
One-Way execute is a Poor Basis Operation
Document #: P1525R1
Date: 2020-10-15
Project: Programming Language C++
Audience: Library Evolution
Reply-to: Gašper Ažman

<gasper.azman@gmail.com>
Lewis Baker
<lbaker@fb.com>
Lee Howes
<lwh@fb.com>
Corentin Jabot
<corentin.jabot@gmail.com>
Tomasz Kamiński
<tomaszkam@gmail.com>
Zach Laine
<whatwasthataddress@gmail.com>
Eric Niebler
<eniebler@fb.com>
Kirk Shoop
<kirkshoop@fb.com>
Ville Voutilainen
<ville.voutilainen@gmail.com>

1 Abstract
The executor concept of [P0443R14] has a single basis operation: a void-returning execute(ex, fun) function,
where ex is an executor and fun is a nullary invocable. Any errors that happen, whether during task submission,
after submission and prior to execution, or during task execution, are handled in an implementation-defined
manner, which can vary from executor to executor. The implication is that no generic code can respond to
asynchronous errors in a portable way. That prevents higher-level asynchronous algorithms that require flexible
error handling from being built on top of the one-way execute() function.

In addition, if an executor chooses for some reason to not execute a callback that has been submitted for
execution, at present there is no mechanism – apart from destruction – for the executor to notify the callback
that it will never be executed. For reasons described in this paper, destruction is an unsatisfactory way to
communicate cancellation.

Finally, in the general case an eager one-way execute() operation requires the state for any asynchronous task
to be dynamically allocated. In contrast, the sender/receiver design (also in [P0443R14]) permits zero-allocation
scheduling, as will be demonstrated.

Since one-way execute() is the basis operation of the executor concept from [P0443R14], another way to frame
the thesis of this paper is as follows:

The scheduler concept is a more foundational abstraction than the executor concept.

1

mailto:gasper.azman@gmail.com
mailto:lbaker@fb.com
mailto:lwh@fb.com
mailto:corentin.jabot@gmail.com
mailto:tomaszkam@gmail.com
mailto:whatwasthataddress@gmail.com
mailto:eniebler@fb.com
mailto:kirkshoop@fb.com
mailto:ville.voutilainen@gmail.com

1.1 Revision History
1.1.1 Revision 1

This version updates the discussion points and the example code to accommodate the recent change to
sender/receiver to split execution::submit, which used to be a basis operation, into execution::connect and
execution::start.

1.2 Terms and Definitions
1.2.1 One-way execute

For the purpose of this document, by “one-way execute,” we mean a void-returning function that accepts a
nullary invocable and eagerly submits it for execution on an execution agent that the executor creates for it.

We contrast one-way execute with a connect operation that takes a sender and a receiver, paired with a
start operation on the resulting operation_state.

1.2.2 Basis Operation

In generic programming, the basis operations of a concept are those expressions that are required to be valid for
types satisfying that concept, in addition to the semantic and complexity requirements for those expressions. For
example, the basis operations for C++20’s input_iterator concept are unary *; prefix and postfix ++; and ==
and != with a sentinel.

The basis operations of a well-designed concept or concept hierarchy are the minimal set of operations that are
both sufficient and necessary for efficiently implementing all algorithms of interest within a particular domain.

1.2.3 Sender

A sender is a general representation of a (possibly deferred, possibly async) computation. Its single basis operation,
connect, takes a receiver and returns an instance of a non-movable type satisfying operation_state. The caller
of connect assumes responsibility to keep the operation state object alive until the async operation has completed.
The operation has not logically started until start is called on it (see below). The operation completes when one
of the receiver’s basis operations is called.

The receiver’s functions are called from whatever execution context the sender completed in. (Senders obtained
by calling a scheduler’s schedule operation place extra requirements on that execution context; see below.)

1.2.4 Operation state

The operation state is literally the state associated with an async operation. It typically keeps the receiver alive
as a data member. The operation_state concept has a single basis operation called start() that takes the
operation state as an argument and ensures the operation is started, possibly by enqueuing it for execution on
some execution context. The caller of start() is required to keep the execution state alive for the duration of
the async operation. Once one of the receiver functions has been called, the operation state can be assumed to
be destroyed.

1.2.5 Receiver

A receiver is a general representation of a callback. It has three basis operations:

— set_value, which is invoked with the result(s) of the sender’s computation, if any, when that operation
completes.

— set_error, which is invoked with any errors from enqueueing the work, or if the task itself completes with
an error.

— set_done, which is invoked on a receiver by a sender when the sender’s computation has been cancelled.

The execution context in which these operations are invoked is specific to each sender. In general, they will
execute inline; that is, in whatever context the sender completed on.

2

1.2.6 Scheduler

A scheduler is a factory for senders that complete in the scheduler’s execution context. For a scheduler sched,
a receiver rec, and an operation state op initialized with connect(schedule(sched), rec), then start(op)
will enqueue for execution a work unit that is guaranteed to call set_value(move(rec)) in the execution context
associated with sched – if that is at all possible. If not, it will call set_error on rec with the reason for the
failure in an unspecified execution context.

2 No reliable error propagation
2.1 Errors cannot be intercepted
Consider the following strategies that a tasking system might employ to respond to scheduling or execution
errors:

1. On error, ignore the error and propagate a default value instead.
2. On error, cancel some dependent execution.
3. On error, send the error information to a particular error log before propagating the error.
4. On error, re-schedule the task on a fallback execution context.

All of these are reasonable responses to scheduling and execution errors in a tasking system, and all can be built
using generic asynchronous algorithms, but only if the executor passes scheduling and invocation errors to those
callbacks that desire it.

For instance, Appendix B shows how a failure to execute work on one scheduler can reschedule the work on a
fallback scheduler. Such a generic fallback scheduler cannot be built if execute() is taken as the basis operation
for asynchrony.

In that example, note that the separation of the value and error channels gives us the ability to place independent
constraints on the execution contexts of the two. The sender returned from schedule requires that the value
channel completes in the scheduler’s execution context, which is how we achieve predictable scheduling. But
if there is an error, the context on which the receiver’s set_error() channel is run is unspecified. We have an
easy way to guarantee that there is always an execution context available to process errors – inline, for instance –
while also guaranteeing that task submission is non-blocking when we need that guarantee.

2.2 Errors that happen after submission but before invocation have no place in-
band to go

Although an executor may choose to report submission errors to the caller with an exception, that is not an
option for errors that happen after submission but before execution. Consider that there is no requirement that
an executor create an execution agent eagerly when execute is called; it may defer the creation until a later
time, at which point it may fail. Also consider the case of deadline executor that un-stages work that hasn’t been
started before a certain time-out. If one-way execute is the basis operation, then once work has been submitted
there is no way to communicate to the work that an error happened because there is no defined channel for errors.

With schedule and sender/receiver, such a deadline executor can pass a error_timeout_exceeded error to the
receiver’s error channel.

2.2.1 Corollary: One-way execute can be implemented in terms of schedule but not vice versa

As a corollary of the preceding points, we cannot implement schedule with perfect fidelity in terms of one-way
execute. For executors, it is unspecified what happens when execute fails to enqueue the function for execution.
As a consequence, there is no way to pass those errors to a receiver’s error channel in a generic algorithm.

In contrast, execute can be implemented in terms of schedule/connect/start. See Appendix A for an example
implementation.

3

[P0443R14] permits executors to be transparently treated as schedulers via an imperfect adaptation baked into
the design of the customization points. Reviewers have rightly flagged this as suspect. In addition to the problem
noted above where an executor’s scheduling errors are not reported in the error channel, another thorny issue is
discussed in executors#463, which details how the execution::connect customization point tries and fails to
accommodate users who pass an executor instead of a scheduler. Consider the specification of connect’s behavior
when passed an executor e and a receiver r. It is equivalent to as-operation {e , r } where as-operation is:
struct as-operation {

remove_cvref_t<S> e_;
remove_cvref_t<R> r_;
void start() noexcept try {

execution::execute(std::move(e_), as-invocable <remove_cvref_t<R>, S>{r_});
} catch(...) {

execution::set_error(std::move(r_), current_exception());
}

};

and as-invocable is:
template<class R, class>
struct as-invocable {

R* r_;
explicit as-invocable(R& r) noexcept

: r_(std::addressof(r)) {}
as-invocable(as-invocable && other) noexcept

: r_(std::exchange(other.r_, nullptr)) {}
~as-invocable() {

if(r_)
execution::set_done(std::move(*r_));

}
void operator()() & noexcept try {

execution::set_value(std::move(*r_));
r_ = nullptr;

} catch(...) {
execution::set_error(std::move(*r_), current_exception());
r_ = nullptr;

}
};

The problem happens when the call to execute in as-operation ::start() throws. In that case, the instance
of as-invocable will be destroyed, presumably without having been invoked, and its destructor calls set_done.
However, the catch(...) in as-operation ::start() will catch the exception and try to route it to the receiver’s
set_error. Both set_done and set_error are terminal. Calling them both violates the receiver contract.

The problem is fundamental. There are two possible resolutions to the problem. The resolution described in
executors#463 is to simply swallow the exception an accept that the error has been erroneously mapped into a
cancellation notification. The other is to introduce an extra allocation and do the necessary synchronization so
that the thread calling execute can know before it returns whether a call to set_error is appropriate. Neither
of these solutions is appealing, and neither should just happen silently behind the user’s back.

2.3 There is no way to compile the normal code differently than the exceptional
code

Should we decide to address the above issues by extending one-way execute to require users to pass an invocable
that accepts a std::error_code in addition to a value (for example), we run into a different problem: the same
function is now used for both normal and exceptional execution. If the execution context is an NVIDIA GPU,

4

https://github.com/executors/executors/issues/463

that means that both the normal function execution as well as error handling must be compiled for the GPU.

With schedule and sender/receiver, set_value and set_error are separate channels, and they can be compiled
differently. set_value can be compiled for and execute on the GPU, whereas set_error can be compiled for
and execute on the host. This also has the advantage that a bulk algorithm can have a scalar set_error handler,
something that is much harder to craft in the bulk_execute design of [P0443R14].

3 No reliable propagation of a cancellation signal
This section describes the problems with one-way execute as a basis operation that stem from its lack of
support for a “done” signal to propagate cancellation information. First we discuss what “done” means for async
computations, and why it is separate from destruction.

3.1 What does set_done() mean?
The reason for a receiver’s “error” channel is pretty straightforward; it is the same reason C++ has exceptions: it
is greatly advantageous to isolate the exceptional control flow from the normal control flow.

The reasons for a receiver’s “done” channel are less obvious, but it comes down to cancellation. In the presence of
cancellation, all async operations look like functions that return std::optional: they either complete successfully
with a result, they exit via an exception, or else they return with neither a result nor an exception. These options
correspond to the receiver’s three channels: set_value, set_error, and set_done.

In functional programming circles, optional is represented as the Maybe monad, which has two constructors:
Just and None, which correspond to an optional with a value and nullopt. Composing operations in the Maybe
monad uses short-circuiting: if the preceding computation results in None, the subsequent computations are not
even tried; the result is simply None.

The same is true of composing asynchronous computations. If a preceding computation is cancelled, dependent
computations should likewise be canceled, bypassing the normal control flow. Think of it as exception unwind,
but without the exception. That is the meaning of set_done.

3.2 Why is the set_error() channel a bad way to report cancellation?
The set_error() channel of a receiver, like C++ exceptions, is for exceptional circumstances: things like dropped
network connections, resource allocation failure, or inability to create an execution agents. Cancellation is not
exceptional; it is the normal operating mode for many interesting async algorithms. For instance, a when_any()
algorithm would take many tasks, enqueue them all for execution, and then cancel the rest when the first
completes. The exceptional code path should not have to deal with normal control flow. Cancellation requests is
something distinct from value propagation or error propagation. That is why we believe they deserve their own
distinct channel.

See [P1677R2] “Cancellation is serendipitous-success” for a full discussion of cancellation in relation to asynchronous
errors.

3.3 Why is callback destruction-without-execution insufficient for communicating
cancellation?

Even if one accepts that async cancellation is fundamental, and that it is still not an error, it is not obvious
that we need a dedicated channel to communicate cancellation. After all, isn’t it sufficient to simply destroy a
continuation without executing it?

There are lots of reasons why the destructors of a continuation might get called:

1. It is being destroyed after set_value() has been called on it.
2. It is being destroyed after set_error() has been called on it.
3. It is a moved-from object that is being cleaned up.

5

4. It has been cancelled.

Only for reason (4) should a destructor call be interpreted as the “done” signal. In order to distinguish (4) from
the other three cases, a continuation would need to keep state.

Also, it is not clear what it would mean to destroy a continuation due to stack unwinding because of an active
exception. Presumably, that would be an error situation and not a cancellation, but clearly if the destructor is
being called, set_error() never will be. Would that be a logic error? Or should it be simply ignored, which
would require the continuation to keep additional state and two calls to std::unhandled_exceptions() (see
the design of scope_success [P0052R10])?

In contrast, we hypothesize that most executors will know when a particular work item is being cancelled and
can propagate the “done” signal without tracking extra state. Executors generally un-stage work items to
execute them and then either immediately destroy them or move them to a separate queue for lazy reclamation.
The executor knows that any work items that are currently staged for execution have not yet been run (that
is, set_value() has not been called), and that scheduling has not failed nor has invocation failed (that is,
set_error() has not been called). So, if the executor supports work cancellation, any request to cancel one or
all of the currently staged work items can trivially call set_done() on the them before un-staging and destroying
them. Such executors – which we imagine to be the vast majority – can trivially insert a call to set_done()
without tracking any additional state.

Any executor that does not support work cancellation can safely ignore the set_done() channel. No cancellation
means no need to ever send a cancellation signal.

3.4 Example: Adding a “done” channel to ASIO’s scheduler

The scheduler class in [ASIO] permits the scheduler to be shut down while there are still outstanding work
items in its queue. These are simply destroyed at present. We believe that supporting the set_done() channel in
ASIO would be as simple as inserting a call to set_done() on line 165 of <asio/detail/impl/scheduler.ipp>
before the call to o->destroy().

This demonstrates why we believe that adding support for the “done” channel to an executor is not an onerous
requirement.

4 Additional considerations
4.1 One-way execute cannot guarantee no-allocation scheduling
A scheduler can be implemented such that it provides a guaranteed no-allocation scheduling operation. This
is possible because the connect operation that joins a sender to a receiver returns the operation state to the
caller. The caller can then place that state anywhere, even on the stack if it knows that the async operation will
complete before the function returns.

One-way execute cannot easily take advantage of the ability to do no-allocation scheduling because it launches
work eagerly and does not return the operation state to the caller.

An executor could get part way there if it reserved a certain amount of space for a fixed number of tasks, and if
the caller were careful not to try to execute any functions that didn’t fit in the space reserved. In the general
case, however, if the user enqueues too many tasks, or the tasks themselves are too large, execute() must fall
back to dynamically allocating space or else fail to schedule the work.

The fundamentally eager, fire-and-forget semantics of execute() mean that it is impossible in the general case
to write an executor that can guarantee no allocations. This has unfortunate consequences when used together
with coroutines. When using coroutines, there is typically an allocation for the coroutine frame (although some
allocations are elided by compiler optimizations). If execute() is selected as the basis operation, then posting
work to an executor from a coroutine requires another allocation. With schedulers, however, the problem is
avoided. We can design our coroutine types such that the operation state returned by connect() is guaranteed

6

https://github.com/chriskohlhoff/asio/blob/2a1f68845adec11574bfd91a7f860e63edd529a5/asio/include/asio/detail/impl/scheduler.ipp#L165

to be stored inline in the coroutine frame. No extra allocations are necessary from coroutines to transition to a
separate execution context.

Please see Appendix C for an example of a scheduler that permits allocation-free scheduling.

4.2 Concerns about scheduler complexity are likely misplaced
The rest of this document argues that there are strong technical arguments to prefer scheduler over executor.
This section explains why the extra syntactic and semantic requirements of the scheduler concept are not overly
burdensome.

There can be no doubt that the scheduler concept places a higher burden on execution context providers than
executor. After all, it’s very simple to write a single execute() function, and many execution contexts provide
an interface much like that already. So executor is better than scheduler, right?

Not really. In truth, execution contexts like thread pools are often complicated beasts. The extra syntactic
burden of providing a scheduler for them is small in comparison, and are outweighed by the benefits to generic
code of the additional functionality. And as standard concepts go, scheduler is middling in complexity. Far more
complex are concepts like bidirectional_iterator and random_access_iterator in terms of sheer number of
syntactic requirements.

Some executors, however, are very simple, and for those the extra syntax needed to satisfy the scheduler concept
can be a very large fraction of the total. One such often- cited example is the inline_executor, which runs
tasks immediately in the context of the caller, blocking the calling thread until the task completes. Its definition
is given roughly as:
struct inline_executor {

template <class Fun>
void execute(Fun fun) const {

fun();
}
bool operator==(const inline_executor&) const = default;

};

(Here we gloss over details such as properly responding to property queries such as for blocking behavior.)

In contrast, here is the implementation of the inline_scheduler:
struct inline_scheduler {

auto schedule() const {
return execution::just();

}
bool operator==(const inline_scheduler&) const = default;

};

This makes use of the just generic algorithm from [P1897R3]. Think of just() as a way to make a “ready”
sender: just(args...) is a sender that, when connect-ed to a receiver and start-ed, passes args... to the
receiver’s set_value channel immediately on the same thread on which start was called.

The inline_scheduler could be used as follows:
auto op = execution::connect(inline_scheduler{}, some_receiver_of_void);
execution::start(op); // guaranteed to complete inline on the caller's thread

or, given the implementation of the execute() algorithm from Appendix A, as:
// A complicated way to print "hello world" on the current thread.
execution::execute(inline_sheduler{}, []{ printf("hello world\n"); });

7

The implementation of just() is not terribly complex but admittedly more complex than the inline_executor.
It could be argued that this definition of inline_scheduler is merely moving the complexity around. Is it cheating
to implement inline_scheduler in terms of just()? Hardly. The whole point of the sender/receiver abstraction
is to enable a suite of composable, generic algorithms so that more complicated and interesting async patterns
can be composed out of smaller, simpler pieces like just(). This implementation of the inline_scheduler is
an illustration of how sender/receiver makes it possible to cleanly decompose asynchrony into small orthogonal
components that combine in interesting, and sometimes pleasantly surprising, ways.

Users of the executor abstraction frequently have need to write simple, shim executor adaptors in order to
customize the behavior of an executor. That is necessary because the design of the executor concept doesn’t lend
itself well to a suite of generic algorithms that capture interesting async patterns. With schedulers, there is less
need to write scheduler adaptors because the algorithms are generally expressed in terms of senders and adaptors
over senders.

This paper does not try to argue that all schedulers will be as simple at their executor analogues. It merely
argues that the extra complexity is not onerous and is well- compensated by the additional functionality.

5 Appendix A: One-way execute as a generic algorithm
Below is the implementation of customizable one-way execute algorithm in terms of schedulers, senders, and
receivers (using tag_invoke from [P1895R0] to find program-defined specializations).

Working code for this example can be found here: https://godbolt.org/z/TYa1dh.
inline constexpr struct __execute_cpo {
private:

template<std::invocable Func>
struct as_receiver {

Func func_;
as_receiver(Func func) : func_((Func&&) func) {}

void set_value() && noexcept(std::is_nothrow_invocable_v<Func>) {
static_cast<Func&&>(func_)();

}
[[noreturn]] void set_error(auto&&) && noexcept { std::terminate(); }
void set_done() && noexcept { }

};

template<execution::scheduler Sched, std::invocable Func>
friend void tag_invoke(__execute_cpo, Sched sched, Func func) {

execution::submit(
execution::schedule((Sched&&) sched), as_receiver{(Func&&)func});

}

public:
template<execution::scheduler Sched, std::invocable Func>
void operator()(Sched sched, Func func) const

noexcept(is_nothrow_tag_invocable_v<__execute_cpo, Sched, Func>) {
static_assert(

std::is_void_v<tag_invoke_result_t<__execute_cpo, Sched, Func>>);
tag_invoke(*this, (Sched&&)sched, (Func&&)func);

}
} execute{};

[Note: The above implementation is expressed in terms of the generic submit algorithm from [P0443R14].
You can find a fuller example that expresses this algorithm strictly in terms of fundamental basis operations

8

https://godbolt.org/z/TYa1dh

here: https://godbolt.org/z/f71TKq — end note]

A real execute() implementation would take care of a few extra details. First, if the scheduler reports that it is
“blocking” (by way of the blocking property query), then the dynamic allocation in submit is unnecessary. The
operation state can live on the stack because we know the operation will complete before the operation state goes
out of scope.

Also, it should be possible to specify an allocator to use when the scheduler is non-blocking. That would be
handled by associating an allocator with the invocable via a get_allocator property query.

In P0443’s executor concept, execute() generally allows exceptions thrown from the function object to propagate
back out to the executor’s event loop, where some generic exception-handling code can log the error, handle it and
resume the event loop or maybe terminate. This default implementation of execute() does not have this behavior.
Having said that, as the behavior of an exception thrown from the function-callback is implementation-defined
then a default implementation that terminates, as this one does, is valid.

Custom implementations of execute() are still free to do what they previously did.

Also, a particular implementation of a scheduler is free to wrap all calls to set_value in a try/catch and route
any exceptions back to the execution context. Then the scheduler would call set_done on the receiver to satisfy
the receiver contract. That would make the default implementation of execute() above behave as execute()
functions typically do today in [ASIO].

6 Appendix B: Composing Schedulers based on Sender/Receiver
With a sender/receiver-based schedule operation as a basis operation we can build composed schedulers with
interesting behaviors.

Below is an example fallback_scheduler that composes two schedulers. When scheduling work on a
fallback_scheculer, it first tries to schedule work on the primary scheduler. If that fails, it tries to schedule
the work on the fallback scheduler. It is impossible to build such a generic fallback_executor using the
one-way execute() function as a basis operation because there is no generic way to detect scheduling failures,
and thus no way to take a fallback action.

[Note: Note that because the connect operation returns the operation state to the caller, it is possible here
for the primary state and the fallback state to share space because their lifetimes never overlap. They are
stored below in a union. — end note]

A working example of this code can be found here: https://godbolt.org/z/P46nhW.
enum class which { none, primary, fallback };

template<typename T>
void _destroy(T& t) noexcept {

t.~T();
}

template<execution::sender S1, execution::sender S2>
struct fallback_sender : execution::sender_base {

S1 primary_;
S2 fallback_;

template<execution::receiver R>
struct operation_state {

struct primary_receiver {
operation_state* state_;

template<typename... Values>

9

https://godbolt.org/z/f71TKq
https://godbolt.org/z/P46nhW

requires execution::receiver_of<R, Values...>
void set_value(Values&&... values) && {

execution::set_value((R&&) state_->receiver_, (Values&&)values...);
}
void set_done() && noexcept {

execution::set_done((R&&) state_->receiver_);
}
void set_error(auto&&) && noexcept try {

destroy(state->primary_state_);
state_->which_ = which::none;
::new(&state_->fallback_state_)

auto(execution::connect((S2&&) state_->fallback_, secondary_receiver{state_}));
state_->which_ = which::fallback;
execution::start(state_->fallback_state_);

} catch(...) {
execution::set_error((R&&) state_->receiver_, std::current_exception());

}
};
struct secondary_receiver {

operation_state* state_;

template<typename... Values>
requires execution::receiver_of<R, Values...>

void set_value(Values&&... values) && {
execution::set_value((R&&) state_->receiver_, (Values&&)values...);

}
void set_done() && noexcept {

execution::set_done((R&&) state_->receiver_);
}
template<typename Error>

requires execution::receiver<R, Error>
void set_error(Error&& error) && noexcept {

execution::set_error((R&&)state_->receiver_, (Error&&)error);
}

};

S2 fallback_;
R receiver_;
union {

execution::connect_result_t<S1, primary_receiver> primary_state_;
execution::connect_result_t<S2, secondary_receiver> fallback_state_;

};
which which_;

operation_state(S1&& primary, S2&& fallback, R&& receiver)
: fallback_((S2&&) fallback)
, receiver_((R&&) receiver)
, primary_state_(

execution::connect((S1&&)primary, primary_receiver{this}))
, which_(which::primary)

{}
~operation_state() {

switch(which_) {
case which::primary:

10

_destroy(primary_state_);
break;

case which::fallback:
_destroy(fallback_state_);
break;

default:;
}

}

void start() & noexcept {
execution::start(primary_state_);

}
};

template<execution::receiver R>
operation_state<R> connect(R receiver) && {

return {(S1&&) primary_, (S2&&) fallback_, (R&&) receiver};
}

};

template<execution::sender S1, execution::sender S2>
fallback_sender<S1, S2> fallback(S1 primary, S2 fallback) {

return {{}, std::move(primary), std::move(fallback)};
}

template<execution::scheduler Sched1, execution::scheduler Sched2>
struct fallback_scheduler {

Sched1 primary_;
Sched2 fallback_;

auto schedule() {
return fallback(execution::schedule(primary_), execution::schedule(fallback_));

}
};
template<class Sched1, class Sched2>
fallback_scheduler(Sched1, Sched2) -> fallback_scheduler<Sched1, Sched2>;

7 Appendix C: Allocation-free scheduling
Below is an example scheduler that does not require heap-allocation of the queue items. Full working code can
be found at https://godbolt.org/z/hcxhG9.
class thread_dispatcher {

struct queue_item {
queue_item* next_ = nullptr;
virtual void execute(int id) noexcept = 0;

};

queue_item* head_ = nullptr;
bool stopRequested_ = false;
std::mutex mut_;
std::condition_variable cv_;
std::thread thread1_;

11

https://godbolt.org/z/hcxhG9

std::thread thread2_;

class scheduler {
thread_dispatcher& dispatcher_;
class schedule_sender : public execution::sender_base {

thread_dispatcher& dispatcher_;

public:
explicit schedule_sender(thread_dispatcher& dispatcher) noexcept

: dispatcher_(dispatcher)
{}

template<typename Receiver>
auto connect(Receiver r) {

class operation_state final : public queue_item {
thread_dispatcher& dispatcher_;
Receiver receiver_;

void execute(int id) noexcept override try {
execution::set_value((Receiver&&) receiver_, id);

} catch(...) {
execution::set_error((Receiver&&) receiver_, std::current_exception());

}
public:

explicit operation_state(thread_dispatcher& d, Receiver&& r)
: dispatcher_(d), receiver_((Receiver&&) r)

{}

void start() & noexcept {
dispatcher_.enqueue(this);

}
};
return operation_state{dispatcher_, (Receiver&&) r};

}
};

public:
explicit scheduler(thread_dispatcher& dispatcher) noexcept

: dispatcher_(dispatcher)
{}

schedule_sender schedule() noexcept {
return schedule_sender{dispatcher_};

}
bool operator==(const scheduler&) const = default;

};

public:
thread_dispatcher()

: thread1_([this] { this->run(1); })
, thread2_([this] { this->run(2); })

{}

~thread_dispatcher() {
request_stop();

12

thread1_.join();
thread2_.join();

}

scheduler get_scheduler() { return scheduler{*this}; }

private:
void request_stop() noexcept {

std::lock_guard lock{mut_};
stopRequested_ = true;
cv_.notify_all();

}

void run(int id) {
std::unique_lock lock{mut_};
while (!stopRequested_) {

if (head_ == nullptr) {
cv_.wait(lock);

}
while (head_ != nullptr) {

auto* item = head_;
head_ = item->next_;
lock.unlock();
item->execute(id);
lock.lock();

}
}

}

void enqueue(queue_item* item) noexcept {
std::lock_guard lock{mut_};
item->next_ = head_;
head_ = item;
cv_.notify_one();

}
};

8 Appendix D: Implementation of a two-way to_future algorithm
This example demonstrates how sender/receiver can be used to implement a two-way to_future() algorithm that
eagerly submits a sender for execution and returns a std::future that receives the result of the computation.

A working example of this code can be found here: https://godbolt.org/z/Ms1Ysd.
template <class...> struct _one_or_none;
template <> struct _one_or_none<> {

using type = void;
};
template <class T> struct _one_or_none<T> {

using type = T;
};

template <class...> struct _just_one;
template <class T> struct _just_one<T> {

13

https://godbolt.org/z/Ms1Ysd

using type = T;
};

template <execution::typed_sender Sender>
using _sender_value_t =

typename execution::sender_traits<remove_cvref_t<Sender>>::
template value_types<_just_one, _one_or_none>::type::type;

template <execution::typed_sender Sender>
using _sender_error_t =

typename execution::sender_traits<remove_cvref_t<Sender>>::
template error_types<_just_one>::type;

template <class S>
concept _single_typed_sender =

execution::typed_sender<S> &&
requires {

typename _sender_value_t<S>;
typename _sender_error_t<S>;

};

struct operation_cancelled {
static char const* what() noexcept { return "operation cancelled"; }

};

template <class Sender>
struct _op {

struct _rec {
void set_value(auto&&... vals) {

op_->promise_.set_value((decltype(vals)) vals...);
delete op_;

}
void set_error(exception_ptr err) noexcept {

op_->promise_.set_exception(err);
delete op_;

}
void set_done() noexcept {

op_->promise_.set_exception(
make_exception_ptr(operation_cancelled{}));

delete op_;
}
op* op;

};
explicit _op(Sender&& sender)

: state_(execution::connect((Sender&&) sender, _rec{this}))
, promise_{}

{}
void start() & noexcept {

execution::start(state_);
}
execution::connect_result_t<Sender, _rec> state_;
promise<_sender_value_t<Sender>> promise_;

};

14

template< _single_typed_sender Sender >
requires std::same_as<_sender_error_t<Sender>, exception_ptr>

future<_sender_value_t<Sender>> as_future(Sender&& sender) {
auto* op = new _op<Sender>{(Sender&&) sender};
auto fut = op->promise_.get_future();
op->start();
return fut;

}

There are some things to note about the above implementation of to_future(). First and foremost, it does an
extra allocation – one in to_future() itself and the other in the constructor of std::promise to construct the
shared state – so this particular implementation is not zero-overhead. The extra allocation can be eliminated by
passing a custom allocator to the std::promise constructor that over-allocates and puts the operation state
(_op<Sender>::state_ above) into the unused portion of the allocation. Though not difficult, it would obscure
the algorithm, so it’s not presented here.

The other notable thing about this example is the handling of cancellation. This implementation of to_future()
causes an instance of operation_cancelled to be thrown from future::get() when the sender completes
by calling set_done(). This conflates cancellation with error handling. Arguably a better approach would
be to report cancellation by having future::get() return an optional, using nullopt to indicate that the
computation was cancelled.

9 References
[ASIO] Asio C++ Library.

https://github.com/chriskohlhoff/asio

[P0443R14] Jared Hoberock, Michael Garland, Chris Kohlhoff, Chris Mysen, H. Carter Edwards, Gordon Brown,
D. S. Hollman. 2020. A Unified Executors Proposal for C++.
https://wg21.link/p0443r14

[P1677R2] Kirk Shoop, Lisa Lippincott, Lewis Baker. 2019. Cancellation is not an Error.
https://wg21.link/p1677r2

[P1895R0] Lewis Baker, Eric Niebler, Kirk Shoop. 2019. tag_invoke: A general pattern for supporting
customisable functions.
https://wg21.link/p1895r0

[P1897R3] Lee Howes. 2020. Towards C++23 executors: A proposal for an initial set of algorithms.
https://wg21.link/p1897r3

15

https://github.com/chriskohlhoff/asio
https://wg21.link/p0443r14
https://wg21.link/p1677r2
https://wg21.link/p1895r0
https://wg21.link/p1897r3

	Abstract
	Revision History
	Revision 1

	Terms and Definitions
	One-way execute
	Basis Operation
	Sender
	Operation state
	Receiver
	Scheduler

	No reliable error propagation
	Errors cannot be intercepted
	Errors that happen after submission but before invocation have no place in-band to go
	Corollary: One-way execute can be implemented in terms of schedule but not vice versa

	There is no way to compile the normal code differently than the exceptional code

	No reliable propagation of a cancellation signal
	What does set_done() mean?
	Why is the set_error() channel a bad way to report cancellation?
	Why is callback destruction-without-execution insufficient for communicating cancellation?
	Example: Adding a ``done'' channel to ASIO's scheduler

	Additional considerations
	One-way execute cannot guarantee no-allocation scheduling
	Concerns about scheduler complexity are likely misplaced

	Appendix A: One-way execute as a generic algorithm
	Appendix B: Composing Schedulers based on Sender/Receiver
	Appendix C: Allocation-free scheduling
	Appendix D: Implementation of a two-way to_future algorithm
	References

