
Native handles and file streams
Document #: P1759R3
Date: 2020-10-13
Project: Programming Language C++
Audience: Library Evolution
Reply-to: Elias Kosunen

<isocpp@eliaskosunen.com>

Contents
1 Abstract 2

2 Revision History 2
2.1 R3 . 2
2.2 R2 . 2
2.3 R1 . 2
2.4 R0 . 2

3 Motivation 3

4 Scope 4

5 Design Discussion 4
5.1 Type of native_handle_type . 4
5.2 Precondition . 5

6 Impact On the Standard and Existing Code 5

7 Implementation 5

8 Prior Art 6
8.1 Discussion . 7
8.2 Existing precendent for presence of native_handle . 7

9 Technical Specifications 7
9.1 Wording notes . 7
9.2 Feature test macro . 7
9.3 Wording . 7

10 Acknowledgements 11

11 References 11

1

mailto:isocpp@eliaskosunen.com

1 Abstract
This paper proposes adding a new typedef to standard file streams: native_handle_type. This type is an alias
to whatever type the platform uses for its file descriptors: int on POSIX, HANDLE (void*) on Windows, and
something else on other platforms. This type is a non-owning handle and has generally sane semantics: constexpr
default constructability, trivial copyability and standard layout.

Alongside this, this paper proposes adding a concrete member function: .native_handle(), returning a
native_handle_type, to the following class templates:

— basic_filebuf
— basic_ifstream
— basic_ofstream
— basic_fstream

2 Revision History
2.1 R3
— Add std::condition_variable and [P2146R2] to list of standard types having a .native_handle()

member function
— Update wording to reference the latest standard draft [N4849], and update references to other P-numbered

papers
— Change paper title

2.2 R2
— Minor touches to wording

— Refine requirements on native_handle_type (remove equality_comparable, add constexpr default
constructability)

— Fix some broken references using section numbers in the WD
— Update reference to the WD

— Editorial fixes

2.3 R1
— Make native_handle_type be standard layout
— Add precondition (is_open() == true) to .native_handle()
— Add feature test macro __cpp_lib_fstream_native_handle
— Fix errors with opening the file with POSIX APIs in Motivation (see, we need this paper, fstreams are

easier to open correctly!)
— Add additional motivating use case in vectored/scatter-gather IO
— Regular -> regular

Incorporate LEWGI feedback from Cologne (July 2019):

— Move to a member function and member typedef
— Make native_handle return value not be mandated to be unique
— Add note about how the presence of the members is required, and not implementation-defined (like for

thread)

2.4 R0
Initial revision.

2

3 Motivation
For some operations, using OS/platform-specific file APIs is necessary. If a user wanted to use these APIs, they’re
unable to use iostreams without reopening the file.

For example, if one wanted to query the time a file was last modified on POSIX, one would use fstat, which
takes a file descriptor:
int fd = ::open("~/foo.txt", O_RDONLY);
::stat s{};
int err = ::fstat(fd, &s);
std::chrono::sys_seconds last_modified = std::chrono::seconds(s.st_mtime.tv_sec);

The Filesystem TS introduced the status function returning a file_status structure. This doesn’t solve our
problem, because std::filesystem::status takes a path, not a native file descriptor. Using paths is generally
discouraged in these sort of situations, because the path may not refer to the same file it referred to previously
(the file might’ve been moved), or the file might not exist anymore at all. In short, using paths is potentially racy.

Also, std::filesystem::file_status only contains member functions type() and permissions(), not one
for last time of modification. Extending this structure is out of scope for this proposal, and not feasible for every
single possible operation the user may wish to do with OS APIs, of which querying simple file properties is but a
small subset.

If the user needs to do a single operation not supported by the standard library, they have to make a choice
between using OS APIs exclusively, or reopening the file every time it’s necessary. The former is unfortunate
from the persective of the standard library and its usefulness. The latter is likely to lead to forgetting to close
the file, or running into buffering or synchronization issues, as is the case with C APIs.
// Writing the latest modification date to a file
std::chrono::sys_seconds last_modified(int fd) {

// See above for POSIX implementation using fstat
}

// Today's code

// Option #1:
// Use iostreams by reopening the file
{

int fd = ::open("~/foo.txt", O_RDONLY); // CreateFile on Windows
auto lm = last_modified(fd);

::close(fd); // CloseFile on Windows
// Hope the path still points to the file!
// Need to allocate
std::ofstream of("~/foo.txt");
of << std::chrono::format("%c", lm) << '\n';
// Need to flush

}

// Option #2:
// Abstain from using iostreams altogether
{

int fd = ::open("~/foo.txt", O_RDWR);
auto lm = last_modified(fd);

// Using ::write() is clunky;
// skipping error handling for brevity

3

auto str = std::chrono::format("%c\n", lm);
::write(fd, str.data(), str.size());
// Remember to close!
// Hope format or push_back doesn't throw
::close(fd);

}

// This proposal
// No need to use platform-specific APIs to open the file
{

std::ofstream of("~/foo.txt");
auto lm = last_modified(of.native_handle());
of << std::chrono::format("%c", lm) << '\n';
// RAII does ownership handling for us

}

The utility of getting a file descriptor (or other native file handle) is not limited to getting the last modification
date. Other examples include, but are definitely not limited to:

— file locking (fcntl() + F_SETLK on POSIX, LockFile on Windows)
— getting file status flags (fcntl() + F_GETFL on POSIX, GetFileInformationByHandle on Windows)
— vectored/scatter-gather IO (vread()/vwrite() on POSIX)
— non-blocking IO (fcntl() + O_NONBLOCK/F_SETSIG on POSIX)

Basically, this paper would make standard file streams interoperable with operating system interfaces, making
iostreams more useful in that regard.

An alternative would be adding a lot of this functionality to fstream and filesystem. The problem is, that
some of this behavior is inherently platform-specific. For example, getting the inode of a file is something that
only makes sense on POSIX, so cannot be made part of the fstream interface, and should only accessible through
the native file descriptor.

With [P1031R2] and [P2146R2], we’re potentially getting a replacement for iostreams in the standard, or at least
facilities complementing them. The author thinks, that even if these papers were to be merged to the standard,
the functionality described in this paper would still be useful, as iostreams aren’t going anywhere soon.

4 Scope
This paper does not propose enabling the construction of a file stream or a file stream buffer from a native file
handle. The author is worried of ownership and implementation issues possibly associated with this design.
// NOT PROPOSED
#include <fstream>
#include <fcntl.h>

auto fd = ::open(/* ... */);
auto f = std::fstream{fd};

This paper also does not touch anything related to FILE*, namely getting a native handle out of one.

5 Design Discussion
5.1 Type of native_handle_type

In this paper, the definition for native_handle_type is much more strict than in thread. For reference, this is
the wording from Native handles 32.2.3 [thread.req.native], from [N4849]:

4

https://wg21.link/thread.req.native

Several classes described in this Clause have members native_handle_type and native_handle. The
presence of these members and their semantics is implementation-defined. [Note: These members allow
implementations to provide access to implementation details. Their names are specified to facilitate portable
compile-time detection. Actual use of these members is inherently non-portable. — end note]

During the review of R0 of this paper in Cologne by LEWGI, it was said how having the same specification
here would make this paper effectively useless. Having the presence of a member be implementation-defined was
deemed as bad design, which should not be replicated in this paper.

The proposed alternative in this paper, as directed by LEWGI, is allowing a conforming implementation to return
an invalid native file handle, if one cannot be retrieved.

5.2 Precondition
The member function .native_handle(), as specified in this paper, has a precondition of .is_open() == true.
The precondition is specified with “Expects”, so breaking it would be UB, and would in practice be enforced
with an assert.

An alternative to this would be throwing if the file is not open, or returning some unspecified invalid handle.

6 Impact On the Standard and Existing Code
This proposal is a pure library extension, requiring no changes to the core language. It would cause no existing
conforming code to break.

7 Implementation
Implementing this paper should be a relatively trivial task.

Although all implementations surveyed (libstdc++, libc++ and MSVC) use FILE* instead of native file descriptors
in their basic_filebuf implementations, these platforms provide facilites to get a native handle from a FILE*;
fileno on POSIX, and _fileno + _get_osfhandle on Windows. The following reference implementations use
these.

For libstdc++ on Linux:
template <class CharT, class Traits>
class basic_filebuf : public basic_streambuf<CharT, Traits> {

// ...
using native_handle_type = int;
// ...
native_handle_type native_handle() {

assert(is_open());
// _M_file (__basic_file<char>) has a member function for this purpose
return _M_file.fd();
// ::fileno(_M_file.file()) could also be used

}
// ...

}

For libc++ on Linux:
template <class CharT, class Traits>
class basic_filebuf : public basic_streambuf<CharT, Traits> {

// ...
using native_handle_type = int;
// ...

5

native_handle_type native_handle() {
assert(is_open());
// __file_ is a FILE*
return ::fileno(__file_)

}
// ...

}

For MSVC:
template <class CharT, class Traits>
class basic_filebuf : public basic_streambuf<CharT, Traits> {

// ...
using native_handle_type = HANDLE;
// ...
native_handle_type native_handle() {

assert(is_open());
// _Myfile is a FILE*
auto cfile = ::_fileno(_Myfile);
// _get_osfhandle returns intptr_t, which can be cast to HANDLE (void*)
return static_cast<HANDLE>(::_get_osfhandle(cfile));

}
// ...

}

For all of these cases, implementing .native_handle() for ifstream, ofstream and fstream is trivial:
template <class CharT, class Traits>
class basic_ifstream : public basic_istream<CharT, Traits> {

// ...
using native_handle_type =

typename basic_filebuf<CharT, Traits>::native_handle_type;
// ...
native_handle_type native_handle() {

return rdbuf()->native_handle();
}

};

// Repeat for ofstream and fstream

8 Prior Art
[Boost.IOStreams] provides file_descriptor, file_descriptor_source, and file_descriptor_sink, which,
when used in conjunction with stream_buffer, are std::basic_streambufs using a file descriptor. These classes
can be constructed from a path or a native handle (int or HANDLE) and can also return it with member function
handle().

The Networking TS [N4734] has members native_handle_type and .native_handle() in numerous places,
including std::net::socket. It specifies (in [socket.reqmts.native]) the presence of these members in a similar
fashion to thread, as in making their presence implementation-defined. It does, however, recommend POSIX-based
systems to use int for this purpose.

The specification of [P2146R2] is at this time incomplete, but the interface resembles this paper, as in having a
member typedef native_handle_type, and a member function returning one. It is not specified in the paper
whether the presence of the typedef and the member function is implementation-defined.

6

[P1031R2] also defines a structure native_handle_type with an extensive interface and a member union with
an int and a HANDLE, with a constructor taking either one of these.

8.1 Discussion
There has been some discussion over the years about various things relating to this issue, but as far as the author
is aware, no concrete proposal has ever been submitted.

There have been a number of threads on std-discussion and std-proposals: [std-proposals-native-handle], [std-
discussion-fd-io], [std-proposals-native-raw-io], [std-proposals-fd-access]. The last one of these lead to a draft
paper, that was never submitted: [access-file-descriptors].

The consensus that the author took from these discussions is, that native handle support for iostreams would be
very much welcome.

8.2 Existing precendent for presence of native_handle

Types with a standard way of getting the native handle

— std::thread
— std::mutex and other standard mutex types
— std::condition_variable
— Networking TS [N4734] types (e.g. std::net::socket)
— LLIO [P1031R2] types
— “Modern std::byte stream IO” types [P2146R2]

Types without a standard way of getting the native handle

— std::fstream / std::filebuf
— FILE*

This paper would move std::fstream and std::filebuf from the bottom category to the top, where they
arguably ought to belong.

9 Technical Specifications
9.1 Wording notes
The wording is based on [N4849].

9.2 Feature test macro
This paper proposes adding a feature test macro, called __cpp_lib_fstream_native_handle.

9.3 Wording
9.3.1 Add the following section into File-based streams [file.streams]

This section is to come between 29.9.1 [fstream.syn] and 29.9.2 [filebuf].

Note to editor: Replace ? with the appropriate section number. As of [N4849], that would be 29.9.2.

?.?.? Native handles [file.native]
1 Several classes described in this section have a member native_handle_type.
2 The type native_handle_type serves as a type representing a platform-specific handle to a file. It is trivially

copyable and standard layout, models semiregular, and has a constexpr default constructor.
3 [Note: For operating systems based on POSIX, native_handle_type is int. For Windows-based operating

systems, native_handle_type is HANDLE. — end note]

7

https://wg21.link/fstream.syn
https://wg21.link/filebuf

9.3.2 Modify Class template basic_filebuf [filebuf]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_filebuf : public basic_streambuf<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

+ using native_handle_type = implementation-defined ; // see [file.native]

// ...

// [filebuf.members], members
bool is_open() const;
basic_filebuf* open(const char* s, ios_base::openmode mode);
basic_filebuf* open(const filesystem::path::value_type* s,

ios_base::openmode mode); // wide systems only; see 29.9.1
basic_filebuf* open(const string& s,

ios_base::openmode mode);
basic_filebuf* open(const filesystem::path& s,

ios_base::openmode mode);
basic_filebuf* close();

+ native_handle_type native_handle();

// ...

+ private:
+ native_handle_type handle; // exposition only

}
}

9.3.3 Modify Class template basic_filebuf [filebuf]
4 An instance of basic_filebuf behaves as described in [filebuf] provided traits::pos_type is

fpos<traits::state_type>. Otherwise the behavior is undefined.
5 The underlying file of a basic_filebuf has an associated value of type native_handle_type, called the native

handle of the file. Whether the associated native handle is unique for each file, is implementation-defined.
6 [Note: This differs from the native handles of thread, mutex and condition_variable [thread.req.native],

the presence of which is implementation-defined. — end note]
7 In order to support file I/O and multibyte/wide character conversion, conversions are performed using members

of a facet, referred to as a_codecvt in the following subclauses, obtained as if by

9.3.4 Add to the end of Member functions [filebuf.members]

This would come after the definition of basic_filebuf::close(), which occupies paragraphs 8-10.

native_handle_type native_handle();

11 Expects: is_open() is true.
12 Throws: Nothing.

8

13 Returns: handle.

9.3.5 Modify Class template basic_ifstream [ifstream]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_ifstream : public basic_istream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

+ using native_handle_type =
+ typename basic_filebuf<charT, traits>::native_handle_type;

// ...

// [ifstream.members], members
basic_filebuf<charT, traits>* rdbuf() const;

+ native_handle_type native_handle();

bool is_open() const;
// ...

}
}

9.3.6 Add to Member functions [ifstream.members] after p1

This would come between the definitions of basic_ifstream::rdbuf() (p1) and basic_ifstream::is_open()
(p2, now p3).

native_handle_type native_handle();

2 Effects: Equivalent to: return rdbuf()->native_handle();.

9.3.7 Modify Class template basic_ofstream [ofstream]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_ofstream : public basic_ostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

+ using native_handle_type =
+ typename basic_filebuf<charT, traits>::native_handle_type;

// ...

// [ofstream.members], members
basic_filebuf<charT, traits>* rdbuf() const;

9

+ native_handle_type native_handle();

bool is_open() const;
// ...

}
}

9.3.8 Add to Member functions [ofstream.members] after p1

This would come between the definitions of basic_ofstream::rdbuf() (p1) and basic_ofstream::is_open()
(p2, now p3).

native_handle_type native_handle();

2 Effects: Equivalent to: return rdbuf()->native_handle();.

9.3.9 Modify Class template basic_fstream [fstream]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_fstream : public basic_iostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

+ using native_handle_type =
+ typename basic_filebuf<charT, traits>::native_handle_type;

// ...

// [fstream.members], members
basic_filebuf<charT, traits>* rdbuf() const;

+ native_handle_type native_handle();
+

bool is_open() const;
// ...

}
}

9.3.10 Add to Member functions [fstream.members] after p1

This would come between the definitions of basic_fstream::rdbuf() (p1) and basic_fstream::is_open()
(p2, now p3).

native_handle_type native_handle();

2 Effects: Equivalent to: return rdbuf()->native_handle();.

10

10 Acknowledgements
Thanks to Niall Douglas for feedback, encouragement and ambitious suggestions for this paper.

Thanks to the rest of the co-authors of [P1750R1] for the idea after cutting this functionality out, especially to
Jeff Garland for providing a heads-up about a possible ABI-break that I totally would’ve missed, even though it
ended up being a non-issue.

Thanks to Michael Park for his paper markup framework [mpark/wg21].

11 References
[access-file-descriptors] Bruce S. O. Adams. file streams and access to the file descriptor.

https://docs.google.com/viewer?a=v&pid=forums&srcid=MTEwODAzNzI2MjM1OTc0MjE3MjkBMDY0O
TY1OTUzMjAwNzY0MTA0MjkBakhWMHBFLUNGd0FKATAuMQFpc29jcHAub3JnAXYy&authuser=0

[Boost.IOStreams] Jonathan Turkanis. Boost.IOStreams.
https://www.boost.org/doc/libs/1_71_0/libs/iostreams/doc/index.html

[mpark/wg21] mpark/wg21 on GitHub.
https://github.com/mpark/wg21

[N4734] Jonathan Wakely. 2018. Working Draft, C++ Extensions for Networking.
https://wg21.link/N4734

[N4849] Richard Smith. 2020. Working Draft, Standard for Programming Language C++.
https://wg21.link/N4849

[P1031R2] Niall Douglas. 2019. Low level file i/o library.
https://wg21.link/p1031r2

[P1750R1] Klemens Morgernstern, Jeff Garland, Elias Kosunen, and Fatih Bakir. 2019. A Proposal to Add
Process Management to the C++ Standard Library.
https://wg21.link/p1750r1

[P2146R2] Amanda Kornoushenko. 2020. Modern std::byte stream IO for C++.
https://wg21.link/p2146r2

[std-discussion-fd-io] File descriptor-backed I/O stream? – std-discussion.
https://groups.google.com/a/isocpp.org/forum/#!topic/std-discussion/macDvhFDrjU

[std-proposals-fd-access] file streams and access to the file descriptor – std-proposals.
https://groups.google.com/a/isocpp.org/d/topic/std-proposals/XcQ4FZJKDbM/discussion

[std-proposals-native-handle] native_handle for basic_filebuf – std-proposals.
https://groups.google.com/a/isocpp.org/d/topic/std-proposals/oCEErQbI9sM/discussion

[std-proposals-native-raw-io] Native raw IO and FILE* wrappers? – std-proposals.
https://groups.google.com/a/isocpp.org/d/topic/std-proposals/Q4RdFSZggSE/discussion

11

https://docs.google.com/viewer?a=v&pid=forums&srcid=MTEwODAzNzI2MjM1OTc0MjE3MjkBMDY0OTY1OTUzMjAwNzY0MTA0MjkBakhWMHBFLUNGd0FKATAuMQFpc29jcHAub3JnAXYy&authuser=0
https://docs.google.com/viewer?a=v&pid=forums&srcid=MTEwODAzNzI2MjM1OTc0MjE3MjkBMDY0OTY1OTUzMjAwNzY0MTA0MjkBakhWMHBFLUNGd0FKATAuMQFpc29jcHAub3JnAXYy&authuser=0
https://www.boost.org/doc/libs/1_71_0/libs/iostreams/doc/index.html
https://github.com/mpark/wg21
https://wg21.link/N4734
https://wg21.link/N4849
https://wg21.link/p1031r2
https://wg21.link/p1750r1
https://wg21.link/p2146r2
https://groups.google.com/a/isocpp.org/forum/#!topic/std-discussion/macDvhFDrjU
https://groups.google.com/a/isocpp.org/d/topic/std-proposals/XcQ4FZJKDbM/discussion
https://groups.google.com/a/isocpp.org/d/topic/std-proposals/oCEErQbI9sM/discussion
https://groups.google.com/a/isocpp.org/d/topic/std-proposals/Q4RdFSZggSE/discussion

	Abstract
	Revision History
	R3
	R2
	R1
	R0

	Motivation
	Scope
	Design Discussion
	Type of native_handle_type
	Precondition

	Impact On the Standard and Existing Code
	Implementation
	Prior Art
	Discussion
	Existing precendent for presence of native_handle

	Technical Specifications
	Wording notes
	Feature test macro
	Wording

	Acknowledgements
	References

