

Document Number: P1012R1

Date: 2020-11-01

Project: Programming Language C++

Reply-to: Frank Zingsheim <f dot zingsheim at gmx dot de>

Audience: Evolution

Proposal Ternary Right Fold Expression
Revision 1

I. Motivation

A) Use case

The following example shows a simple use case of a ternary right fold expression.

Consider a function f with an index based template parameter:

The task is now to write a function which calls the appropriate template function for a run time
index j which has a compile time maximal index (n-1) . If j is out of bounds an exception
should be thrown.

With the proposal from this document it would be possible to write this as follows.

#include <cstddef>

class T;

template <std::size_t i>

T f();

1

2

3

4

5

6

#include <functional>

#include <stdexcept>

template <std::size_t... is>

T test_impl(std::size_t j, std::index_sequence<is...>)

{

 return ((j == is) ? f<is>()

 : ... : throw std::range_error("Out of range"));

}

template <std::size_t n>

T test(std::size_t j)

{

 return test_impl(j, std::make_index_sequence<n>());

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

af://n20
af://n21
af://n22
af://n23

If the implementer of the method is sure that the index j is below n the function test_impl
can also be written like follows without a trailing throw but with std::unreachable() instead
(see proposal P0627R3 [4]).

B) Consistent Completion of Fold Expressions

The proposed syntax is a canonical extension of the already existing fold expression for binary
operators [1].
The right fold expansion is applicable to any binary operator which return value can be used as a
right argument of the same binary operator.

Since for the conditional ternary operator the return value of the operator can be used as a right
argument of the conditional ternary operator, the conditional ternary operator can be expanded
in a right fold expression, consistently.

II. Proposed Expansion of Ternary Fold Expression
Only right fold expressions are supported for the conditional ternary operator. Left fold
expressions are not supported for the conditional ternary operator.

Let C denote a non-expanded parameter pack which expand to conditions with sizeof...(C)
== N .
Let E denote a non-expanded parameter pack of the same size as C .
Let D denote an ordinary expression.

The following fold expression

expands to

The limiting case N = 0 evaluates to (D) .

III. Extension of Conditional Operator
In order to combine the conditional operator [2] easily with the std::unreachable() from
proposal P0627R3 [4] the handing of void types on conditional operators has to be relaxed.

In C++ 17 the following rule holds: for a conditional operator [2]:

If either the second or the third operand has type void, one of the following shall hold:

— The second or the third operand (but not both) is a (possibly parenthesized) throw-
expression (8.17); the result is of the type and value category of the other. The conditional-
expression is a bit-field if that operand is a bit-field.

template <std::size_t... is>

T test_impl(std::size_t j, std::index_sequence<is...>)

{

 return ((j == is) ? f<is>() : ... : std::unreachable());

}

1

2

3

4

5

6

(C ? E : ... : D)1

(C(1) ? E(1) : (... (C(N-1) ? E(N-1) : (C(N) ? E(N) : D))))1

af://n32
af://n35
af://n43

— Both the second and the third operands have type void; the result is of type void and is a
prvalue.
[Note: This includes the case where both operands are throw-expressions. — end note]

The relaxed rule would not only allow throw-expressions but also noreturn functions [3]. The
relaxed rule would read as follows:

If either the second or the third operand has type void, one of the following shall hold:

— The second or the third operand (but not both) is a (possibly parenthesized) throw-
expression (8.17) or noreturn functions (10.6.8); the result is of the type and value
category of the other. The conditional-expression is a bit-field if that operand is a bit-field.

— Both the second and the third operands have type void; the result is of type void and is a
prvalue.
[Note: This includes the case where both operands are throw-expressions. — end note]

By this extension the following implementation of a checked_sqrt function would be valid:

The implementation of checked_sqrt could be rewritten without the conditional operator easily.
Or the argument_must_be_non_negative function could be given the correct return value (which
could be hard for a general generic function since the return type has to be provided as template
parameter).

However, the usage of proposed relaxed conditional operator reveals its potential in combination
with a fold expression of conditional operators and the std::unreachable function from
proposal P0627R3 [4]:

By this it can be expressed that all expected values of j are covered by the is... and the
compiler does not have to add an extra branch for non covered j values. The implementation
would work since the signature of std::unreachable reads as [[noreturn]] void
std::unreachable() .

VI. Further Example Use Case

[[noreturn]] void argument_must_be_non_negative(

 std::string_view func_name,

 double x)

{

 auto what_stream = std::stringstream{};

 what_stream <<

 "The argument of " << func_name << " must be non-negative.\n"

 "The function was called with the value: " << x;

 throw std::invalid_argument(what_stream.str());

}

double checked_sqrt(double x)

{

 return (x >= 0) ? sqrt(x) : argument_must_be_non_negative("sqrt", x);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

template <std::size_t... is>

T test_impl(std::size_t j, std::index_sequence<is...>)

{

 return ((j == is) ? f<is>() : ... : std::unreachable());

}

1

2

3

4

5

af://n61

Suppose, one has a collection of translation classes defined as follows.

The supported languages are known at compile time such that one wants to call the translation
like follows.

The task is now to write the function translate_to_english_impl which calls the correct
translation with a language string given at run time.

A) Solution with Fold and Throw

This task could be solved with ternary fold expression from this proposal like follows.

#include <string>

#include <string_view>

struct german

{

 static constexpr char language[] = "German";

 static std::string translate_to_english(

 std::string_view text);

};

struct french

{

 static constexpr char language[] = "French";

 static std::string translate_to_english(

 std::string_view text);

};

struct spanish

{

 static constexpr char language[] = "Spanish";

 static std::string translate_to_english(

 std::string_view text);

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

std::string translate_to_english(

 std::string_view language,

 std::string_view text)

{

 return translate_to_english_impl<german, french, spanish>(

 language,

 text);

}

1

2

3

4

5

6

7

8

#include <stdexcept>

template<class... translators>

std::string translate_to_english_impl(

 std::string_view language,

 std::string_view text)

{

 return (language == translators::language

 ? translators::translate_to_english(text)

 : ... : throw std::invalid_argument(

1

2

3

4

5

6

7

8

9

10

af://n67

B) Solution with Fold and Noreturn Function

If one wants to factor out the handling of assembling the exception into a function one can do this
as follows due to the relaxed rules for the conditional operator proposed in III. Extension of
Conditional Operator.

C) Solution with Fold and Explicit Default

If the first language is the default language this could be realized as follows.

D) Solution with Fold and Unreachable

If one wants to tell the compiler that the list of languages is complete (maybe because the
argument has already been checked before) this could be done as follows with the
std::unreachable function proposed in P0627R3 [4] and the relaxed rules for the conditional
operator proposed in III. Extension of Conditional Operator.

 std::string("Unknown language: ").append(

 language.begin(),

 language.end())));

}

11

12

13

14

#include <stdexcept>

[[noreturn]] void unknown_language(

 std::string_view language)

{

 throw std::invalid_argument(

 std::string("Unknown language: ").append(

 language.begin(),

 language.end()));

}

template<class... translators>

std::string translate_to_english_impl(

 std::string_view language,

 std::string_view text)

{

 return (language == translators::language

 ? translators::translate_to_english(text)

 : ... : unknown_language(language));

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

template<class default_translator, class... translators>

std::string translate_to_english_impl(

 std::string_view language,

 std::string_view text)

{

 return (language == translators::language

 ? translators::translate_to_english(text)

 : ... : default_translator::translate_to_english(text));

}

1

2

3

4

5

6

7

8

9

af://n70
af://n73
af://n76

V. Comparison to Alternatives already available in
C++20

This paragraph discusses how the functionality of the fold expression in A) Solution with Fold and
Throw could be reached with functionality already available since C++20. (The examples can be
found on Compiler Explorer https://gcc.godbolt.org/z/qzup48, too.)

A) Explicit Calls

Of cause one always has the possibility to explicitly resolve the fold expression.

This implementation would create exactly the same binary as the fold expression. However, the
implementation is less generic since it is limited to a fixed number of languages, in this case three,
and it contains duplication of code.

B) Recursion

Fold expressions can often be emulated by recursion. This is also true for the fold of the
conditional operator. A recursive implementation would look like:

#include <utility>

template<class... translators>

std::string translate_to_english_impl(

 std::string_view language,

 std::string_view text)

{

 return (language == translators::language

 ? translators::translate_to_english(text)

 : ... : std::unreachable());

}

1

2

3

4

5

6

7

8

9

10

11

#include <stdexcept>

template<class translator1, class translator2, class translator3>

std::string translate_to_english_impl(

 std::string_view language,

 std::string_view text)

{

 return language == translator1::language

 ? translator1::translate_to_english(text)

 : language == translator2::language

 ? translator2::translate_to_english(text)

 : language == translator3::language

 ? translator3::translate_to_english(text)

 : throw std::invalid_argument(

 std::string("Unknown language: ").append(

 language.begin(),

 language.end()));

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

#include <stdexcept>

template<class first_translator>

1

2

3

af://n79
https://gcc.godbolt.org/z/qzup48
af://n81
af://n85

With the recursion the implementation detail is spread over several function, i.e. the recursion
start and the recursive functions.

C) Reuse the fold on operator||

Fold expression can often be emulate by making use of another fold expression. The is also true
for the fold of the conditional operator. It can be emulated by the fold on operator|| [5].

Besides from the fact that there is a lot of code which distracts from the original intend. This
approach has the following drawback compared to the direct usage of the fold on the conditional
operator proposed here.

std::string translate_to_english_impl(

 std::string_view language,

 std::string_view text)

{

 return language == first_translator::language

 ? first_translator::translate_to_english(text)

 : throw std::invalid_argument(

 std::string("Unknown language: ").append(

 language.begin(),

 language.end()));

}

template<class first_translator, class second_translator, class...

translators>

std::string translate_to_english_impl(

 std::string_view language,

 std::string_view text)

{

 return language == first_translator::language

 ? first_translator::translate_to_english(text)

 : translate_to_english_impl<second_translator, translators...>(

 language,

 text);

}

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

#include <stdexcept>

template<class... translators>

std::string translate_to_english_impl(

 std::string_view language,

 std::string_view text)

{

 auto translation = std::string{};

 (void)((language == translators::language

 ? (translation = translators::translate_to_english(text),

 true)

 : false)

 || ... ||

 (throw std::invalid_argument(

 std::string("Unknown language: ").append(

 language.begin(),

 language.end())), true));

 return translation;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

af://n89

1. The return type has to be default constructible, move or copy assignable, move or copy
constructible (which is the case for std::string but is not valid for all types).

2. Additional overhead might be created by calling the default constructor and a move
assignment. (Note: The move or copy constructor is not called due to NRVO.)

VI. Design Decisions

A) On not Supporting Fold Expressions without Default
Expression

A fold expression without default expression would look like (C ? E : ...) . However, this
notation leads to confusion since it is unclear what to do with the n-th condition C(N) in case
sizeof...(C) and sizeof...(E) is equal to N .

This case can be expressed with less confusion by (C ? E : ... : std::unreachable()) .

The only advantage of (C ? E : ...) compared to (C ? E : ... : std::unreachable())
would be that in the first case the compiler would not call C(N) whereas in the second case the
compiler has to call C(N) in case it may have side effects even though the result is not used
anymore.

However, this slight difference may not be worth the additional confusion and the fold expression
without default expression could be added in any later C++ standard version if needed.

VII. Acknowledgements
Many thanks to Arthur O'Dwyer for his valuable feedback.

VIII. Revision History
Revision 0:

Initial proposal
Revision 1:

Rename 'initial value' to 'default expression'
Remove proposal for ternary fold without initial value
Proposal to relax void handling on conditional operator
Include usage of Unreachable Code proposal P0627R3 [4]
Enhancing examples with throw in last argument of ternary expression
Added comparison to alternative implementations already available in C++20

IX. References
[1] Programming Languages - C ++, ISO/IEC 14882:2017(E), 8.1.6 Fold expressions
[expr.prim.fold] https://timsong-cpp.github.io/cppwp/n4659/expr.prim.fold

[2] Programming Languages - C ++, ISO/IEC 14882:2017(E), 8.16 Conditional operator
[expr.cond] https://timsong-cpp.github.io/cppwp/n4659/expr.cond

af://n98
af://n99
af://n104
af://n106
af://n128
https://timsong-cpp.github.io/cppwp/n4659/expr.prim.fold
af://n129
https://timsong-cpp.github.io/cppwp/n4659/expr.cond
af://n130

[3] Programming Languages - C ++, ISO/IEC 14882:2017(E), 10.6.8 Noreturn attribute
[dcl.attr.noreturn] https://timsong-cpp.github.io/cppwp/n4659/dcl.attr.noreturn

[4] Function to mark unreachable code https://wg21.link/P0627R3

[5] foonathan::blog(): Nifty Fold Expression Tricks: Get the nth element (where n is a
runtime value) https://foonathan.net/2020/05/fold-tricks/

[6] GitHub repository of this document https://github.com/zingsheim/ProposalTernaryFold

https://timsong-cpp.github.io/cppwp/n4659/dcl.attr.noreturn
af://n131
https://wg21.link/P0627R3
af://n132
https://foonathan.net/2020/05/fold-tricks/
af://n133
https://github.com/zingsheim/ProposalTernaryFold
af://n134

	Proposal Ternary Right Fold Expression
	Revision 1
	I. Motivation
	A) Use case
	B) Consistent Completion of Fold Expressions
	II. Proposed Expansion of Ternary Fold Expression
	III. Extension of Conditional Operator
	VI. Further Example Use Case
	A) Solution with Fold and Throw
	B) Solution with Fold and Noreturn Function
	C) Solution with Fold and Explicit Default
	D) Solution with Fold and Unreachable
	V. Comparison to Alternatives already available in C++20
	A) Explicit Calls
	B) Recursion
	C) Reuse the fold on operator||
	VI. Design Decisions
	A) On not Supporting Fold Expressions without Default Expression
	VII. Acknowledgements
	VIII. Revision History
	IX. References
	[1] Programming Languages - C ++, ISO/IEC 14882:2017(E), 8.1.6 Fold expressions [expr.prim.fold] https://timsong-cpp.github.io/cppwp/n4659/expr.prim.fold
	[2] Programming Languages - C ++, ISO/IEC 14882:2017(E), 8.16 Conditional operator [expr.cond] https://timsong-cpp.github.io/cppwp/n4659/expr.cond
	[3] Programming Languages - C ++, ISO/IEC 14882:2017(E), 10.6.8 Noreturn attribute [dcl.attr.noreturn] https://timsong-cpp.github.io/cppwp/n4659/dcl.attr.noreturn
	[4] Function to mark unreachable code https://wg21.link/P0627R3
	[5] foonathan::blog(): Nifty Fold Expression Tricks: Get the nth element (where n is a runtime value) https://foonathan.net/2020/05/fold-tricks/
	[6] GitHub repository of this document https://github.com/zingsheim/ProposalTernaryFold

