
Paper Number: P1068R3

Title: Vector API for random number generation

Authors: Ilya Burylov <ilya.burylov@intel.com>

 Pavel Dyakov <pavel.dyakov@intel.com>

 Ruslan Arutyunyan <ruslan.arutyunyan@intel.com>

 Andrey Nikolaev <andrey.nikolaev@intel.com>

Audience: LEWG

Date: 2020-01-13

I. Introduction
C++11 introduced a comprehensive mechanism to manage generation of random numbers in the

<random> header file.

We propose to introduce an additional API based on iterators in alignment with algorithms definition.

simd-type based interface presented in previous paper revisions will be submitted as a separate paper.

II. Revision history
Key changes for R3 compared with R2:

• Removed execution policies from API, based on Cologne meeting decision.

• Removed simd-based API, for separate consideration as a follow up paper, based on

corresponding TS results.

• Added formal wording section for iterators-based API.

Key changes for R2 compared with R1:

• Proposed API for switching between Sequentially consistent and Sequentially inconsistent

vectorized results.

• Added performance data measured on the prototype to show price for sequentially consistent

results.

• Extended description of the role of generate_canonical in distributions implementations.

• Reworked Possible approaches to address the problem chapter to focus on two main

approaches under consideration.

Key changes for R1 compared with R0:

• Extended the list of possible approaches with simd type direct usage.

• Added performance data measured on the prototype.

• Changed the recommendation to a combined approach.

III. Motivation and Scope
The C++11 random-number API is essentially a scalar one. Stateful nature and the scalar definition of

underlying algorithms prevent auto-vectorization by compiler.

However, most existing algorithms for generation of pseudo- [and quasi-]random sequences allow

algorithmic rework to generate numbers in batches, which allows the implementation to utilize simd-

based HW instruction sets.

Internal measurements show significant scaling over simd-size for key baseline Engines yielding a

substantial performance difference on the table on modern HW architectures.

mailto:ilya.burylov@intel.com
mailto:ilya.burylov@intel.com
mailto:pavel.dyakov@intel.com
mailto:pavel.dyakov@intel.com
mailto:ruslan.arutyunyan@intel.com
mailto:ruslan.arutyunyan@intel.com
mailto:andrey.nikolaev@intel.com
mailto:andrey.nikolaev@intel.com

Extension and/or modification of the list of supported Engines and/or Distributions is out of the scope of

this proposal.

IV. Libraries and other languages
Vector APIs are common for the area of generation random numbers. Examples:

* Intel® Math Kernel Library (Intel® MKL)

 - Statistical Functions component includes Random Number Generators C vector based API

* Java* java.util.Random

 - Has doubles(), ints(), longs() methods to provide a stream of random numbers

* Python* NumPy* library

 - NumPy array has a method to be filled with random numbers

* NVIDIA* cuRAND

 - host API is vector based

Intel MKL can be an example of the existing vectorized implementation for verity of engines and

distributions. Existing API is C [1] (and FORTRAN), but the key property which allows enabling

vectorization is vector-based interface.

Another example of implementation can be intrinsics for the Short Vector Random Number Generator

Library [2], which provides an API on simd level and can be considered an example of internal

implementation for proposed modifications.

V. Problem description
Main flow of random number generation is defined as a 3-level flow.

User creates Engine and Distribution and calls operator() of Distribution object, providing Engine as a

parameter:

operator() of a Distribution typically (but not necessarily so) implements scalar algorithm and calls

generate_canonical(), passing Engine object further down:

It is necessary to note, that C++ standard does not require calling generate_canonical() function inside

any distribution implementation and it does not specify the number of Engine numbers per distribution

number. Having said that, 3 main standard library implementations share the same schema, described

here.

uniform_real_distribution::operator()(_URNG& __gen)

{

return (b() - a()) * generate_canonical<_RealType>(__gen) + a();

}

generate_canonical() has a main intention to generate enough entropy for the type used by

Distribution, and it calls operator() of an Engine one or more times (number of times is a compile-time

constant):

operator() of an Engine is (almost) always stateful, with non-trivial dependencies between iterations,

which prevents any auto-vectorization:

operator() of the most distributions can be implemented in a way, which compiler can inline and auto-

vectorize. generate_canonical() adds additional challenge for the compiler due to loop, but it is

resolvable. operator() on the engine level is the key showstopper for the auto-vectorization.

VI. Iterators-based API
The following API extension is targeting to cover generation of bigger chunks of random numbers, which

allows internal optimizations hidden inside implementation.

API of Engines and Distributions is extended with iterators based API.

std::array<double, arrayLength> stdArray;

std::experimental::minstd_rand0 genStd(555);

std::experimental::uniform_real_distribution<double> disFloat(0.0, 1.0);

disFloat(stdArray.begin(), stdArray.end(), genStd);

The output of this function may or may not be equivalent to the scalar calls of the scalar API:

for(double& d : arrayLength) {

 d = distFloat(genStd);

}

VII. Wording proposal
26.6.2.3 Uniform random bit generator requirements [rand.req.urng]

…

template<class G, class ForwardIterator >

 concept uniform_random_bit_generator =

 invocable<G&> && unsigned_integral<invoke_result_t<G&>> &&

 requires(G& g, ForwardIterator begin, ForwardIterator end) {

 { G::min() } -> same_as<invoke_result_t<G&>>;

 { G::max() } -> same_as<invoke_result_t<G&>>;

 { g(begin, end) } -> same_as<void>;

 };

_RealType generate_canonical(_URNG& __gen())

{

…

_RealType _Sp = __gen() - _URNG::min();

for (size_t __i = 1; __i < __k; ++__i, __base *= _Rp)

_Sp += (__gen() - _URNG::min()) * __base;

return _Sp / _Rp;

}

mersenne_twister_engine<…>::operator()()

{

const size_t __j = (__i_ + 1) % __n;

…

const result_type _Yp = (__x_[__i_] & ~__mask) | (__x_[__j] & __mask);

const size_t __k = (__i_ + __m) % __n;

__x_[__i_] = __x_[__k] ^ __rshift<1>(_Yp) ^ (__a * (_Yp & 1));

result_type __z = __x_[__i_] ^ (__rshift<__u>(__x_[__i_]) & __d);

__i_ = __j;

…

return __z ^ __rshift<__l>(__z);

}

…

26.6.2.4 Random number engine requirements [rand.req.eng]

…

The template argument for parameters named ForwardIterator shall meet the Cpp17ForwardIterator

requirements (23.3.5.4).

Table 92: Random number engine requirements [tab:rand.req.eng]

Expression Return type Pre/post-condition Complexity

…

e() T Advances e’s state ei to
ei+1 = TA(ei) and returns
GA(ei)

per 26.6.2.3

e(ForwardIterator first,

ForwardIterator last)
void With N = last – first,

assigns the result of
evaluations of e()
through each iterator in
the range
[first, first + N).

O(N)

…

26.6.2.5 Random number engine adaptor requirements [rand.req.adapt]

No changes

26.6.2.6 Random number distribution requirements [rand.req.dist]

The template argument for parameters named ForwardIterator shall meet the Cpp17ForwardIterator

requirements (23.3.5.4).

Table 93: Random number distribution requirements [tab:rand.req.dist]

Expression Return type Pre/post-condition Complexity

…

d(g) T With p = d.param(), the
sequence of numbers
returned by successive
invocations with the
same object g is
randomly distributed
according to the
associated p(z | {p}) or
P(zi | {p}) function.

amortized constant
number of invocations
of g

d(g,p) T The sequence of
numbers returned by
successive invocations
with the same objects
g and p is randomly
distributed according
to the associated p(z |
{p}) or P(zi | {p})
function.

amortized constant
number of invocations
of g

d(ForwardIterator first,

ForwardIterator last, g)
void With N = last – first and

p = d.param(), the
sequence of numbers
assigned through each

iterator in [first, first +

N) is randomly
distributed according
to the associated p(z |
{p}) or P(zi | {p})
function.

O(N)

d(ForwardIterator first,

ForwardIterator last, g,

p)

void With N = last – first, the
sequence of numbers
assigned through each

iterator in [first, first +

N) is randomly
distributed according
to the associated p(z |
{p}) or P(zi | {p})
function.

O(N)

…

VIII. Design considerations
See other design considerations in P1068R1 and P1068R2.

IX. Performance results
Implementation approaches were prototyped in part of Distribution API (and Engine API, where

required for the use case). Short Vector Random Number Generator Library [2] was used as an

underlying vectorization engine. LLVM* libc++ 8.0 implementation was used as a baseline

implementation. See P1068R2 for performance results.

X. Impact on the standard
This is a library-only extension. It adds new member functions to some classes. This change is ABI

compatible with existing random numbers generation functionality.

XI. References
1. Intel MKL documentation:

https://software.intel.com/en-us/mkl-developer-reference-c-2019-beta-basic-generators

2. Intrinsics for the Short Vector Random Number Generator Library

https://software.intel.com/en-us/node/694866

3. Box-Muller method

https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

4. Inverse transform sampling

https://en.wikipedia.org/wiki/Inverse_transform_sampling

https://software.intel.com/en-us/mkl-developer-reference-c-2019-beta-basic-generators
https://software.intel.com/en-us/mkl-developer-reference-c-2019-beta-basic-generators
https://software.intel.com/en-us/node/694866
https://software.intel.com/en-us/node/694866
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://en.wikipedia.org/wiki/Inverse_transform_sampling
https://en.wikipedia.org/wiki/Inverse_transform_sampling

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY

ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on

Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using

specific computer systems, components, software, operations and functions. Any change to any of

those factors may cause the results to vary. You should consult other information and performance

tests to assist you in fully evaluating your contemplated purchases, including the performance of that

product when combined with other products.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune,

Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and

SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or

effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-

dependent optimizations in this product are intended for use with Intel microprocessors. Certain

optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer

to the applicable product User and Reference Guides for more information regarding the specific

instruction sets covered by this notice.

Notice revision #20110804

