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1 Abstract
This paper explores the problems of non-transient constexpr allocations, and proposes a set of constness-based
requirements that govern when it is safe to allow such allocations, and when they can be placed in immutable
storage. Unfortunately, the current (C++20) requirements are too strict to allow current implementations of
many important allocating library types (e.g. vector) to be used as top-level constexpr variables, and it is
necessary for them to be so. This is because even though such types meet the requirements in spirit, C++’s type
system lacks the expressive power required for the compiler to be able to prove that such types meet them in
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actuality. To bridge this gap, this paper proposes propconst, a new cv-qualifier that expresses “deep constness”
and is closely related to propagate_const[N4388][N4600]. Lastly, we demonstrate how usage of propconst solves
the constexpr vector problem, lets users protect themselves from unintentional const-correctness violations,
removes the need for propagate_const and gives us an owning propagate_const almost for free.

2 Status of this paper
This paper is a new core language feature proposal targeting C++23.

3 Motivation
3.1 Non-transient constexpr allocation
Promotion of non-transient constexpr allocations to static storage was proposed by [P0784R5], but the feature
was not accepted into C++20 due to concerns surrounding composability. For example, should the following
snippet compile?
constexpr unique_ptr<unique_ptr<int>> uui

= make_unique<unique_ptr<int>>(make_unique<int>());
int main() {

unique_ptr<int>& ui = *uui;
ui.reset();

}

As part of the test for whether a constexpr allocation can be promoted to static storage, [P0784R5] proposed that
“evaluating that destructor would be a valid core constant expression and would deallocate all the non-transient
allocations produced by the evaluation of expr.”, and the above example satisfies that part of the test. However,
as P0784 also points out, the test is meaningless because the destructor reads from a variable that is mutable
at runtime (the internal int* in the inner unique_ptr<int>), and so without further guarantees about its
immutability being provided, it must be rejected.

For the destructor evaluation test to be meaningful, we need to guarantee that a real destruction after program
execution would behave the same as the the destructor did in the test, and this suggests that all we need is an
extra condition for the destructor evaluation test:

The simulated destruction is unsound and invalid unless all variables read during the destructor evaluation
test are const, and are not part of an object that could be destructed at runtime

The example above violates this condition because the unique_ptr<int>’s internal int* member is not
const, making it ill-formed as desired. Similarly, unique_ptr<string> and unique_ptr<vector<int>> fail
to meet this condition and are ill-formed, as they must be. On the other hand, this condition would allow
constexpr unique_ptr<int> and constexpr vector<int>, since their internal pointers are const by virtue of
being non-static data members of a const object. So far so good.

Next, let’s consider the same example, but using single-element vectors instead of unique_ptrs:
constexpr vector<vector<int>> vvi = {{1}};
int main() {

vector<int>& vi = vi[0]; // ill-formed: discards const qualifier
vi = vector<int>{}

}

Unlike unique_ptr, vector is a “deep const” type, meaning that a const vector does not let the user mu-
tate its elements. Without the ability to mutate the vector<vector<int>>’s elements, we can’t write code
that would lead to a double-free like we could in the unique_ptr example, and so the reasoning for making
constexpr unique_ptr<unique_ptr<int>> ill-formed does not carry over to this example.
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Unfortunately, by the same reasoning we used for the constexpr unique_ptr<unique_ptr<int>> example, this
constexpr vector<vector<int>> example would fail to satisfy our proposed condition. The problem here is
that the “deep const” property of vector is informal, it is expressed by the author of vector taking great care
to ensure that no const-qualified member function leaks a non-const reference to one of its members (either
directly or indirectly, e.g. via an iterator). Since the compiler has no understanding of deep constness, we cannot
modify our non-transient constexpr allocation condition in a way that will differentiate between unique_ptr
and vector.

If we could make the compiler aware that vector was a deep-const type, we could allow constexpr
vector<vector<int>> without modifying the non-transient constexpr allocation condition. One approach to
this was proposed by [P0784R5], in the form of the std::mark_immutable_if_constexpr library function,
which would be called by the authors of deep-const types during their constructors. This would require the
authors of deep-const types to call std::mark_immutable_if_constexpr when and only when it is appropriate
to do so, adding to the burden of writing a deep-const type. This was discussed at the Kona 2019 meeting, but
did not get approval from EWG. As a result, non-transient constexpr allocations were removed from C++20.

This paper takes another approach to giving the compiler visibility into deep constness: adding it into the type
system. In addition to solving the problem of allowing constexpr vector<vector<int>> whilst disallowing
constexpr unique_ptr<unique_ptr<int>>, it would also reduce the burden on the authors of deep-const types
by making it possible for the compiler to diagnose leaks of mutable references.

3.2 Writing deep-const types safely
C++’s const rules provide a great deal of help to users in getting their code to be const-correct: attempts to
mutate a const variable will not compile, neither will attempts to mutate a variable via pointer/reference-to-
const or form a pointer/reference to non-const from a const one. Furthermore, const-qualification of member
functions separates those that mutate state from those that don’t, and within a const-qualified member function,
attempts to mutate member variables are ill-formed (excluding mutable members).

However, these protections only go as far as the first pointer or reference indirection. If a class has a non-static
data member of pointer type, then whilst the pointer itself cannot be changed within a const member function,
the data pointed to may be changed.

A common pattern in C++ types, including almost all variable-size container types, is to have heap-allocated
data owned by the class which is considered to be part of the value of the class. Such types are often called “deep
const”, because their const-qualified member functions promise not to modify the data owned by the class.
Since the data is heap-allocated and accessed via a pointer or reference, the C++ type system does nothing to
help here, laying the burden of ensuring that the class’s value is not changed by a const member function entirely
upon the author of the class. The creators of the D programming language considered this to be a substantial
enough issue that they chose a transitive model of constness for D, where dereferencing a const pointer can not
yield non-const access to the underlying data (a choice that has its own downsides).

As an example, consider this usage of the PImpl idiom:
struct S
{

S(int i) : m_impl{std::make_unique<Impl>(i)} {}
void apply(auto fn) { fn(m_impl->i); }
void apply(auto fn) const { fn(m_impl->i); }

private:
struct Impl { int i; };
std::unique_ptr<Impl> m_impl;

};

int main()
{

const S s{42};
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s.apply([](int& i){ ++i; }); // Compile error? no.
};

Whilst it looks like the call to apply should fail, since the object s is const and it will therefore call the
const-qualified overload of S::apply, it will nevertheless compile and mutate s.m_impl->i.

This has been a limitation of C++’s type system since its early days, and our proposed propconst offers a way
to resolve it. In the above example, replacing std::unique_ptr<Impl> by std::unique_ptr<propconst Impl>
concisely provides the guarantees the author of the class expected—that an attempt to modify m_impl->i from a
const-qualified member function of S will not compile, at least not without using const_cast or its ilk.

4 The propconst cv-qualifier
In order to give the compiler visibility of the “deep const” property of types such as vector, we propose adding
a new cv-qualifier, tentatively named propconst. The propconst qualifier is only meaningful within a pointer
or reference type, i.e. T propconst* or T propconst&. In the pointer case, propconst resolves to const if
and only if the pointer is immutable, and is a no-op otherwise. In the reference case propconst behaves as-if
the reference was a pointer. This results in T propconst* behaving very similarly to propagate_const<T*>.
Top-level propconst is ignored, and we could choose to make it ill-formed if it is written verbatim in a variable
declaration.

Below are some examples of how propconst within pointer types resolves when a variable whose type involves
propconst is used in an expression:

Variable type Resolves to expression type

int propconst*
int propconst* const
int * propconst
int const * propconst
int propconst* propconst
int propconst* *
int propconst* const *
int * propconst*
int const * propconst*
int propconst* propconst*
int propconst* * const
int propconst* const * const
int * propconst* const
int const * propconst* const
int propconst* propconst* const
int * * propconst
int const * * propconst
int propconst* * propconst
int * const * propconst
int const * const * propconst
int propconst* const * propconst
int * propconst* propconst
int const * propconst* propconst
int propconst* propconst* propconst

int *
int const* const
int *
int const*
int *
int * *
int const* const*
int * *
int const* *
int * *
int * * const
int const* const* const
int * const* const
int const* const* const
int const* const* const
int * *
int const* *
int * *
int * const*
int const* const*
int const* const*
int * *
int const* *
int * *

Reference types resolve similarly:
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Variable type Resolves to expression type

int propconst&
int propconst* &
int propconst* const &
int * propconst&
int const * propconst&
int propconst* propconst&

int
int *
int const* const
int *
int const*
int *

When an object of pointer type is declared, and that object is not a non-static data member of a class,
the mutability of the pointer itself is known—it’s either const or it’s not. Therefore, if the pointee type is
propconst-qualified, whether that propconst will resolve to const or a no-op is also known. For example, the
variable declaration int propconst* ip will resolve to int* ip, and int propconst* const ip will resolve
to int const* const ip, as shown in the table above. However, if int propconst* m_ip is a non-static data
member declaration, the constness of the pointer changes depending on whether the member is accessed via a
const or non-const pointer (or reference) to the class, and this in turn affects how the propconst resolves. For
example, within a member function that is not const-qualified, m_ip would resolve to int* m_ip, whereas in a
const-qualified member function it would resolve to int const* const mp.
struct S {

int propconst *ppi;
void f() const {
// The type of the expresion (ppi) here is "int const *const",
// as-if ppi was declared with "int const *"

}
void f() {
// this->ppi’s type here is “int*”
// The type of the expresion (ppi) here is "int *",
// as-if ppi was declared with "int*"

}
};

Below are some examples of how propconst resolution for non-static data members changes depending on the
constness of the object that they are a member of:

Non-static data member
type (of a class T)

Expression type when
accessed via T&

Expression type when
accessed via T const&

int propconst*
int propconst* *
int propconst* const *
int * propconst*
int const * propconst*
int propconst* propconst*

int propconst&
int propconst* &
int propconst* const &
int * propconst&
int const * propconst&
int propconst* propconst&

int *
int * *
int const* const*
int * *
int const* *
int * *

int
int *
int const* const
int *
int const*
int *

int const* const
int * * const
int const* const* const
int * const* const
int const* const* const
int const* const* const

int const
int *
int const* const
int * const
int const* const
int const* const
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It is important to note that there is no new rule involved here—the above is just the interaction of the propconst
rule with status-quo non-static data member constness.

4.1 Declared types and expression types
The propconst qualifier on a declaration resolves to either const or “nothing” (i.e. it is a no-op) at the point
that the declared entity is used in an expression. This prevents the propconst qualifier from appearing directly
in the type of an expression, which in turn ensures propconst qualification is not involved in overload resolution,
and thus propconst is never needed as a part of a parameter type declarator or as a member function qualifier.
propconst can, however, appear in type aliases, type template parameters, and types resulting from the use of
decltype.

The resolution of propconst can be observed comparing decltype(x) to decltype((x)). The former yields the
type of the variable as-written, and the latter yields the type of that variable used as an expression.
struct A
{

int propconst* i_pc_ptr;

void f()
{

static_assert(is_same_v<decltype(i_pc_ptr), int propconst*>);
static_assert(is_same_v<decltype((i_pc_ptr)), int*&>);

};

void f() const
{

static_assert(is_same_v<decltype(i_pc_ptr), int propconst*>);
static_assert(is_same_v<decltype((i_pc_ptr)), int const* const&>);

};
};

4.2 Contexts in which propconst may be used
There are two questions to consider here: (1) “Where can the propconst keyword appear?” and (2) “Where
can a type with an unresolved propconst—possibly an alias or a template parameter—be used?” The first is a
question of where the user can write propconst, the second is about where that propconst may reach in the
type system, either by direct use of the keyword or via type aliases and type template parameters.

Informally, we propose to permit the propconst keyword only in contexts where its effect is context-dependent,
but a type involving an unresolved propconst would have no such limitation. For example, in the block-scope
variable declaration int propconst* i, the propconst will always resolve to a no-op, and so that usage would
be invalid. However, if the same declaration were of a non-static data member, the propconst could resolve in
different ways (e.g. in const vs non-const member functions), which means it would be a meaningful and valid
usage of the propconst keyword.

4.2.1 Examples

The interaction of these rules for is demonstrated in the following examples:

— propconst int i1; // Error: invalid use of the `propconst` keyword

In type propconst int, the propconst is immediately resolvable, so the keyword may not be used here.
Making this ill-formed helps the programmer catch a potential misunderstanding.
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— using T1 = propconst int; // Valid: effect of propconst depends on context
// in which T1 is used

In T1, the propconst keyword is not immediately resolvable. E.g. decltype(declval<T1*>()) is int*,
but decltype(declval<T1* const>) is int const*. Thus, use of the propconst keyword is allowed.

— void f1(int propconst* const) {} // Error: invalid use of the `propconst` keyword

In the function type void(int propconst* const) the propconst is immediately resolvable (it would be
equivalent to const), so the keyword may not be used here.

— using T2 = int(propconst int*); // Error: invalid use of the `propconst` keyword

Even though T2 is a type alias, there is no way to use T2 that makes the propconst resolve to const, so
the keyword may not be used here.

— using T3 = int(T1*); // Valid: the `propconst` keyword does not appear directly

T3 is also int(propconst int*). The propconst here is also immediately resolvable, but the keyword is
not used so there is no error.

4.3 Relationship to std::experimental::propagate_const

In intent and semantics, propconst T* is a drop-in replacement for propagate_const<T*>, except for cases
where member functions of propagate_const<T*> are being called directly (e.g. get(), get_underlying()).
However, they differ in the way they compose with smart pointers. propagate_const works as a wrapper,
e.g. propagate_const<unique_ptr<T>>, whereas propconst composes with smart pointer types by being used
as a qualifier on their pointee type, e.g. unique_ptr<propconst T>. There are advantages and disadvantages
to both of these composition models: with propagate_const, users must call get_underlying to call methods
specific to the smart pointer type (e.g. unique_ptr::release), whereas with propconst some of unique_ptr’s
member functions need tweaks in order to work when the pointee type is propconst-qualified (see Smart pointer
types below).

propagate_const propconst

propagate_const<unique_ptr<int>> p;

p.get_underlying().reset()

unique_ptr<propconst int> p;

p.reset()

5 Non-transient constexpr allocations using propconst

We propose permitting non-transient constexpr allocations, provided that no variable read during constant
destruction is reachable as mutable. If const_cast were used, undefined behaviour would ensue, and thus it
wouldn’t be constant destruction since core constant expressions cannot elicit undefined behaviour.

When propconst is correctly applied, this permits nested containers—like vector<vector<int>>—that do not
violate this rule (see Existing deep-const types below).

Consider a constexpr global variable of type vector<unique_ptr<int>>. Note that the ints are mutable at
runtime, and this is OK because their values do not affect constant destruction.

With a C++20 implementation of vector, this fails our proposed non-transient constexpr allocation test, because
the raw pointers within unique_ptrs are reachable as mutable via the begin/end/capacity pointers in the
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vector:

If we make just the begin pointer propconst, then nothing changes, as the array of unique_ptr<int>s is still
reachable as mutable via the end/capacity pointers:

However, if all three are propconst then there is no route to the array of unique_ptr<int>s that does not
const-qualify it, and so we can be sure that its contents will not change at runtime, and thus it passes our
non-transient constexpr allocation test:
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6 Library Impact
6.1 Existing deep-const types
Existing deep-const library types (e.g. tuple/variant/vector/set/map) would be required to be usable as
constexpr variables as long as any allocator involved is the standard default allocator. Implementation of this
should be a no-op where there is no allocation involved (e.g. tuple/variant), and should be a matter of applying
propconst appropriately in types that rely on dynamic allocation (e.g. container types).

Deep-const types with no implementation impact:

— pair
— tuple
— optional
— variant
— array

Deep-const types with implementation impact:

— any
— basic_string
— vector
— deque
— forward_list
— list
— [unordered_][multi]set
— [unordered_][multi]map

6.2 Smart pointer types
Some library types, notably smart pointer types, can be made to exhibit propconst behaviour if instantiated for
propconst T, opening up the benefits of propconst to the users of smart pointers. In order to make this work,
some accessors on such classes will need to change.

Changes are needed to member functions that give access to the underlying object, but are const-qualified. The
simplest example of this is observer_ptr::get:
template <typename T>
struct observer_ptr
{

// ...
T* get() const { return m_ptr; }
// ...

private:
T* m_ptr;

};

Here, if T is propconst U, then get() will not compile, since the return type will resolve to U*, but the returned
expression is of type U const*. Whilst this prevents the class from leaking const access to the pointee from a
const member function, it also makes it useless.

To resolve this, we need to have both const and non-const overloads of get, and a type trait to determine type
return type of the const-qualified get call:
template <typename T>
struct propconst_to_const { using type = T; };

template <typename T>
struct propconst_to_const<T propconst> { using type = T const; };
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template <typename T>
using propconst_to_const_t = typename propconst_to_const<T>::type;

template <typename T>
struct observer_ptr
{

// ...
T* get() { return _ptr; }
propconst_to_const_t<T>* get() const { return _ptr; }
// ...

private:
T* m_ptr;

};

If we take advantage of the function return types extension to this proposal (see below), the signature is more
succinct and the type trait is unnecessary:
template <typename T>
struct observer_ptr
{

// ...
T* get() { return _ptr; }
T* const get() const { return _ptr; }
// ...

private:
T* m_ptr;

};

Types affected:

— unique_ptr
— observer_ptr
— span?
— shared_ptr
— weak_ptr

6.3 Type traits
With the introduction of a new qualifier like const and volatile, we might want to add new type
traits. For example, we could consider adding std::remove_propconst to mirror std::remove_const and
std::remove_volatile. We should also consider what to do with existing type traits such as std::remove_cv –
should they change behaviour to also handle propconst?

Furthermore, Standard Library implementations may need to be adjusted to handle the new qualifier. For example,
if a trait has a specialization on T const and T volatile, one should now consider whether a specialization on
T propconst is required, and if so what the desired behaviour should be. This determination must be done on a
case-per-case basis. Also note that this observation holds not only for the Standard Library, but for all generic
libraries.

6.4 Forward compatibility
The introduction of propconst may have an impact on user code that does not handle propconst yet. For
example, imagine the Standard Library returns a propconst-qualified type to the user through one of its type
traits. If the user’s code is not ready to handle the propconst qualifier (for example if the user has template
specializations which do not handle propconst), it may fail to interoperate with the propconst-enabled library.
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However, we would like to note that these issues are similar to the issues that were faced when introducing
rvalue-references. We believe that these difficulties are worth overcoming given the type system improvement
that propconst represents.

7 Extension: function return types
If we specify that propconst in function return types is resolved prior to discarding top-level cv-qualifiers on
fundamental types, we can avoid the need for type trait usage in the specification of smart pointer library types.
template <typename T>
struct unique_ptr
{

T* get(); // Resolves to U* if T is propconst U
T* const get() const; // Resolves to const U* if T is propconst U

};

The return type of the const-qualified overload of get() resolves as follows:

1. We start with T* const
2. Suppose T is propconst U; the return type is now propconst U* const
3. propconst resolution yields const U* const
4. Top-level cv-qualifiers on fundamental types are discarded, yielding const U*

If propconst is not involved, T* const just has its top-level const discarded (per the current IS), and becomes
T* as it was before.

Supporting this pattern for references would require a novel usage const in the grammar, but otherwise works
the same as for pointers:
template <typename T>
struct unique_ptr
{

T& operator*(); // Resolves to U* if T is `propconst U`
T& const operator*() const; // Resolves to const U* if T is `propconst U`

};

8 Extension: const-qualified constructors
When a copyable smart pointer type is parameterized on propconst, copying the smart pointer (via a typical
copy constructor taking const T&) must be disallowed since copying to a mutable variable would grant mutable
access to the pointee:
void f(const observer_ptr<propconst int>& pi)
{

observer_ptr<propconst int> pi2 = pi; // must be invalid:
int& ri = *pi2; // would allow this mutability leak
const observer_ptr<propconst int> pi2 = cpi; // also invalid, but need not be

}

The above will not compile, since it falls out of the proposed rules for propconst that observer_ptr<propconst
int>’s copy constructor is ill-formed:
template <typename T>
struct observer_ptr
{

observer_ptr(const observer_ptr& rhs)
: m_ptr(rhs.m_ptr) // ill-formed
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{}

T* m_ptr;
};

In the above snippet, if T is propconst int, the type of the expression rhs.m_ptr is const int* const. The
type of m_ptr is propconst int*, but since the propconst may resolve either way in later use, it must be
initialized with an int*. Therefore, initializing it from rhs.m_ptr would discard qualifiers.

However, if we knew that we were initializing a const object, it would be valid to initialize rhs.m_ptr with a
const int* since the propconst within the const smart pointer object would always resolve to const. We could
enable this pattern by adding const-qualified constructors:
template <typename T>
struct observer_ptr
{

observer_ptr(const observer_ptr& rhs) const
: m_ptr(rhs.m_ptr) // OK

{}

T* m_ptr;
};

In this const-qualified constructor, we know that the complete object will be const for its entire lifetime, so
m_ptr is considered const. Therefore, it can be initialized with a pointer-to-const even when T is qualified with
propconst.
void f(const observer_ptr<propconst int>& pi)
{

observer_ptr<propconst int> pi2 = pi; // still invalid
const observer_ptr<propconst int> pi2 = pi; // OK

}

When a const-qualified constructor is available, the destructor must be compiled as if it were const-qualified
to avoid use of m_ptr as non-const in the destructor. We may also be able to allow separate const-qualified
destructors, if we are always able to determine whether the object was constructed as const.
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