
Naming Text Encodings to Demystify Them
Document #: P1885R4
Date: 2020-11-22
Project: Programming Language C++
Audience: SG-16, LEWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

If you can’t name it, you probably don’t know what it is
If you don’t know what it is, you don’t know what it isn’t

Tony Van Eerd

Target

C++23

Abstract

For historical reasons, all text encodings mentioned in the standard are derived from a locale
object, which does not necessarily match the reality of how programs and systems interact.

This model works poorly with modern understanding of text, ie the Unicode model separates
encoding from locales which are purely rules for formatting and text transformations but do
not affect which characters are represented by a sequence of code units.

Moreover, the standard does not provide a way to query which encodings are expected or
used by the system, leading to guesswork and unavoidable UB.

This paper introduces the notions of literal encoding, system encoding and a way to query
them.

Examples

Listing the encoding

#include <text_encoding>
#include <iostream>

void print(const std::text_encoding & c) {
std::cout << c.name()
<< " (iana mib: " << c.mib() << ")\n"
<< "Aliases:\n";
for(auto && a : c.aliases()) {

1

mailto:corentin.jabot@gmail.com

std::cout << '\t' << a << '\n';
}

}

int main() {
std::cout << "Literal Encoding: ";
print(std::text_encoding::literal());
std::cout << "Wide Literal Encoding: ";
print(std::text_encoding::wide_literal());
std::cout << "System Encoding: ";
print(std::text_encoding::system());
std::cout << "Wide system Encoding: ";
print(std::text_encoding::wide_system());

}

Compiled with g++ -fwide-exec-charset=EBCDIC-US -fexec-charset=SHIFT_JIS, this program
may display:

Literal Encoding: SHIFT_JIS (iana mib: 17)
Aliases:

Shift_JIS
MS_Kanji
csShiftJIS

Wide Literal Encoding: EBCDIC-US (iana mib: 2078)
Aliases:

EBCDIC-US
csEBCDICUS

System Encoding: UTF-8 (iana mib: 106)
Aliases:

UTF-8
csUTF8

Wide system Encoding: ISO-10646-UCS-4 (IANA mib: 1001)
Aliases:

ISO-10646-UCS-4
csUCS4

LWG3314

[time.duration.io] specifies that the unit for microseconds is µ on systems able to display it.
This is currently difficult to detect and implement properly.

The following allows an implementation to use µ if it is supported by both the execution
encoding and the encoding attached to the stream.

template<class traits, class Rep, class Period>
void print_suffix(basic_ostream<char, traits>& os, const duration<Rep, Period>& d)
{

if constexpr(text_encoding::literal() == text_encoding::utf8) {
if (os.getloc().encoding() == text_encoding::utf8) {

2

os << d.count() << "\u00B5s"; // µ
return;

}
}
os << d.count() << "us";

}

A more complex implementation may support more encodings, such as iso-8859-1.

Asserting a specific encoding is set

On POSIX, matching encodings is done by name, which pulls the entire database. To avoid
that we propose a method to asserting that the system encoding is as expected. such method
mixed to only pull in the strings associated with this encoding:

int main() {
return text_encoding::system_is<text_encoding::id::UTF8>();

}

User construction

To support other use cases such as interoperability with other libraries or internet protocols,
text_encoding can be constructed by users

text_encoding my_utf8("utf8");
assert(my_utf8.name() == "utf8"sv); // Get the user provided name back
assert(my_utf8.mib() == text_encoding::id::UTF8);

text_encoding my_utf8_2(text_encoding::id::UTF8);
assert(my_utf8_2.name() == "UTF-8"sv); // Get the preferred name for the implementation
assert(my_utf8_2.mib() == text_encoding::id::UTF8);
assert(my_utf8 == my_utf8_2);

Unregistered encoding

Unregistered encoding are also supported. They have the other mib, no aliases and are
compared by names:

text_encoding wtf8("WTF-8");
assert(wtf8.name() == "WTF-8"sv);
assert(wtf8.mib() == text_encoding::id::other);

//encodings with the \tcode{other} mib are compared by name, ignoring case, hyphens and underscores
assert(wtf8 == text_encoding("___wtf8__"));

3

Revisions

Revision 4

• Change operator==(encoding, mib) for id::other

• Add wording for freestanding

• Improve wording

• Improve alias comparison algorithm to match unicode TR22

Revision 3

• Add a list of encodings NOT registed by IANA

• Add a comparative list of IANA/WHATWG

• Address names that do not uniquely identify encodings

• Add more examples

Revision 2

• Add all the enumerators of rcf 3008

• Add a mib constructor to text_encoding

• Add system_is and wide_system_is function templates

Revision 1

• Add more example and clarifications

• Require hosted implementations to support all the names registered in [rfc3808].

Use cases

This paper aims to make C++ simpler by exposing information that is currently hidden to the
point of being perceived as magical by many. It also leaves no room for a language below C++
by ensuring that text encoding does not require the use of C functions.

The primary use cases are:

• Ensuring a specific string encoding at compile time

• Ensuring at runtime that string literals are compatible with the system encoding

• Custom conversion function

• locale-independent text transformation

4

Non goals

This facility aims to help identify text encodings and does not want to solve encoding conver-
sion and decoding. Future text encoders and decoders may use the proposed facility as a way
to identify their source and destination encoding. The current facility is just a fancy name.

The many text encodings of a C++ system

Text in a technical sense is a sequence of bytes to which is virtually attached an encoding.
Without encoding, a blob of data simply cannot be interpreted as text.

In many cases, the encoding used to encode a string is not communicated along with that
string and its encoding is therefore presumed with more or less success.

Generally, it is useful to know the encoding of a string when

• Transferring data as text between systems or processes (I/O)

• Textual transformation of data

• Interpretation of a piece of data

In the purview of the standard, text I/O text originates from

• The source code (literals)

• The iostream library as well as system functions

• Environment variables and command-line arguments intended to be interpreted as text.

Locales provide text transformation and conversion facilities and as such, in the current model
have an encoding attached to them.

There are therefore 3 sets of encodings of primary interest:

• The encoding of narrow and wide characters and string literals

• The narrow and wide encodings used by a program when sending or receiving strings
from its environment

• The encoding of narrow and wide characters attached to a std::locale object

[Note: Because they have different code units sizes, narrow and wide strings have different
encodings. char8_t, char16_t, char32_t literals are assumed to be respectively UTF-8, UTF-16
and UTF-32 encoded. —end note]

[Note: A program may have to deal with more encoding - for example, on Windows, the
encoding of the console attached to coutmay be different from the system encoding.

Likewise depending on the platform, paths may or may not have an encoding attached to
them, and that encoding may either be a property of the platform or the filesystem itself.
—end note]

5

The standard only has the notion of execution character sets (which implies the existence of
execution encodings), whose definitions are locale-specific. That implies that the standard
assumes that string literals are encoded in a subset of the encoding of the locale encoding.

This has to hold notably because it is not generally possible to differentiate runtime strings
from compile-time literals at runtime.

This model does, however, present l shortcomings:

First, in practice, C++ software are often no longer compiled in the same environment as the
one on which they are run and the entity providing the program may not have control over
the environment on which it is run.

Both POSIX and C++ derives the encoding from the locale. Which is an unfortunate artifact
of an era when 255 characters or less ought to be enough for anyone. Sadly, the locale
can change at runtime, which means the encoding which is used by ctype and conversion
functions can change at runtime. However, this encoding ought to be an immutable property
as it is dictated by the environment (often the parent process). In the general case, it is not
for a program to change the encoding expected by its environment. A C++ program sets the
locale to ”C” (see [N2346], 7.11.1.1.4) (which assumes a US ASCII encoding) during initialization,
further losing information.

Many text transformations can be done in a locale-agnostic manner yet require the encoding
to be known - as no text transformation can ever be applied without prior knowledge of what
the encoding of that text is.

More importantly, it is difficult or impossible for a developer to diagnose an incompatibility
between the locale-derived, encoding, the system-assumed encoding and the encoding of
string literals.

Exposing the different encodings would let developers verify that that the system environ-
ment is compatible with the implementation-defined encoding of string literals, aka that the
encoding and character set used to encode string literals are a strict subset of the encoding
of the environment.

Identifying Encodings

To be able to expose the encoding to developers we need to be able to synthesize that
information. The challenge, of course, is that there exist many encodings (hundreds), and
many names to refer to each one. Fortunately there exist a database of registered encoding
covering almost all encodings supported by operating systems and compilers. This database
is maintained by IANA through a process described by [rfc2978].

This database lists over 250 registered character sets and for each:

• A name

• A unique identifier

• A set of known aliases

6

We propose to use that information to reliably identify encoding across implementations and
systems.

Design Considerations

Encodings are orthogonal to locales

The following proposal is mostly independent of locales so that the relevant part can be
implemented in an environment in which <locale> is not available, as well as to make sure we
can transition std::locale to be more compatible with Unicode.

Naming

SG-16 is looking at rewording the terminology associated with text and encoding throughout
the standard, this paper does not yet reflect that effort.

However ”system encoding” and ”literal encoding” are descriptive terms. In particular ”system”
is illustrative of the fact that a C++ program has, in the general case, no control over the
encoding it is expected to produce and consume.

MIBEnum

We provide a text_encoding::id enum with the MIBEnum value of a few often used encodings
for convenience. Because there is a rather large number of encodings and because this list
may evolve faster than the standard, it was pointed out during early review that it would
be detrimental to attempt to provide a complete list. [Note: MIB stands for Management
Information Base, which is IANA nomenclature, the name has no particular interest besides a
desire not to deviate from the existing standards and practices. —end note]

The enumerators unknown and other and their value are provided by the very same RFC such
as:

• other designs an encoding not registered in the IANA Database, such that 2 encodings
with the othermib are identical if their names compare equal.

• unknown is used when the encoding could not be determined. Under the current proposal,
only default constructing a text_encoding object can produce that value. The encoding
associated with the locale or environment is always known.

While MIBEnum was necessary to make that proposal implementable consistently across plat-
forms, itsmain purpose is to remediate to the fact that encoding can havemultiple inconsistent
names across implementations.

However,

7

Name and aliases

The proposed API offers both a name and aliases. The namemethod reflects the name with
which the text_encoding object was created, when applicable. This is notably important when
the encoding is not registered, or its name differs from the IANA name.

Unique identification of encodings

The IANA database intends that the name refers to a specific set of characters. However,
for historical reasons, there exist some names (like Shift-JIS) which describes several slightly
different encoding. The intent of this proposal is that the names refer to the character sets as
described by IANA. Further differentiation can bemade in the application through out-of-band
information such as the provenance of the text to which the encoding is associated. RFC2978
mandates that all names and aliases are unique.

Implementation flexibility

This proposal aims to be implementable on all platforms as such, it supports encoding not
registered with IANA, does not impose that a freestanding implementation is aware of all
registered encodings, and it let implementers provide their own aliases for IANA-registered
encoding. Because the process for registering encodings is documented [rfc2978] implemen-
tations can (but are not required to) provide registered encodings not defined in [rfc3808] - in
the case that RFC is updated out of sync of the standard. However, [rfc3808] is from 2004 and
has not been updated. As the world converges to utf-8, new encodings are less likely to be
registered.

Implementations may not extend the text_encoding::id as to guarantee source compatibility.

const char*

A primary use case is to enable people to write their own conversion functions. Unfortunately,
most APIs expect NULL-terminated strings, which is why we return a const char*.

Freestanding

In order for this class to be compatible with free standing environments, care has been taken
to avoid allocation and exceptions. As such, we put an upper bound on the name of encoding
pass to text_encoding constructor of 63+1 characters. Per rfc2978, the primary name must
not exceeed 40 characters.

Name comparison

Names and aliases are compared ignoring case and non alpha numeric characters, in a way
that follows Unicode recommandations

8

https://www.unicode.org/reports/tr22/tr22-8.html#Charset_Alias_Matching

Implementation

The following proposal has been prototyped using a modified version of GCC to expose the
encoding information.

On Windows, the run-time encoding can be determined by GetACP - and then map to MIB
values, while on POSIX platform it corresponds to value of nl_langinfo when the environment
(””) locale is set - before the program’s locale is set to C.

On OSX CFStringGetSystemEncoding and CFStringConvertEncodingToIANACharSetName can also
be used.

While exposing the literal encoding is novel, a few libraries do expose the system encoding,
including Qt and wxWidget, and use the IANA registry.

Part of this proposal is available on Compiler explorer (literal and wide_literal are not sup-
ported)

Compatibility with 3rd party systems

Qt

// Get a QTextCodec able to convert the system encoding to QString
auto codec = QTextCodec::codecForMib(std::text_encoding::system().mib());

ICU

// Get a UConverter object able to convert to and from the system encoding to
//ICU's internal encoding.
UErrorCode err;
UConverter* converter = ucnv_open(std::text_encoding::system().name(), &err);

// Check whether a UConverter converts to the system encoding
bool compatibleWithSystemEncoding(UConverter* converter)
{

UErrorCode err;
const char* name == ucnv_getName(converter, &err);
assert(U_SUCCESS(err));
return std::text_encoding(name) == std::text_encoding::system();

}

ICONV

// Convert from utf-8 to the system encoding, transliterating if necessary
iconv_t converter

= iconv_open(std::format("{}//TRANSLIT", std::text_encoding::literal()).c_str(), "utf-8");

9

https://compiler-explorer.com/z/7D3Z3x

FAQ

Why rely on the IANA registry ?

The IANA registry has been picked for several reasons

• It can be referenced through an RFC in the standard

• It has wide vendor buy-in

• It is used as a primary source for many tools including ICU and iconv, and many pro-
gramming languages and libraries.

• It has an extensive number of entries which makes it uniquely suitable for the wide
portability requirements of C++. Notably, it supports IBM codepages.

• It provides stable enum values designed for efficient and portable comparison in pro-
gramming languages

• There is a well-specified support for unregistered encoding

• There is a well-specified process to register new encodings

We also considered the WHATWG Encoding specification. But this specification is designed
specifically for the web and has no provision for EBCDIC encodings., provide no numerical
values, etc.

Annex A provides a comparative list of IANA and WHATWG lists.

Extensive research didn’t found any other registry worth considering. It would be possible to
maintain our own list in the standard, but this would put an undue burden on the committee
and risks reducing portability with existing tools, libraries and other languages.

Why not return a text_encoding::id rather than a text_encoding object?

Some implementations may need to return a non-register encoding, in which case they would
return mib::other and a custom name.

text_encoding::system() and text_encoding::system_mib() (not proposed) would generate
the same code in an optimized build.

But handling names is expensive?

To ensure that the proposal is implementable in a constrained environment, text_encoding
has a limit of 63 characters per encoding name which is sufficient to support all encodings we
are aware of (registered or not)

It seems like names and mib are separate concerns?

Not all encodings are registered (even if most are), it is therefore not possible to identify all
encoding uniquely by mib. Encodings may have many names, but some platforms will have a

10

preferred name.

The combination of a name + a mib covers 100% of use cases. Aliases further help with
integration with third-party libraries or to develop tools that need mime encoding names.

Why can’t there be vendor provided MIBs?

This would be meaningless in portable code. mib is only useful as a mechanism to identify
portably encoding and to increase compatibility across third-party libraries.

It does not prevent the support of unregistered encodings:

text_encoding wtf8("WTF-8");
assert(wtf8.name() == "WTF-8"sv);
assert(wtf8.mib() == text_encoding::id::other);

Why can’t there be a text_encoding(name, mib) constructor?

Same reason, if users are allowed to construct text_encoding from registered names or names
otherwise unknown from the implementation with an arbitrary mib, it becomes impossible to
maintain the invariant of the class (the relation between mib and name), which would make
the interface much harder to use, without providing any functionality.

I just want to check that my platform is utf-8 without paying for all these other
encodings?

we added system_is to that end.

int main() {
assert(text_encoding::system_is<text_encoding::id::UTF8>

&& "Non UTF8 encoding detected, go away");
}

This can be implemented in a way that only stores in the program the necessary information
for that particular encoding (unless aliases is called at runtime).

On Windows and OSX, only calling encoding::aliases would pull any data in the program,
even if calling system.

What is the cost of calling aliases?

My crude implementation pulls in 30Ki of data when calling aliases or the name constructor,
or system() (on POSIX).

Future work

Exposing the notion of text encoding in the core and library language gives us the tools to
solve some problems in the standard.

11

Notably, it offers a sensibleway to do locale-independent, encoding-aware padding in std::format
as in described in [P1868].

While this gives us the tools to handle encoding, it does not fix the core wording.

12

Proposed wording

Add the header <text_encoding> to the ”C++ library headers” table in [headers], in a place that
respects the table’s current alphabetic order.

Add the header <text_encoding> to table [headers.cpp.fs] (freestanding).

Add the macro __cpp_lib_text_encoding to [version.syn], in a place that respects the current
alphabetic order:

#define __cpp_lib_text_encoding 201911L (**placeholder**) // also in text_encoding

Add a new header <text_encoding>.

A text_encoding describes a text encoding portably across platforms by exposing
data from the Character Sets database described by [rfc2978] and [rfc3808].

namespace std {

struct text_encoding{

inline constexpr size_t max_name_lenght = 63;

enum class id : int_least32_t {
other = 1,
unknown = 2,
ASCII = 3,
ISOLatin1 = 4,
ISOLatin2 = 5,
ISOLatin3 = 6,
ISOLatin4 = 7,
ISOLatinCyrillic = 8,
ISOLatinArabic = 9,
ISOLatinGreek = 10,
ISOLatinHebrew = 11,
ISOLatin5 = 12,
ISOLatin6 = 13,
ISOTextComm = 14,
HalfWidthKatakana = 15,
JISEncoding = 16,
ShiftJIS = 17,
EUCPkdFmtJapanese = 18,
EUCFixWidJapanese = 19,
ISO4UnitedKingdom = 20,
ISO11SwedishForNames = 21,
ISO15Italian = 22,
ISO17Spanish = 23,
ISO21German = 24,
ISO60DanishNorwegian = 25,
ISO69French = 26,
ISO10646UTF1 = 27,
ISO646basic1983 = 28,

13

INVARIANT = 29,
ISO2IntlRefVersion = 30,
NATSSEFI = 31,
NATSSEFIADD = 32,
NATSDANO = 33,
NATSDANOADD = 34,
ISO10Swedish = 35,
KSC56011987 = 36,
ISO2022KR = 37,
EUCKR = 38,
ISO2022JP = 39,
ISO2022JP2 = 40,
ISO13JISC6220jp = 41,
ISO14JISC6220ro = 42,
ISO16Portuguese = 43,
ISO18Greek7Old = 44,
ISO19LatinGreek = 45,
ISO25French = 46,
ISO27LatinGreek1 = 47,
ISO5427Cyrillic = 48,
ISO42JISC62261978 = 49,
ISO47BSViewdata = 50,
ISO49INIS = 51,
ISO50INIS8 = 52,
ISO51INISCyrillic = 53,
ISO54271981 = 54,
ISO5428Greek = 55,
ISO57GB1988 = 56,
ISO58GB231280 = 57,
ISO61Norwegian2 = 58,
ISO70VideotexSupp1 = 59,
ISO84Portuguese2 = 60,
ISO85Spanish2 = 61,
ISO86Hungarian = 62,
ISO87JISX0208 = 63,
ISO88Greek7 = 64,
ISO89ASMO449 = 65,
ISO90 = 66,
ISO91JISC62291984a = 67,
ISO92JISC62991984b = 68,
ISO93JIS62291984badd = 69,
ISO94JIS62291984hand = 70,
ISO95JIS62291984handadd = 71,
ISO96JISC62291984kana = 72,
ISO2033 = 73,
ISO99NAPLPS = 74,
ISO102T617bit = 75,
ISO103T618bit = 76,
ISO111ECMACyrillic = 77,
ISO121Canadian1 = 78,
ISO122Canadian2 = 79,

14

ISO123CSAZ24341985gr = 80,
ISO88596E = 81,
ISO88596I = 82,
ISO128T101G2 = 83,
ISO88598E = 84,
ISO88598I = 85,
ISO139CSN369103 = 86,
ISO141JUSIB1002 = 87,
ISO143IECP271 = 88,
ISO146Serbian = 89,
ISO147Macedonian = 90,
ISO150 = 91,
ISO151Cuba = 92,
ISO6937Add = 93,
ISO153GOST1976874 = 94,
ISO8859Supp = 95,
ISO10367Box = 96,
ISO158Lap = 97,
ISO159JISX02121990 = 98,
ISO646Danish = 99,
USDK = 100,
DKUS = 101,
KSC5636 = 102,
Unicode11UTF7 = 103,
ISO2022CN = 104,
ISO2022CNEXT = 105,
UTF8 = 106,
ISO885913 = 109,
ISO885914 = 110,
ISO885915 = 111,
ISO885916 = 112,
GBK = 113,
GB18030 = 114,
OSDEBCDICDF0415 = 115,
OSDEBCDICDF03IRV = 116,
OSDEBCDICDF041 = 117,
ISO115481 = 118,
KZ1048 = 119,
UCS2 = 1000,
UCS4 = 1001,
UnicodeASCII = 1002,
UnicodeLatin1 = 1003,
UnicodeJapanese = 1004,
UnicodeIBM1261 = 1005,
UnicodeIBM1268 = 1006,
UnicodeIBM1276 = 1007,
UnicodeIBM1264 = 1008,
UnicodeIBM1265 = 1009,
Unicode11 = 1010,
SCSU = 1011,
UTF7 = 1012,

15

UTF16BE = 1013,
UTF16LE = 1014,
UTF16 = 1015,
CESU8 = 1016,
UTF32 = 1017,
UTF32BE = 1018,
UTF32LE = 1019,
BOCU1 = 1020,
Windows30Latin1 = 2000,
Windows31Latin1 = 2001,
Windows31Latin2 = 2002,
Windows31Latin5 = 2003,
HPRoman8 = 2004,
AdobeStandardEncoding = 2005,
VenturaUS = 2006,
VenturaInternational = 2007,
DECMCS = 2008,
PC850Multilingual = 2009,
PC8DanishNorwegian = 2012,
PC862LatinHebrew = 2013,
PC8Turkish = 2014,
IBMSymbols = 2015,
IBMThai = 2016,
HPLegal = 2017,
HPPiFont = 2018,
HPMath8 = 2019,
HPPSMath = 2020,
HPDesktop = 2021,
VenturaMath = 2022,
MicrosoftPublishing = 2023,
Windows31J = 2024,
GB2312 = 2025,
Big5 = 2026,
Macintosh = 2027,
IBM037 = 2028,
IBM038 = 2029,
IBM273 = 2030,
IBM274 = 2031,
IBM275 = 2032,
IBM277 = 2033,
IBM278 = 2034,
IBM280 = 2035,
IBM281 = 2036,
IBM284 = 2037,
IBM285 = 2038,
IBM290 = 2039,
IBM297 = 2040,
IBM420 = 2041,
IBM423 = 2042,
IBM424 = 2043,
PC8CodePage437 = 2011,

16

IBM500 = 2044,
IBM851 = 2045,
PCp852 = 2010,
IBM855 = 2046,
IBM857 = 2047,
IBM860 = 2048,
IBM861 = 2049,
IBM863 = 2050,
IBM864 = 2051,
IBM865 = 2052,
IBM868 = 2053,
IBM869 = 2054,
IBM870 = 2055,
IBM871 = 2056,
IBM880 = 2057,
IBM891 = 2058,
IBM903 = 2059,
IBBM904 = 2060,
IBM905 = 2061,
IBM918 = 2062,
IBM1026 = 2063,
IBMEBCDICATDE = 2064,
EBCDICATDEA = 2065,
EBCDICCAFR = 2066,
EBCDICDKNO = 2067,
EBCDICDKNOA = 2068,
EBCDICFISE = 2069,
EBCDICFISEA = 2070,
EBCDICFR = 2071,
EBCDICIT = 2072,
EBCDICPT = 2073,
EBCDICES = 2074,
EBCDICESA = 2075,
EBCDICESS = 2076,
EBCDICUK = 2077,
EBCDICUS = 2078,
Unknown8BiT = 2079,
Mnemonic = 2080,
Mnem = 2081,
VISCII = 2082,
VIQR = 2083,
KOI8R = 2084,
HZGB2312 = 2085,
IBM866 = 2086,
PC775Baltic = 2087,
KOI8U = 2088,
IBM00858 = 2089,
IBM00924 = 2090,
IBM01140 = 2091,
IBM01141 = 2092,
IBM01142 = 2093,

17

IBM01143 = 2094,
IBM01144 = 2095,
IBM01145 = 2096,
IBM01146 = 2097,
IBM01147 = 2098,
IBM01148 = 2099,
IBM01149 = 2100,
Big5HKSCS = 2101,
IBM1047 = 2102,
PTCP154 = 2103,
Amiga1251 = 2104,
KOI7switched = 2105,
BRF = 2106,
TSCII = 2107,
CP51932 = 2108,
windows874 = 2109,
windows1250 = 2250,
windows1251 = 2251,
windows1252 = 2252,
windows1253 = 2253,
windows1254 = 2254,
windows1255 = 2255,
windows1256 = 2256,
windows1257 = 2257,
windows1258 = 2258,
TIS620 = 2259,
CP50220 = 2260,
reserved = 3000

};

constexpr explicit text_encoding(string_view name);
constexpr text_encoding(text_encoding::id mib) noexcept;

constexpr id mib() const noexcept;
constexpr const char* name() const noexcept;

constexpr auto aliases() const noexcept -> see below;

constexpr bool operator==(const text_encoding & other) const noexcept;
constexpr bool operator==(text_encoding::id mib) const noexcept;

static consteval text_encoding literal();
static consteval text_encoding wide_literal();

static text_encoding system();
static text_encoding wide_system();

template<text_encoding::id id_>
static bool text_encoding::system_is();

18

template<text_encoding::id id_>
static bool text_encoding::wide_system_is();

private:
id mib_; // exposition only
char name_[max_name_lenght+1]; // exposition only

};

// hash support
template<class T> struct hash;
template<> struct hash<text_encoding>;

}

A registered-character-set is a character set registered by the process described in [rfc2978]
and which is known of the implementation.

Let bool COMP_NAME(const char* a, const char* b) be a function that returns true if two
strings encoded in the basic execution character set are identical, ignoring in each string, case
and all characters outside of the ranges [a-z], [A-Z], [0-9], as well as 0 not precedeed by a digit.

[Note: The enumerators of the text_encoding::id and their value match those specified in
[rfc3808] with the ”cs” prefixed removed. text_encoding::id::UCS2 corresponds to csUnicode
in [rfc3808] —end note]

constexpr explicit text_encoding(string_view name);

Preconditions: name.size() < 64 is true.

Effects: If there exists an implementation-defined alias a of registered-character-set such
that COMP_NAME(a, name.c_str()) is true, initialize mib_ with the MIBenum associated with
that registered-character-set. Otherwise, initialize mib_ with text_encoding::id::other.

Implementations shall return a valid text_encoding object for every name that matches
either an alias or a name of a registered-character-set listed in [rfc3808].

[Note: Freestanding implementations are not required to provide this method —end
note]

Postconditions: string_view(name_) == name.

constexpr text_encoding(text_encoding::id mib) noexcept;

Preconditions: mib has the value of one of the enumerators of text_encoding::id.

Postconditions: mib_ == mib.

constexpr id mib() const noexcept;

Returns: mib_.

[Note: The enumerator value text_encoding::id::unknown is provided for compatibility

19

with [rfc3808], text_encoding::mib() never returns text_encoding::id::unknown. —end
note]

constexpr const char* name() const noexcept;

Returns:

• name_ if strlen(name_) > 0 is true,

• Otherwise, if id != id::unknown is true, an implementation defined null-terminated
string corresponding to the preferred name of the encoding on that platform.

• Otherwise, nullptr

constexpr auto aliases() const noexcept;

Returns: an implementation-defined object r representing a sequence of aliases such
that:

• ranges::view<decltype(r)> is true,

• ranges::random_access_range<decltype(r)> is true,

• same_as<ranges::range_value_t<decltype(r)>, string_view> is true,

• !ranges::empty(r) || mib() == id::other is true.

If mib() is equal to the MIBEnum value of one of the registered-character-sets, r[0] is the
name of the registered-character-set.

r contains the aliases of the registered-character-set as specified by [rfc2978].

rmay contain implementation-defined values.

r does not contain duplicated values - the equality of 2 values is determined by COMP_NAME.

[Note: The order of elements in r is unspecified. —end note]

constexpr bool operator==(const text_encoding & other) const noexcept;

Returns: COMP_NAME(name(), other.name()) if mib() == id::other && other.mib() == id::other
is true, otherwise mib() == other.mib().

constexpr bool operator==(text_encoding::id i) const noexcept;

Returns: mib() == i

static consteval text_encoding literal();

Returns: a text_encoding object representing the narrow execution encoding.

static consteval text_encoding wide_literal();

Returns: a text_encoding object representing the wide execution encoding.

static text_encoding system();

20

Return the presumed system narrow encoding. On a POSIX system, this is encoding that
would be returned by l_langinfo_l(CODESET, newlocale(LC_CTYPE, "", (locale_t)0) at
the start of the program.

This function always returns the same value during the lifetime of a program and is not
affected by calls to setlocale.

static text_encoding wide_system();

Return the presumed system-wide encoding. On POSIX systems this is the encoding
attached to the environment locale ("") at the start of the program.

[Note: This function shall always return the same value during the lifetime of a program
and is not affected by calls to setlocale. —end note]

template<text_encoding::id id_>
static bool text_encoding::system_is();

Returns: Equivalent to system() == id_

template<text_encoding::id id_>
static bool text_encoding::system_wide_is();

Returns: Equivalent to wide_system() == id_

In [locale]:

namespace std {
class locale {
public:
[...]

// locale operations
string name() const;

text_encoding encoding() const;
text_encoding wide_encoding() const;

};
}

In [locale.members]:

string name() const;

Returns: The name of *this, if it has one; otherwise, the string "*".

text_encoding encoding() const;

Returns: The text encoding for narrow strings associated with the locale *this.

text_encoding wide_encoding() const;

Returns: The text encoding for wide strings associated with the locale *this.

21

Acknowledgments

Many thanks to Victor Zverovich, Thiago Macieira, Jens Maurer, Tom Honermann and others
for reviewing this work and providing valuable feedback.

Annex: Registered encodings

IANA WHATWG

ANSI_X3.110-1983

ASMO_449

Adobe-Standard-Encoding

Adobe-Symbol-Encoding

Amiga-1251

BOCU-1

BRF

BS_4730

BS_viewdata

Big5 Big5

Big5-HKSCS

CESU-8

CP50220

CP51932

CSA_Z243.4-1985-1

CSA_Z243.4-1985-2

CSA_Z243.4-1985-gr

CSN_369103

DEC-MCS

DIN_66003

DS_2089

EBCDIC-AT-DE

EBCDIC-AT-DE-A

EBCDIC-CA-FR

EBCDIC-DK-NO

EBCDIC-DK-NO-A

EBCDIC-ES

EBCDIC-ES-A

EBCDIC-ES-S

EBCDIC-FI-SE

EBCDIC-FI-SE-A

EBCDIC-FR

EBCDIC-IT

EBCDIC-PT

EBCDIC-UK

22

EBCDIC-US

ECMA-cyrillic

ES

ES2

EUC-JP EUC-JP

EUC-KR EUC-KR

Extended_UNIX_Code_Fixed_Width_-
for_Japanese

GB18030 gb18030

GB2312

GBK GBK

GB_1988-80

GB_2312-80

GOST_19768-74

HP-DeskTop

HP-Legal

HP-Math8

HP-Pi-font

HZ-GB-2312

IBM-Symbols

IBM-Thai

IBM00858

IBM00924

IBM01140

IBM01141

IBM01142

IBM01143

IBM01144

IBM01145

IBM01146

IBM01147

IBM01148

IBM01149

IBM037

IBM038

IBM1026

IBM1047

IBM273

IBM274

IBM275

IBM277

IBM278

IBM280

23

IBM281

IBM284

IBM285

IBM290

IBM297

IBM420

IBM423

IBM424

IBM437

IBM500

IBM775

IBM850

IBM851

IBM852

IBM855

IBM857

IBM860

IBM861

IBM862

IBM863

IBM864

IBM865

IBM866 IBM866

IBM868

IBM869

IBM870

IBM871

IBM880

IBM891

IBM903

IBM904

IBM905

IBM918

IEC_P27-1

INIS

INIS-8

INIS-cyrillic

INVARIANT

ISO-10646-J-1

ISO-10646-UCS-2

ISO-10646-UCS-4

ISO-10646-UCS-Basic

ISO-10646-UTF-1

24

ISO-10646-Unicode-Latin1

ISO-11548-1

ISO-2022-CN

ISO-2022-CN-EXT

ISO-2022-JP ISO-2022-JP

ISO-2022-JP-2

ISO-2022-KR

ISO-8859-1

ISO-8859-1-Windows-3.0-Latin-1

ISO-8859-1-Windows-3.1-Latin-1

ISO-8859-10 ISO-8859-10

ISO-8859-13 ISO-8859-13

ISO-8859-14 ISO-8859-14

ISO-8859-15 ISO-8859-15

ISO-8859-16 ISO-8859-16

ISO-8859-2 ISO-8859-2

ISO-8859-2-Windows-Latin-2

ISO-8859-3 ISO-8859-3

ISO-8859-4 ISO-8859-4

ISO-8859-5 ISO-8859-5

ISO-8859-6 ISO-8859-6

ISO-8859-6-E

ISO-8859-6-I

ISO-8859-7 ISO-8859-7

ISO-8859-8 ISO-8859-8

ISO-8859-8-E

ISO-8859-8-I ISO-8859-8-I

ISO-8859-9

ISO-8859-9-Windows-Latin-5

ISO-Unicode-IBM-1261

ISO-Unicode-IBM-1264

ISO-Unicode-IBM-1265

ISO-Unicode-IBM-1268

ISO-Unicode-IBM-1276

ISO_10367-box

ISO_2033-1983

ISO_5427

ISO_5427:1981

ISO_5428:1980

ISO_646.basic:1983

ISO_646.irv:1983

ISO_6937-2-25

ISO_6937-2-add

25

ISO_8859-supp

IT

JIS_C6220-1969-jp

JIS_C6220-1969-ro

JIS_C6226-1978

JIS_C6226-1983

JIS_C6229-1984-a

JIS_C6229-1984-b

JIS_C6229-1984-b-add

JIS_C6229-1984-hand

JIS_C6229-1984-hand-add

JIS_C6229-1984-kana

JIS_Encoding

JIS_X0201

JIS_X0212-1990

JUS_I.B1.002

JUS_I.B1.003-mac

JUS_I.B1.003-serb

KOI7-switched

KOI8-R KOI8-R

KOI8-U KOI8-U

KSC5636

KS_C_5601-1987

KZ-1048

Latin-greek-1

MNEM

MNEMONIC

MSZ_7795.3

Microsoft-Publishing

NATS-DANO

NATS-DANO-ADD

NATS-SEFI

NATS-SEFI-ADD

NC_NC00-10:81

NF_Z_62-010

NF_Z_62-010_(1973)

NS_4551-1

NS_4551-2

OSD_EBCDIC_DF03_IRV

OSD_EBCDIC_DF04_1

OSD_EBCDIC_DF04_15

PC8-Danish-Norwegian

PC8-Turkish

26

PT

PT2

PTCP154

SCSU

SEN_850200_B

SEN_850200_C

Shift_JIS Shift_JIS

T.101-G2

T.61-7bit

T.61-8bit

TIS-620

TSCII

UNICODE-1-1

UNICODE-1-1-UTF-7

UNKNOWN-8BIT

US-ASCII

UTF-16

UTF-16BE UTF-16BE

UTF-16LE UTF-16LE

UTF-32

UTF-32BE

UTF-32LE

UTF-7

UTF-8 UTF-8

VIQR

VISCII

Ventura-International

Ventura-Math

Ventura-US

Windows-31J

dk-us

greek-ccitt

greek7

greek7-old

hp-roman8

iso-ir-90

latin-greek

latin-lap

macintosh macintosh

us-dk

videotex-suppl

windows-1250 windows-1250

windows-1251 windows-1251

27

windows-1252 windows-1252

windows-1253 windows-1253

windows-1254 windows-1254

windows-1255 windows-1255

windows-1256 windows-1256

windows-1257 windows-1257

windows-1258 windows-1258

windows-874 windows-874

Annex B: Known encodings not present in IANA

Lists of encoding known to some platforms but not registered to IANA. These might be
incomplete as generating them proved challenging. These might still be supported through
the othermib, but are not suitable for interexchange.

Windows

• 710 Arabic - Transparent Arabic

• 72 DOS-720 Arabic (Transparent ASMO); Arabic (DOS)

• 737 ibm737 OEM Greek (formerly 437G); Greek (DOS)

• 875 cp875 IBM EBCDIC Greek Modern

• 1361 Johab Korean (Johab)

• 57002 x-iscii-de ISCII Devanagari

• 57003 x-iscii-be ISCII Bangla

• 57004 x-iscii-ta ISCII Tamil

• 57005 x-iscii-te ISCII Telugu

• 57006 x-iscii-as ISCII Assamese

• 57007 x-iscii-or ISCII Odia

• 57008 x-iscii-ka ISCII Kannada

• 57009 x-iscii-ma ISCII Malayalam

• 57010 x-iscii-gu ISCII Gujarati

• 57011 x-iscii-pa ISCII Punjabi

Iconv

• CP1131

28

• CP1133

• GEORGIAN-ACADEMY

• GEORGIAN-PS

• CN-GB-ISOIR165

• Johab

• MacArabic

• MacCentralEurope

• MacCroatian

• MacCyrillic

• MacGreek

• MacHebrew

• MacIceland

• MacRoman

• MacRomania

• MacThai

• MacTurkish

• MacUkraine

References

[N4830] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.link/n4830

[N2346] Working Draft, Standard for Programming Language C
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2346.pdf

[rfc3808] I. McDonald IANA Charset MIB
https://tools.ietf.org/html/rfc3808

[rfc2978] N. Freed IANA Charset Registration Procedures
https://tools.ietf.org/html/rfc2978

[Character Sets] IANA Character Sets
https://www.iana.org/assignments/character-sets/character-sets.xhtml

[iconv encodings] GNU project Iconv Encodings
http://git.savannah.gnu.org/cgit/libiconv.git/tree/lib/encodings.def

[P1868] Victor Zverovich Clarifying units of width and precision in std::format
http://wg21.link/P1868

29

https://wg21.link/n4830
 http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2346.pdf
https://tools.ietf.org/html/rfc3808
https://tools.ietf.org/html/rfc2978
https://www.iana.org/assignments/character-sets/character-sets.xhtml
http://git.savannah.gnu.org/cgit/libiconv.git/tree/lib/encodings.def
http://wg21.link/P1868

	1 Target
	2 Abstract
	3 Examples
	3.1 Listing the encoding
	3.2 LWG3314
	3.3 Asserting a specific encoding is set
	3.4 User construction
	3.5 Unregistered encoding

	4 Revisions
	5 Use cases
	5.1 Non goals

	6 The many text encodings of a C++ system
	7 Identifying Encodings
	8 Design Considerations
	8.1 Encodings are orthogonal to locales
	8.2 Naming
	8.3 MIBEnum
	8.4 Name and aliases
	8.5 Unique identification of encodings
	8.6 Implementation flexibility
	8.7 const char*
	8.8 Freestanding
	8.9 Name comparison

	9 Implementation
	10 Compatibility with 3rd party systems
	10.1 Qt
	10.2 ICU
	10.3 ICONV

	11 FAQ
	11.1 Why rely on the IANA registry ?
	11.2 Why not return a text_encoding::id rather than a text_encoding object?
	11.3 But handling names is expensive?
	11.4 It seems like names and mib are separate concerns?
	11.5 Why can't there be vendor provided MIBs?
	11.6 Why can't there be a text_encoding(name, mib) constructor?
	11.7 I just want to check that my platform is utf-8 without paying for all these other encodings?
	11.8 What is the cost of calling aliases?

	12 Future work
	13 Proposed wording
	14 Acknowledgments
	15 Annex: Registered encodings
	16 Annex B: Known encodings not present in IANA
	16.1 Windows
	16.2 Iconv

