chief Technology Officer and its engineering services. BB20V
includes a focused effort to bring C++23-like compiler technology (e.g., via GCC and Clang) to
Bloomberg well before some features are part of the official C++ Standard through proactive
development and deployment (at scale) of four specifically targeted business-critical features, namely
concepts [sutton17, romeo18], contracts [dosreis16, berne18a, berne18b, berne19], modules
[lakos17a, burgers19, dosreis15], and allocators [halpern20c].

Page 20 of 27

APPENDIX I: LIKENING AA SOFTWARE TO AIRLINE BUSINESS CLASS
The economic advantages afforded by AA software are in many ways analogous to
the extra classes of seats available from modern airlines. Before the late 1970s,71
airlines offered just two classes of service: Economy (also called Coach) and First
Class. Given differentiated levels of service, clients in two distinct categories might
individually derive increased benefit over access to just a single seat class, thereby
improving the potential profit margin for the airline itself. First Class offered
maximal comfort and flexibility but at a price few could afford. Economy provided
basic service and functionality for those who could not afford the cost of First Class,
but those customers might appreciate First-Class–level service were it less
expensive.

Software that allocates memory could have analogous categories. First Class would
be custom data structures, which offer maximal performance and flexibility
managing memory for the few clients who can justify such exorbitant engineering
costs. Economy would provide new and delete only, i.e., basic memory
management for those clients who cannot justify writing custom data structures
themselves though they might appreciate the added benefits such customizations (or
suitable alternatives) offer were they able to afford them.

To further maximize customer satisfaction and their own profit,72 airlines
subsequently introduced two additional classes of service that compete directly with
their respective classical counterparts. Business Class offers most of the comfort
and flexibility of First Class at a fraction of the cost, and Premium Economy
provides more comfort than Economy at a small additional cost.

The relationships among the new seating categories and the analogous category for
software memory allocation are summarized in the table below. For software that
allocates memory dynamically, our proposed AASI offers an analogous category that
combines the two new classes of seats. Like airline-seat categories, this middle AASI
will draw customers from both extremes: new/delete and full-custom. Projects that
might never have been considered for custom memory management now have
another option because the incremental cost (to clients) of exploiting available AA
types (i.e., by supplying preexisting specialized memory allocators to AA objects) is
small, just like the cost difference between Economy and Premium Economy.
Similarly, developers, pressed by performance or other requirements into creating
custom data structures, may rejoice in simplifying their development efforts with
easy-to-implement, component-based AA solutions (our Business Class service) that
effectively address their typical requirements far more economically than any
custom (First Class) alternative.

71 brancatelli12
72 price discrimination in microeconomics

Page 21 of 27

Seat Cost/Benefit Analogous Meaning

Economy Minimal cost but little (if any) flexibility Creating/using allocator-unaware objects

Premium
Economy

Costs slightly more than Economy yet
affords substantially increased flexibility

Creating/using AA software rather than
(classical) allocator-unaware objects
a

Business
Class

Costs far less than First Class yet affords
nearly everything one might reasonably want

Creating/using AA software rather than
(classical) bespoke data structures

First
Class

As good as it gets but prohibitively
expensive

Creating/using bespoke data structures

Just as Business Class greatly lowers the cost for some would-be First-Class
customers and Premium Economy lures less indulgent (yet discerning) Economy
customers, making an appropriate subset of our software infrastructure allocator-
aware would provide essentially all the benefits typically sought from custom
solutions at greatly reduced developer costs (depending on the model73), thereby
impacting both the new/delete and full-custom classical software-client categories.

Technical Details (for the Mathematically Inclined)

The figure below illustrates the economic picture as an AASI is made available to
client developers. Along the x-axis is a curated set of client components, sorted in
increasing order (depicted by the heavy dotted line) of the perceived value derived
from having that component support the best possible local memory management.
Components at the extreme left of the graph would derive little or no benefit from
supplying a custom allocator (no matter how easy providing one would be), and
components on the extreme right simply cannot fulfill their purpose absent
handcrafted, custom-tuned memory allocation. In between these extremes lies a
unique threshold percentile a, at which the perceived marginal value of
customization first exceeds its marginal cost and rational and capable clients
(absent an AASI) would theoretically be indifferent to creating customized, memory-
management data structures.74

73 Although all of the allocator models are significantly less costly for clients than custom data
structures, the C++11 model is still difficult to use and prohibitively expensive for SI implementers.
The BDE and PMR models are much less costly for clients and SI implementers alike.
74 A variant of this graph, with thorough narration, appears in lakos19 starting at 4:50.

Page 22 of 27

Once we introduce an AASI, two other important percentiles on the x-axis
materialize. To the left of a is a percentile, a-, below which the perceived (net)
marginal value of exploiting an AASI is considered insignificant. To the left of a-,
(Economy) clients wisely continue to avoid supplying custom allocators and hence
derive no benefit from the new AASI. To the right of a is a percentile a+, above which
(First-Class) clients will choose to write their own custom data structures, regardless
of any reusable AASI alternative, and hence they too will gain no benefit from our
new AASI.

Introducing an AASI adds value enjoyed by clients in the percentile range (a-, a+)
who actively choose to exploit the AA aspects. The light gray block in the range (a,
a+) shows the consistently significant potential cost savings over providing full-
custom solutions and retains almost the same derived value.75 (Compare this case to
the cost savings of choosing Business Class rather than First Class.) The dark gray
area under the potential-value curve in the range (a-, a+) shows the varying
increased value derived from clients choosing to readily pass existing allocators into
our new AASI compared to willfully choosing not to do so at almost the same client

75 Note that the relative heights of the cost and value curves shown in the graph are irrelevant
because they are measured on separate vertical axes (having distinct units that are not even directly
comparable). Moreover, this graph is not to scale (the vertical axes are not even labeled) because
value and cost can be evaluated and traded off in myriad ways. What’s more, the actual client
development costs will vary substantially, depending on which allocator model is chosen (C++11 or
BDE/PMR).

!-

Upper Class
(Utilizing AA Software)

(New, Tiny)
First Class

(New, Smaller)
Economy

Value

0% 100%
Value

Percentile

Premium Economy
(More Value)

Business Class
(Less Cost)

Classic Economy
(Minimal Value)

Classic First Class
(Maximal Cost)

Potential
(Incremental)

Value

(In
cr

em
en

ta
l)

Fi
rs

t-C
la

ss
 C

os
tValue

! !+

Decreased
(Incremental)

Cost

Increased
(Incremental)

Value
Upper-Class

(Incremental)
Cost

Cost

Page 23 of 27

development costs.76 (Compare this case to the increased value of choosing Premium
Economy over Economy).

With the new AASI in place, client components naturally group into three distinct
categories characterized by the solid, step-shaped gray line (increasing left-to-right)
depicting (1) making do without flexible memory allocation (Economy class), (2)
economically exploiting AASI (Business and Premium Economy classes), and (3)
writing very expensive custom data structures (First Class). Category (1) is smaller
than Classic Economy because the incremental cost of achieving near first-class
value is sufficiently reduced by our new AASI such that a non-negligible proportion
of Classic-Economy clients will appreciate the value proposition and opt into
category (2). We assert that category (3) is tiny compared to Classic First Class
because only those components having truly extreme performance requirements or
those in need of special memory addressing (e.g., shared memory, proxies) would
remain. Ideally, all client components that would naturally fall into category (2)
would actively exploit AASI by providing (typically) pre-existing custom allocators as
appropriate.

Appendix Summary

We assert that virtually all reasonable clients who, absent an AASI, would have
chosen to write their own data structures would now instead opt for a readily
available AASI (or at least use it for initial prototyping). On the other hand, we
cannot know just how many Classic-Economy clients would voluntarily choose to
exploit an AASI if they themselves did not perceive the need for the added efficiency.
For this latter type of client, the benefit of passing in custom allocators becomes
defuse (“It saves the company money on hardware with slightly more effort on my
part”) rather than immediate (“I need a high level of performance, flexibility of
placement, instrumentation, and so on for my project to succeed!”). Hence, any
active use of an AASI becomes altruistic. We suspect that the extent of such use of
local allocators by otherwise Classic-Economy clients would be heavily influenced by
(1) the client’s ease-of-use of the particular allocator model employed and (2) the
sophistication and training of clients, where training might need to involve
inculcating a certain culture of altruism.

So far, we have discussed cost/benefit entirely from the application clients’
perspective. To support this new class of AA service, significant additional (albeit
comparatively fixed) per-library-component development and maintenance costs
would be borne by SI developers (analogous to that for an airline) but, unlike the
airline industry, a large-scale software company (such as Bloomberg) comprises

76 Also note that the cost of developing the AASI itself is not pictured in the graph. This image is
intended to suggest qualitatively the enormous potential value and relatively small incremental cost
for application clients’ using a company-provided AA infrastructure once those fixed costs have been
paid compared to ongoing (marginal) client costs associated with developing custom data structures
ad hoc.

Page 24 of 27

both SI along with its own application clients; hence, the company as a whole
benefits directly whenever its SI customers are more productive. To reduce per-
component costs for SI and clients alike, we need to invest heavily in new compiler
technology that might someday automate the task of creating AA components.77
Bloomberg’s bde_verify tool already supports an approximation of what will
eventually become an ultra-efficient, language-supported model for realizing AA
software at essentially no additional cost over a (classical) allocator-unaware SI,
thereby eliminating any plausible argument against supporting ubiquitous control
over fine-grained memory management throughout any library software from which
clients might eventually benefit.	

77 Cars (like C++20 compilers in our analogy) enable a licensed driver (experienced programmer) to
get to a desired destination (efficient application-specific custom memory management). Yet, with
each new journey, the car’s owner (company comprising application and library developers) must
bear a substantial ongoing and recurring opportunity cost: Either the owner (an application
developer) must personally drive the car (write bespoke data structures) or pay a chauffeur (a library
developer) to drive the car (make each SI component AA). Though still unproven, self-driving-car
technology is almost universally considered to soon be widely available. When that happens, the cost
of designing, making, and deploying self-driving cars will be scarcely noticeable over that of its non-
self-driving predecessor. Moreover, any human opportunity costs associated with creating or using
these modern cars will essentially disappear, rendering conventional (human-driven) cars of today
entirely obsolete. What's more, as this burgeoning technology continues to improve over time, so too
will the risk — i.e., the accident (defect and/or crash) rate due to the unchanging inevitability of
human driver (programmer) error. tl;dr: Compiler support for AA software in C++ is a game changer.

Page 25 of 27

REFERENCES

alexandrescu04. A. Alexandrescu. “Write Less Code and More Software,” 2004.
https://www.youtube.com/watch?v=Lv5vQXraGJM

berger00. E. Berger, K. McKinley, R. Blumofe, and P. Wilson. “Hoard: A Scalable
Memory Allocator for Multithreaded Applications,” International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS) 2000, Cambridge, MA.
Accessed at:
https://www.cs.utexas.edu/users/mckinley/papers/asplos-2000.pdf

berger02. E. Berger, B. Zorn, and K. McKinley. “Reconsidering Custom Memory
Allocation,” Object-Oriented Programming, Systems, Languages & Applications
Conference (OOPSLA), November 4-8, 2002, Seattle, Washington.

berne18a. J. Berne and J. Lakos. “Assigning Concrete Semantics to Contract-
Checking Levels at Compile Time,” C++ Standards Committee Working Group
ISOCPP, Technical Report P1333R0, 2018.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1333r0.txt

berne18b. J. Berne, N. Burgers, H. Rosen,and J. Lakos. "Contract Checking in C++:
A (Long-Term) Road Map, C++ Standards Committee Working Group ISOCPP,
Technical Report P1332R0, 2018.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1332r0.txt

berne19. J. Berne, and J. Snyder. “Minimizing Contracts,” C++ Standards
Committee Working Group ISOCPP, Technical Report P1607R0, 2019.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r0.pdf

bleaney16. G. Bleaney. “Validation of Memory-Allocation Benchmarks,” C++
Standards Committee Working Group ISOCPP, Technical Report P0213R0,
2016.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0213r0.pdf

brancatelli12. J. Brancatelli, "A 34-Year History of International Business Class,
the Road Warrior's 'Happy Place,'" The Business Journals, December 12, 2012.
https://www.bizjournals.com/bizjournals/blog/seat2B/2012/12/history-of-
airline-business-class.html

burgers19. N. Burgers. “Simplifying Mixed Contract Modes,” C++ Standards
Committee Working Group ISOCPP, Technical Report P1448R0, 2019.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1448r0.pdf

denning68. P. Denning. “The Working Set Model for Program Behavior,”
Communications of the ACM, 11:5, May 1968.
Accessed at http://denninginstitute.com/pjd/PUBS/WSModel_1968.pdf

denning05. P. Denning. “The Locality Principle,” Communications of the ACM, 48:7,
July 2005.

Page 26 of 27

Accessed at
http://denninginstitute.com/pjd/PUBS/CACMcols/cacmJul05.pdf

dosreis15. G. Dos Reis, M. Hall, and G. Nishanov. “A Module System for C++
(Revision 4),” C++ Standards Committee Working Group ISOCPP, Technical
Report P0142R0, 2016.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0142r0.pdf

dosreis16. G. Dos Reis, J.-D. Garcia, J. Lakos, A. Meredith, N. Myers, and B.
Stroustrup. “A Contract Design,” C++ Standards Committee Working Group
ISOCPP, Technical Report P0380R1, 2016.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf

evans02. J. Evans, “jemalloc memory allocator,” 2002.
http://jemalloc.net/

feher18. A. Feher and A. Meredith. “Add Test Polymorphic Memory Resources to the
Standard Library,” C++ Standards Committee Working Group ISOCPP,
Technical Report P1160R0, 2018.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1160r0.pdf

ghemawat07. S. Ghemawat. “TCMalloc : Thread-Caching Malloc,” 2007.
http://pages.cs.wisc.edu/~danb/google-perftools-0.98/tcmalloc.html

halpern08. P. Halpern. “The Scoped Allocator Model (Rev 2),” C++ Standards
Committee Working Group ISOCPP, Technical Report N2554, 2008.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2554.pdf

halpern14. P. Halpern. “Polymorphic Memory Resources -r2,” C++ Standards
Committee Working Group ISOCPP, Technical Report N3916, 2014.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3916.pdf

halpern17. P. Halpern. “Allocators: The Good Parts,” C++ Conference (CppCon),
September 2017, Bellevue, WA.
https://youtu.be/v3dz-AKOVL8

halpern18. P. Halpern. “Utility Functions to Implement Uses-Allocator
Construction,” C++ Standards Committee Working Group ISOCPP, Technical
Report P0591R4, 2018.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0591r4.pdf

halpern19. P. Halpern. Web source demonstrating devirtualization.
https://godbolt.org/z/GMBEwW

halpern20a. P. Halpern. “Unleashing the Power of BDE-Style Allocator-Aware (AA)
Software,” forthcoming.

halpern20b. P. Halpern. “Making C++ Types Allocator-Aware (AA),” forthcoming.

halpern20c. P. Halpern. “A language facility for making types Allocator Aware (AA),”
forthcoming.

Page 27 of 27

halpern20d. P. Halpern. “Measuring the Costs of Moving References vs. Copying
Data,” forthcoming.

khlebnikov19. R. Khlebnikov and J. Lakos. “Contracts, Undefined Behavior, and
Defensive Programming,” C++ Standards Committee Working Group ISOCPP,
Technical Report P1743R0, 2019 (originally published internal to Bloomberg,
2017).
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1743r0.pdf

lakos96. J. Lakos. Large-Scale C++ Software Design. Boston: Addison-Wesley, 1996.

lakos16. J. Lakos, J. Mendelsohn, A. Meredith, and N. Myers. “On Quantifying
Memory-Allocation Strategies (Revision 2),” C++ Standards Committee Working
Group ISOCPP, Technical Report P0089R1, 2016.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0089r1.pdf

lakos17a. J. Lakos. “Business Requirements for Modules,” C++ Standards
Committee Working Group ISOCPP, Technical Report P0678R0, 2017.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0678r0.pdf

lakos17b. J. Lakos. “Local (Arena) Memory Allocators,” Meeting C++, 2017.
https://youtu.be/ko6uyw0C8r0 (Part I),
https://youtu.be/fN7nVzbRiEk (Part II)

lakos18. J. Lakos. “Bloomberg 2020 Vision for C++,” Bloomberg internal blog, 2018.

lakos19. J. Lakos. “Value Proposition: Allocator-Aware (AA) Software,” C++
Conference (CppCon), Aurora, CO, September 2019.
https://www.youtube.com/watch?v=ebn1C-mTFVk&feature=youtu.be&t=290

lakos20. J. Lakos. Large-Scale C++ Volume I: Process and Architecture. Boston:
Addison-Wesley, 2020 (published December 17, 2019).

lea89. D. Lea. “Some Storage Management Techniques for Container Classes,” 1989.
http://gee.cs.oswego.edu/dl/papers/C++Report89.txt

meredith19. Alisdair Meredith and Pablo Halpern, “Getting Allocators Out of Our
Way,” C++ Conference (CppCon), Aurora, CO, September 18, 2019.
https://www.youtube.com/watch?v=RLezJuqNcEQ

romeo18. V. Romeo and J. Lakos. “Concept-Constrained auto,” C++ Standards
Committee Working Group ISOCPP, Technical Report P0915R0, 2018.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0915r0.html

stallings10. W. Stallings. Computer Organization and Architecture: Designing for
Performance, 8th ed. Upper Saddle River, NJ: Prentice Hall, 2010.

sutton17. A. Sutton. “Wording Paper, C++ Extensions for Concepts,” C++ Standards
Committee Working Group ISOCPP, Technical Report P0734R0, 2017.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0734r0.pdf

weis20. A. Weis. “Implementing Effective BDE-Style Allocators,” forthcoming.

wikipedia19. https://en.wikipedia.org/wiki/Locality_of_reference

