
JeanHeyd Meneide <phdofthehouse@gmail.com>

March 2nd, 2020

Document: WG14 n2499 | WG21 p1967r2
Previous Revisions: WG14 n2470 | WG21 p1967r1, p1967r1
Audience: WG14, WG21
Proposal Category: New Features
Target Audience: General Developers, Application Developers, Compiler/Tooling Developers
Latest Revision: https://thephd.github.io/vendor/future_cxx/papers/source/C - embed.html

Abstract:

Pulling binary data into a program often involves external tools and build system coordination. Many
programs need binary data such as images, encoded text, icons and other data in a specific format. Current
state of the art for working with such static data in C includes creating files which contain solely string
literals, directly invoking the linker to create data blobs to access through carefully named extern variables, or
generating large brace-delimited lists of integers to place into arrays. As binary data has grown larger, these
approaches have begun to have drawbacks and issues scaling. From parsing 5 megabytes worth of integer
literal expressions into AST nodes to arbitrary string literal length limits in compilers, portably putting binary
data in a C program has become an arduous task that taxes build infrastructure and compilation memory and
time.

This proposal provides a flexible preprocessor directive for making this data available to the user in a
straightforward manner.

For well over 40 years, people have been trying to plant data into executables for varying reasons. Whether it
is to provide a base image with which to flash hardware in a hard reset, icons that get packaged with an
application, or scripts that are intrinsically tied to the program at compilation time, there has always been a
strong need to couple and ship binary data with an application.

C does not make this easy for users to do, resulting in many individuals reaching for utilities such as xxd,
writing python scripts, or engaging in highly platform-specific linker calls to set up extern variables pointing
at their data. Each of these approaches come with benefits and drawbacks. For example, while working with
the linker directly allows injection of vary large amounts of data (5 MB and upwards), it does not allow
accessing that data at any other point except runtime. Conversely, Doing all of these things portably across
systems and additionally maintaining the dependencies of all these resources and files in build systems both
like and unlike make is a tedious task.

Thusly, we propose a new preprocessor directive whose sole purpose is to be #include, but for binary data:
#embed.

The reason this needs a new language feature is simple: current source-level encodings of “producing binary”
to the compiler are incredibly inefficient both ergonomically and mechanically. Creating a brace-delimited
list of numerics in C comes with baggage in the form of how numbers and lists are formatted. C’s
preprocessor and the forcing of tokenization also forces an unavoidable cost to lexer and parser handling of
values.

Therefore, using arrays with specific initialized values of any significant size becomes borderline impossible.
One would think this old problem would be work-around-able in a succinct manner. Given how old this
desire is (that comp.std.c thread is not even the oldest recorded feature request), proper solutions would have
arisen. Unfortunately, that could not be farther from the truth. Even the compilers themselves suffer build
time and memory usage degradation, as contributors to the LLVM compiler ran the gamut of the biggest
problems that motivate this proposal in a matter of a week or two earlier this very year. Luke is not alone in
his frustrations: developers all over suffer from the inability to include binary in their program quickly and
perform exceptional gymnastics to get around the compiler’s inability to handle these cases.

C developer progress is impeded regarding the inability to handle this use case, and it leaves both old and
new programmers wanting.

Many different options as opposed to this proposal were seriously evaluated. Implementations were
attempted in at least 2 production-use compilers, and more in private. To give an idea of usage and size, here
are results for various compilers on a machine with the following specification:

— Intel Core i7 @ 2.60 GHz
— 24.0 GB RAM
— Debian Sid or Windows 10
— Method: Execute command hundreds of times, stare extremely hard at htop/Task Manager

While time and Measure-Command work well for getting accurate timing information and can be run several
times in a loop to produce a good average value, tracking memory consumption without intrusive efforts was
much harder and thusly relied on OS reporting with fixed-interval probes. Memory usage is therefore
approximate and may not represent the actual maximum of consumed memory. All of these are using the
latest compiler built from source if available, or the latest technology preview if available. Optimizations at
-O2 (GCC & Clang style)//O2 /Ob2 (MSVC style) or equivalent were employed to generate the final
executable.

1.2.1 Speed Size

Strategy 40 kilobytes 400 kilobytes 4 megabytes 40 megabytes

#embed GCC 0.236 s 0.231 s 0.300 s 1.069 s

xxd-generated GCC 0.406 s 2.135 s 23.567 s 225.290 s

xxd-generated Clang 0.366 s 1.063 s 8.309 s 83.250 s

xxd-generated MSVC 0.552 s 3.806 s 52.397 s Out of Memory

1.2.2 Memory Size

Strategy 40 kilobytes 400 kilobytes 4 megabytes 40 megabytes

#embed GCC 17.26 MB 17.96 MB 53.42 MB 341.72 MB

xxd-generated GCC 24.85 MB 134.34 MB 1,347.00 MB 12,622.00 MB

xxd-generated Clang 41.83 MB 103.76 MB 718.00 MB 7,116.00 MB

xxd-generated MSVC ~48.60 MB ~477.30 MB ~5,280.00 MB Out of Memory

1.2.3 Analysis

The numbers here are not particularly reassuring. Furthermore, privately owned compilers and other static
analysis tools perform almost exponentially poorly here, taking vastly more memory and thrashing CPUs to
100% for several minutes (to sometimes several hours if e.g. the Swap is engaged due to lack of main
memory). Every compiler must always consume a certain amount of memory in a relationship directly linear
to the number of tokens produced. After that, it is largely implementation-dependent what happens to the
data.

The GNU Compiler Collection (GCC) uses a tree representation and has many places where it spawns extra
“garbage”, as its called in the various bug reports and work items from implementers. There has been a 16+
year effort on the part of GCC to reduce its memory usage and speed up initializers (C Bug Report and C++
Bug Report). Significant improvements have been made and there is plenty of room for GCC to improve here
with respect to compiler and memory size. Somewhat unfortunately, one of the current changes in flight for
GCC is the removal of all location information beyond the 256th initializer of large arrays in order to save on
space. This technique is not viable for static analysis compilers that promise to recreate source code exactly
as was written, and therefore discarding location or token information for large initializers is not a viable
cross-implementation strategy.

LLVM’s Clang, on the other hand, is much more optimized. They maintain a much better scaling and ratio
but still suffer the pain of their token overhead and Abstract Syntax Tree representation, though to a much
lesser degree than GCC. A bug report was filed but talk from two prominent LLVM/Clang developers made
it clear that optimizing things any further would require an extremely large refactor and functionality add of
parser internals, with potentially dubious gains. As part of this proposal, the implementation provided does

attempt to do some of these optimizations, and follows some of the work done in this post to try and prove
memory and file size savings. (The savings in trying to optimize parsing large array literals were “around
10%”, compared to the order-of-magnitude gains from #embed and similar techniques).

Microsoft Visual C (MSVC) scales the worst of all the compilers, even when given the benefit of being on its
native operating system. Both Clang and GCC outperform MSVC on Windows 10 or WINE as of the time of
writing.

Linker tricks on all platforms perform better with time (though slower than #embed implementation), but
force the data to be optimizer-opaque (even on the most aggressive “Link Time Optimization” or “Whole
Program Optimization” modes compilers had). Linker tricks are also exceptionally non-portable: whether it is
the incbin assembly command supported by certain compilers, specific invocations of rc.exe/objcopy or
others, non-portability plagues their usefulness in writing Cross-Platform C (see Appendix for listing of
techniques). This makes C decidedly unlike the “portable assembler” advertised by its proponents (and my
Professors and co-workers).

There are two design goals at play here, sculpted to specifically cover industry standard practices with build
systems and C programs. The first is to enable developers to get binary content quickly and easily into their
applications. This can be icons/images, scripts, tiny sound effects, hardcoded firmware binaries, and more. In
order to support this use case, this feature was designed for simplicity and builds upon widespread existing
practice.

Providing a directive that mirrors #include makes it natural and easy to understand and use this new
directive. It accepts both chevron-delimited (<>) and quote-delimited ("") strings like #include does. This
matches the way people have been generating files to #include in their programs, libraries and applications:
matching the semantics here preserves the same mental model. This makes it easy to teach and use, since it
follows the same principles:

Because of its design, it also lends itself to being usable in a wide variety of contexts and with a wide variety
of vendor extensions. For example:

#include <limits.h>

/* default is unsigned char */
const unsigned char icon_display_data[] = {

#embed "art.png"
};

/* specify a type-name to change array type */
const char reset_blob[] = {

#embed char "data.bin"
};

#include <limits.h>

/* attributes work just as well */
const signed char aligned_data_str[] __attribute__ ((aligned (8))) = {

#embed signed char "attributes.xml"

The above code obeys the alignment requirements for an implementation that understands GCC directives,
without needing to add special support in the #embed directive for it: it is just another array initializer, like
everything else.

2.1.1 Type Flexibility

As hinted at in previous sections’s code snippets, a type can be specified after the #embed to view the data in
a very specific manner. This allows data to initialized as exactly that type.

The contents of the resource are mapped in an implementation-defined manner to the data, such that it will
use sizeof(type-name) * CHAR_BIT bits for each element. If the file does not have enough bits to fill out a
multiple of sizeof(type-name) * CHAR_BIT bits, then a diagnostic is required. Furthermore, we require that
the type passed to #embed that must one of the following fundamental types, signed or unsigned, spelled
exactly in this manner:

— char, unsigned char, signed char
— short, unsigned short, signed short
— long, unsigned long, signed long
— long long, unsigned long long, signed long long

More types can be supported by the implementation if the implementation so chooses (both the GCC and
Clang prototypes described below support more than this). The reason exactly these types are required is
because these are the only types for which there is a suitable way to obtain their size at pre-processor time.
Quoting from §5.2.4.2.1, paragraph 1:

The values given below shall be replaced by constant expressions suitable for use in #if
preprocessing directives.

This means that the types above have a specific size that can be properly initialized by a preprocessor entirely
independent of a proper C frontend, without needing to know more than how to be a preprocessor. This does
require that every use of #embed is accompanied by a #include <limits.h> (or, in the case of C++,
#include <climits>).

2.1.2 Existing Practice - Search Paths

It follows the same implementation experience guidelines as #include by leaving the search paths
implementation defined, with the understand that implementations are not monsters and will generally
provide -fembed-path/-fembed-path= and other related flags as their users require for their systems. This
gives implementers the space they need to serve the needs of their constituency.

2.1.3 Existing Practice - Discoverable and Distributable

Build systems today understand the make dependency format, typically through use of the compiler flags

};

#include <limits.h>

/* specify a type-name to change array type */
const int shorten_flac[] = {

#embed int "stripped_music.flac"
};

-(M)MD and friends. This sees widespread support, from CMake, Meson and Bazel to ninja and make. Even
VC++ has a version of this flag – /showIncludes – that gets parsed by build systems.

This preprocessor directive fits perfectly into existing build architecture by being discoverable in the same
way with the same tooling formats. It also blends perfectly with existing distributed build systems which
preprocess their files with -frewrite-includes before sending it up to the build farm, as distcc and icecc
do.

The second principle guiding the design of this feature is facing the increasing problems with #include and
typical source-style rewriting of binary data. Array literals do not scale. Processing large comma-delimited,
braced-init-lists of data-as-numbers produces excessive compilation times. Compiler memory usage reaches
extraordinary levels that are often ten to twenty times (or more) of the original desired data file (see above
tables in the Motivation section). Part of this is endemic to the compiler: the preprocessor demands that
tokens be

String literals do not suffer the same compilation times or memory scaling issues, but the C Standard has
limits on the maximum size of string literals (§5.2.4.1, “— 4095 characters in a string literal (after
concatenation)”). One implementation takes the C Standard quite almost exactly at face value: it allows 4095
bytes in a single string piece, so multiple quoted pieces each no larger than 4095 bytes must be used to create
large enough string literals to handle the work.

#embed’s specification is such that it behaves “as if” it expands to an initializer-list, comma-separated
sequence of integral literals. This means an implementation does not have to run the full gamut of producing
an abstract syntax tree of an expression. Nor does it need to generate a token sequence that must be
manipulated by the preprocessor either. Most compilers do not need a fully generic expression list that spans
several AST nodes for what is logically just a sequence of numeric literals. A more direct representation can
be used internally in the compiler, drastically speeding up processing and embedding of the binary data into
the translation unit for use by the program. One of the test implementations uses such a direct representation
and achieves drastically reduced memory and compile time footprint, making large binary data accessible in
C programs in an affordable manner.

2.2.1 Infinity Files

The earliest adopters and testers of the implementation reported problems when trying to access POSIX-style
char devices and pseudo-files that do not have a logical limitation. These “infinity files” served as the
motivation for introducing the “limit” parameter; there are a number of resources which are logically infinite
and thusly having a compiler read all of the data would result an Out of Memory error, much like with
#include if someone did #include "/dev/urandom".

The limit parameter is specified before the resource name in #embed, like so:

This prevents locking compilers in an infinite loop of reading from potentially limitless resources. Note the
parameter is a hard upper bound, and not an exact requirement. A resource may expand to 16 elements and
not the maximum of 32.

const int please_dont_oom_kill_me[] = {
#embed int 32 "/dev/urandom"

};

An implementation of this functionality is available in branches of both GCC and Clang, accessible right now
with an internet connection through the online utility Compiler Explorer. The Clang compiler with this
functionality is called “x86-64 clang (std::embed)” and the GCC compiler is called “x86-64 gcc
(std::embed)” in the Compiler Explorer UI.

There has been concerns expressed about the form of this feature – whether or not it could be a preprocessor
directive itself, or a magical macro introduced in the language, or a special pragma. Each of these has their
own specific syntax tradeoffs. The primary choice and the one advocated for is the syntax as shown above: a
plain preprocessor directive analogous to #include. It is written as #embed, but other names (previously
recommended by the Community) are #include_bin, #include_binary, #incbin, or #load_binary.

The syntax can also be adjusted. A preprocessor directive is preferred because that allows it to be findable by
the end of Preprocessor.

This wording is relative to C’s latest working draft.

The intent of the wording is to provide a preprocessing directive that:

— takes a string literal identifier – potentially from the expansion of a macro – and uses it to find a unique
resource on the command line;

— if embedding one of the integer types, then it behaves as if it produces a list of values suitable for the
initialization of an array as well as initializes each element according to the specific environment limits
found in <limits.h>;

— if not embedding one of the integer types, allows an implementation issue a diagnostic that the tool or
implementation cannot handle such a type, while giving other implementations the freedom to support
said type through implementation defined behavior;

— errors if the size of the resource does not have enough bits to fully and properly initialize all the values
generated by the directive;

— allows a limit parameter limiting the number of elements to be specified;
— and, present such contents as if by a list of values, such that it can be used to initialize arrays of known

and unknown bound even if additional elements of the whole initialization list come before or after the
directive.

Note: The � is a stand-in character to be replaced by the editor.

Add another control-line production and a new parenthesized-non-header to §6.10 Preprocessing Directives,
Syntax, paragraph 1:

control-line:
      …
     # embed pp-tokens new-line

parenthesized-non-header:
     (opt pp-tokens)opt

Add a new sub clause as §6.10.� to §6.10 Preprocessing Directives, preferably after §6.10.2 Source file
inclusion:

§6.10.�     Resource embedding

Constraints

1A #embed directive shall identify a resource that can be processed by the implementation as a
binary data sequence, of an optionally specified type, that results in a part of or a whole of an
initializer-list.

Semantics

2 A preprocessing directive of the form

    # embed parenthesized-non-headeropt digit-sequenceopt < h-char-sequence > new-line

searches a sequence of implementation-defined places for a resource identified uniquely by the
specified sequence between the < and >. The named resource is searched for in an
implementation-defined manner.

3 A preprocessing directive of the form

    # embed parenthesized-non-headeropt digit-sequenceopt “ q-char-sequence ” new-line

searches a sequence of implementation-defined places for a resource identified uniquely by the
specified sequence between the ", or < and >, delimiters. The named resource is searched for in
an implementation-defined manner. If this search is not supported, or if the search fails, the
directive is reprocessed as if it read

    # embed parenthesized-non-headeropt digit-sequenceopt < h-char-sequence > new-line

with the identical contained q-char-sequence (including > characters, if any) from the original
directive.

4 If a parenthesized-non-header is not specified, then the directive behaves as if the tokens of the
parenthesized-non-header are unsigned char. If a parenthesized-non-header is specified, outer
parentheses must be present if it contains one or more of ", < or >.

5 If either form of the #embed directive specified is not preceded by an #include directive for
<limits.h>, then an implementation may issue a diagnostic.

6 Let the parenthesized-non-header tokens be T. Either form of the #embed directive specified
previously, for the following token sequences of T, behave as if it were expanded to an
initializer-list. Specifically, each element of the initializer-list behaves as if characters from the
resource were read into an array of unsigned char and the array was overlaid into a T to
produce an integer constant expressions of exactly ELEMENT_WIDTH bits and must have a value
between ELEMENT_MIN and ELEMENT_MAX, inclusive. If the implementation-defined bit size of the
resource’s contents are not a multiple of the ELEMENT_WIDTH, then the implementation shall issue
a diagnostic. The values for ELEMENT_WIDTH, ELEMENT_MIN, and ELEMENT_MAX correspond to T as
follows:

— If T is char, CHAR_WIDTH, and CHAR_MIN, and CHAR_MAX are the values, respectively.
— Otherwise, T is signed char, then SCHAR_WIDTH, SCHAR_MIN and SCHAR_MAX are the
values, respectively.
— Otherwise, T is unsigned char, then UCHAR_WIDTH, 0 and UCHAR_MAX are the values,
respectively.
— Otherwise, T is short or signed short, then SHRT_WIDTH, SHRT_MIN and SHRT_MAX are
the values, respectively.
— Otherwise, T is unsigned short, then USHRT_WIDTH, 0 and USHRT_MAX, are the values
respectively.
— Otherwise, T is long or signed long, then LONG_WIDTH, LONG_MIN and LONG_MAX are
the values, respectively.
— Otherwise, T is unsigned long, then ULONG_WIDTH, 0 and ULONG_MAX, are the values
respectively.
— Otherwise, T is long long or signed long long, then LLONG_WIDTH, LLONG_MIN and
LLONG_MAX are the values, respectively.
— Otherwise, T is unsigned long long, then ULLONG_WIDTH, 0 and ULLONG_MAX, are the
values respectively.

7 Otherwise, if T is not one of the above sequence of tokens, then it is implementation-defined
whether or not the directive is supported. If it is, it behaves as if it is replaced by an
implementation-defined mapping of the contents of the resource into an initializer-list suitable
for initializing an array of T. Specifically, each element of the initializer-list behaves as if
characters from the resource were read into an array of unsigned char with a size sizeof(T)

and overlaid into the resulting element18�. If the implementation-defined bit size of the
resource’s contents are not a multiple of sizeof(T) * CHAR_BIT, then the implementation shall
issue a diagnostic.

8 If a digit-sequence is specified, it shall be an integer constant expression resulting in an
unsigned value suitable for use in #if preprocessing directives. The mapping from the contents
of the resource to the elements of the initializer-list shall contain up to digit-sequence elements
according to the above, and the implementation shall not issue a diagnostic if the
implementation-defined bit size is larger than required to produce digit-sequence elements.

9 If the resulting initializer-list is used in a place where a constant expression (6.6) is valid, then
the initializer-list must be a constant expression. If the resulting initializer-list is used as part of
the initialization of an array of incomplete type, then the initializer-list will contribute to the size
of the completed array type at the end of the initializer (6.7.9).

10 A preprocessing directive of the form

embed pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
embed in the directive are processed just as in normal text. (Each identifier currently defined as
a macro name is replaced by its replacement list of preprocessing tokens.) The directive resulting

after all replacements shall match one of the two previous forms18��. The method by which a
sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair of "
characters is combined into a single resource name preprocessing token is implementation-
defined.

Add 3 new Example paragraphs below the above text in §6.10.� Resource embedding:

11 EXAMPLE 1 Placing a small image resource.

12 EXAMPLE 2 Checking the first 4 elements of a sound resource.

13 EXAMPLE 3 Diagnostic for resource which is too small.

An implementation must produce a diagnostic where 16 bits (i.e., the implementation-defined bit
size) is less than ULLONG_WIDTH, or the implementation-defined bit size modulo ULLONG_WIDTH is
not 0. 14 EXAMPLE 4 Extra elements added to array initializer.

#include <stddef.h>
#include <limits.h>

void have_you_any_wool(const unsigned char*, size_t);

int main (int, char*[]) {
const unsigned char baa_baa[] = {

#embed "black_sheep.ico"
 };

 have_you_any_wool(baa_baa,
sizeof(baa_baa) / sizeof(*baa_baa));

return 0;
}

#include <assert.h>
#include <limits.h>

int main (int, char*[]) {
const char sound_signature[] = {

#embed char 4 <sdk/jump.wav>
 };

// verify PCM WAV resource
assert(sound_signature[0] == 'R');
assert(sound_signature[1] == 'I');
assert(sound_signature[2] == 'F');
assert(sound_signature[3] == 'F');
assert((sizeof(sound_signature) / sizeof(*sound_signature)) ==

4);

return 0;
}

#include <limits.h>

int main (int, char*[]) {
const unsigned long long coefficients[] = {

#embed unsigned long long "only_16_bits.bin"
 };

return 0;
}

#include <limits.h>

#include <string.h>

18�)
 Note that this is similar to how fread (7.21.8.1) behaves, but specifically tailored for the

purposes of requiring similar semantics at translation time.

18��)
 Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in

5.1.1.2); thus, an expansion that results in two string literals is an invalid directive. Forward references:

macro replacement (6.10.�).

#ifndef SHADER_TARGET
#define SHADER_TARGET "phong.glsl"
#endif

extern char* null_term_shader_data;

void fill_in_data () {
const char internal_data[] = {

#embed char SHADER_TARGET
 , 0 };

 strcpy(null_term_shader_data, internal_data);
}

This wording is relative to C++’s latest working draft.

The intent of the wording is to provide a preprocessing directive that:

— takes a string literal identifier – potentially from the expansion of a macro – and uses it to find a unique
resource on the command line;

— if embedding one of the integer types, then it behaves as if it produces a list of values suitable for the
initialization of an array as well as initializes each element according to the specific environment limits
found in <climits>;

— if not embedding one of the integer types, allows an implementation issue a diagnostic that the tool or
implementation cannot handle such a type, while giving other implementations the freedom to support
said type through implementation defined behavior;

— errors if the size of the resource does not have enough bits to fully and properly initialize all the values
generated by the directive;

— allows a limit parameter limiting the number of elements to be specified;
— produces a core constant expression that can be used to initialize constexpr arrays;
— produces a diagnostic if the contents do not have enough data to fill out the binary representation of

type-name values;
— and, present such contents as if it is a list of values, such that it can be used to initialize arrays of

known and unknown bound even if additional elements of the whole initialization list come before or
after the directive.

The proposed feature test macro is __cpp_pp_embed for the preprocessor functionality.

Append to §14.8.1 Predefined macro names [cpp.predefined]’s Table 16 with one additional entry:

Macro name Value

__cpp_pp_embed 202006L

Add a new control-line production to §15.1 Preamble [cpp.pre] and a new grammar production:

control-line:
    …
    # embed pp-tokens new-line

…

parenthesized-non-header:
    (opt pp-tokens opt)

Add a new sub-clause §15.4 Resource inclusion [cpp.res]:

15.4 Resource inclusion [cpp.res]

1 A #embed directive shall identify a resource file that can be processed by the implementation.

2 A preprocessing directive of the form

    # embed parenthesized-non-headeropt digit-sequenceopt < h-char-sequence > new-line

or

    # embed parenthesized-non-headeropt digit-sequenceopt “ q-char-sequence ” new-line

searches a sequence of implementation-defined places for a resource identified uniquely by the
specified sequence between the < and > or the “ and ” delimiters. How the places are specified or
the resource identified is implementation-defined.

3 If there is no parenthesized-non-header, then the directive behaves as if the tokens of the
parenthesized-non-header are unsigned char. If a parenthesized-non-header is specified, outer
parenthesis must be present if the pp-tokens contain one or more of ", < or >.

4 If either form of the #embed directive specified is not preceded by an #include directive for
<climits>, then an implementation may issue a diagnostic.

5 Let the parenthesized-non-header tokens be T. Either form of the #embed directive specified
previously, for the following token sequences of T, behave as if it were expanded to an
initializer-list. Specifically, each element of the initializer-list behaves as if characters from the
resource were read into an array of unsigned char and the array was overlaid into a T to
produce an integer constant expressions of exactly ELEMENT_WIDTH bits and must have a value
between ELEMENT_MIN and ELEMENT_MAX, inclusive. If the implementation-defined bit size of the
resource’s contents are not a multiple of the ELEMENT_WIDTH, then the implementation shall issue
a diagnostic. The values for ELEMENT_WIDTH, ELEMENT_MIN, and ELEMENT_MAX correspond to T as
follows:

— If T is char, CHAR_WIDTH, and CHAR_MIN, and CHAR_MAX are the values, respectively.
— Otherwise, T is signed char, then SCHAR_WIDTH, SCHAR_MIN and SCHAR_MAX are the
values, respectively.
— Otherwise, T is unsigned char, then UCHAR_WIDTH, 0 and UCHAR_MAX are the values,
respectively.
— Otherwise, T is short or signed short, then SHRT_WIDTH, SHRT_MIN and SHRT_MAX are
the values, respectively.
— Otherwise, T is unsigned short, then USHRT_WIDTH, 0 and USHRT_MAX, are the values
respectively.
— Otherwise, T is long or signed long, then LONG_WIDTH, LONG_MIN and LONG_MAX are
the values, respectively.
— Otherwise, T is unsigned long, then ULONG_WIDTH, 0 and ULONG_MAX, are the values
respectively.
— Otherwise, T is long long or signed long long, then LLONG_WIDTH, LLONG_MIN and
LLONG_MAX are the values, respectively.
— Otherwise, T is unsigned long long, then ULLONG_WIDTH, 0 and ULLONG_MAX, are the

values respectively.

6 Otherwise, if T is not one of the above sequence of tokens, then it is implementation-defined
whether or not the directive is supported. If it is, then the initializer-list represents an
implementation-defined mapping from the contents of the resource to the elements of the
initializer-list. If the implementation-defined bit size of the resource’s contents are not a multiple
of sizeof(T) * CHAR_BIT or T does not denote a trivial type (6.8 [basic.types]), then the
program is ill-formed.

7 If a digit-sequence is specified, it shall be an unsigned integer-literal and the initializer-list will
have up to digit-sequence elements.

[Example:

– end Example]

[Example:

– end Example]

[Example:

#include <cstddef>
#include <climits>

void have_you_any_wool(const unsigned char*, std::size_t);

int main (int, char*[]) {
constexpr const unsigned char baa_baa[] = {

#embed "black_sheep.ico"
 };

 have_you_any_wool(baa_baa,
sizeof(baa_baa) / sizeof(*baa_baa));

return 0;
}

#include <cassert>

int main (int, char*[]) {
constexpr const char sound_signature[] = {

#embed char 4 <sdk/jump.wav>
 };

// verify PCM WAV resource
assert(sound_signature[0] == 'R');
assert(sound_signature[1] == 'I');
assert(sound_signature[2] == 'F');
assert(sound_signature[3] == 'F');
assert((sizeof(sound_signature) / sizeof(*sound_signature)) == 4);

return 0;
}

#include <climits>

– end Example]

[Example:

– end Example]

[Example:

– end Example]

int main (int, char*[]) {
const unsigned long long coefficients[] = {

// may produce diagnostic: 16 bits (i.e., implementation-defined bit size)
// is not enough for an unsigned long long (e.g. ULLONG_WIDTH)
#embed unsigned long long "only_16_bits.bin"
 };

const unsigned char byte_factors[] = {
// may produce diagnostic: 13 bits % UCHAR_WIDTH may not be 0
#embed "13_bits.bin"
 };

return 0;
}

struct non_trivial {
 non_trivial(int);
};

int main (int, char*[]) {
const non_trivial nt_arr[] = {

// implementation-defined if supported. if it is,
// diagnostic required as non_trivial is not a trivial type
#embed non_trivial "only_16_bits.bin"
 };

return 0;
}

#include <algorithm>
#include <iterator>

#ifndef SHADER_TARGET
#define SHADER_TARGET "phong.glsl"
#endif

extern char* null_term_shader_data;

void get_data () {
constexpr const char internal_data[] = {

#embed char SHADER_TARGET
 , 0 }; // additional element to null terminate content

std::copy_n(internal_data, std::size(internal_data),
 null_term_shader_data);
}

Thank you to Alex Gilding for bolstering this proposal with additional ideas and motivation. Thank you to
Aaron Ballman, David Keaton, and Rhajan Bhakta for early feedback on this proposal. Thank you to the
#include<C++> for bouncing lots of ideas off the idea in their Discord.

Thank you to the Lounge<C++> for their continued support, and to Robot M. F. for the valuable early
implementation feedback.

This section categorizes some of the platform-specific techniques used to work with C++ and some of the
challenges they face. Other techniques used include pre-processing data, link-time based tooling, and
assembly-time runtime loading. They are detailed below, for a complete picture of today’s landscape of
options. They include both C and C++ options.

8.1.1 Pre-Processing Tools

1. Run the tool over the data (xxd -i xxd_data.bin > xxd_data.h) to obtain the generated file
(xxd_data.h) and add a null terminator if necessary:

2. Compile main.c:

Others still use python or other small scripting languages as part of their build process, outputting data in the
exact C++ format that they require.

There are problems with the xxd -i or similar tool-based approach. Tokenization and Parsing data-as-source-
code adds an enormous overhead to actually reading and making that data available.

Binary data as C(++) arrays provide the overhead of having to comma-delimit every single byte present, it
also requires that the compiler verify every entry in that array is a valid literal or entry according to the C++
language.

This scales poorly with larger files, and build times suffer for any non-trivial binary file, especially when it
scales into Megabytes in size (e.g., firmware and similar).

8.1.2 python

unsigned char xxd_data_bin[] = {
0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x2c, 0x20, 0x57, 0x6f, 0x72, 0x6c, 0x64,
0x0a, 0x00

};
unsigned int xxd_data_bin_len = 13;

#include <stdlib.h>
#include <stdio.h>

// prefix as const,
// even if it generates some warnings in g++/clang++
const
#include "xxd_data.h"

#define SIZE_OF_ARRAY (arr) (sizeof(arr) / sizeof(*arr))

int main() {
const char* data = reinterpret_cast<const char*>(xxd_data_bin);

 puts(data); // Hello, World!
return 0;

}

Other companies are forced to create their own ad-hoc tools to embed data and files into their C++ code.
MongoDB uses a custom python script, just to format their data for compiler consumption:

MongoDB were brave enough to share their code with me and make public the things they have to do: other
companies have shared many similar concerns, but do not have the same bravery. We thank MongoDB for
sharing.

8.1.3 ld

import os
import sys

def jsToHeader(target, source):
 outFile = target
 h = [

'#include "mongo/base/string_data.h"',
'#include "mongo/scripting/engine.h"',
'namespace mongo {',
'namespace JSFiles{',

]
def lineToChars(s):

return ','.join(str(ord(c)) for c in (s.rstrip() + '\n')) + ','
for s in source:

 filename = str(s)
 objname = os.path.split(filename)[1].split('.')[0]
 stringname = '_jscode_raw_' + objname

 h.append('constexpr char ' + stringname + "[] = {")

with open(filename, 'r') as f:
for line in f:

 h.append(lineToChars(line))

 h.append("0};")
symbols aren't exported w/o this

 h.append('extern const JSFile %s;' % objname)
 h.append('const JSFile %s = { "%s", StringData(%s, sizeof(%s) - 1) };' %
 (objname, filename.replace('\\', '/'), stringname, stringname))

 h.append("} // namespace JSFiles")
 h.append("} // namespace mongo")
 h.append("")

 text = '\n'.join(h)

with open(outFile, 'wb') as out:
try:

 out.write(text)
finally:

 out.close()

if __name__ == "__main__":
if len(sys.argv) < 3:

print "Must specify [target] [source] "
 sys.exit(1)
 jsToHeader(sys.argv[1], sys.argv[2:])

A complete example (does not compile on Visual C++):

1. Have a file ld_data.bin with the contents Hello, World!.

2. Run ld -r binary -o ld_data.o ld_data.bin.

3. Compile the following main.cpp with c++ -std=c++17 ld_data.o main.cpp:

This scales a little bit better in terms of raw compilation time but is shockingly OS, vendor and platform

#include <stdlib.h>
#include <stdio.h>

#define STRINGIZE_(x) #x
#define STRINGIZE(x) STRINGIZE_(x)

#ifdef __APPLE__
#include <mach-o/getsect.h>

#define DECLARE_LD_(LNAME) extern const unsigned char _section$__DATA__##LNAME[];
#define LD_NAME_(LNAME) _section$__DATA__##LNAME
#define LD_SIZE_(LNAME) (getsectbyLNAME("__DATA", "__" STRINGIZE(LNAME))->size)
#define DECLARE_LD(LNAME) DECLARE_LD_(LNAME)
#define LD_NAME(LNAME) LD_NAME_(LNAME)
#define LD_SIZE(LNAME) LD_SIZE_(LNAME)

#elif (defined __MINGW32__) /* mingw */

#define DECLARE_LD(LNAME) \
extern const unsigned char binary_##LNAME##_start[]; \
extern const unsigned char binary_##LNAME##_end[];

#define LD_NAME(LNAME) binary_##LNAME##_start
#define LD_SIZE(LNAME) ((binary_##LNAME##_end) - (binary_##LNAME##_start))
#define DECLARE_LD(LNAME) DECLARE_LD_(LNAME)
#define LD_NAME(LNAME) LD_NAME_(LNAME)
#define LD_SIZE(LNAME) LD_SIZE_(LNAME)

#else /* gnu/linux ld */

#define DECLARE_LD_(LNAME) \
extern const unsigned char _binary_##LNAME##_start[]; \
extern const unsigned char _binary_##LNAME##_end[];

#define LD_NAME_(LNAME) _binary_##LNAME##_start
#define LD_SIZE_(LNAME) ((_binary_##LNAME##_end) - (_binary_##LNAME##_start))
#define DECLARE_LD(LNAME) DECLARE_LD_(LNAME)
#define LD_NAME(LNAME) LD_NAME_(LNAME)
#define LD_SIZE(LNAME) LD_SIZE_(LNAME)
#endif

DECLARE_LD(ld_data_bin);

int main() {
const char* p_data = reinterpret_cast<const char*>(LD_NAME(ld_data_bin));
// impossible, not null-terminated
//puts(p_data);
// must copy instead
return 0;

}

specific in ways that novice developers would not be able to handle fully. The macros are required to erase
differences, lest subtle differences in name will destroy one’s ability to use these macros effectively. We
omitted the code for handling VC++ resource files because it is excessively verbose than what is present
here.

N.B.: Because these declarations are extern, the values in the array cannot be accessed at
compilation/translation-time.

8.1.4 incbin

There is a tool called incbin which is a 3rd party attempt at pulling files in at “assembly time”. Its approach
is incredibly similar to ld, with the caveat that files must be shipped with their binary. It unfortunately falls
prey to the same problems of cross-platform woes when dealing with Visual C, requiring additional pre-
processing to work out in full.

