
Modules: Keep the dot

D1948R0
Reply to: corentin.jabot@gmail.com
Audience: EWG, SG-2, SG-15

Abstract

A number of National Body Comments, and a paper (P1873) call for the removal of dots in
modules for C++20.

The author thinks this would have a negative impact on the C++ ecosystem and encourage
bad practices in such a way that it would make it significantly harder for any satisfying
package management system to ever arise.

Module naming and uniqueness
Modules names identify modules and as such need to be unique within a program.

(Note: A module is a module interface unit, all its implementation units and its partitions,
whose partition name is only relevant from within the module they are a partition of)

They also participate in name mangling, which make them part of both the API and ABI of a
program (renaming a module entails modifying all translation units importing that module).

Uniqueness of name within the program implies uniqueness of name in the universe.

Most projects will include third party dependencies - which may have dependencies of their
own, etc. Note that in this case “third party” would be any codebase not under one’s control,
including the team down the hallway. It is also orthogonal to open source - people use
proprietary middleware - etc.

Applied transitively, uniqueness of names applies to the universe - which is fundamentally
what “ecosystem” implies.

Failing to conserve uniqueness of module names would lead to many libraries being source
incompatible with each other and not usable within the same project, defeating the long
term hope of dependency management (dependency management implying that
dependencies can be had).

mailto:corentin.jabot@gmail.com

Uniqueness of name is a convention
Without a fairly large (and at this date unrealistic) tooling support, module name uniqueness
can only be a convention. And while SG-15 so far has not been willing to specify one, such
convention will hopefully emerge. As it did for headers names over the past few years (this is
not a new problem and the solution are not new either).

Existing practices converged toward making the name of the project and often the name of
the entity who created or maintain the project a part of the headers paths
Ex: #include <boost/asio/ssl.hpp>

Here the project is Boost.ASIO, under the boost umbrella, and only part of that project is
included (presumably we don’t need all of boost::asio’s declaration in this particular file).

The path separator is used to separate the different components - and the hierarchy on disk
reflects that.

Of course, modules are not identified by their paths - which I would argue is a big
improvement over headers, so we need some kind of ways to identify and codify these
different components.

The only non alpha-numeric at our disposal is _ But of course there is 80 years of existing
practice using _ as a space in context in which a space cannot be used.

Consider boost_asio_ip_address . Is address organized below ip_address or is it
its own logical and undivisible thing?

Introducing more tokens solves nothing

It was suggested that instead of removing the dot, one or more tokens are added to let
users organize their code in a way that would address the concerns expressed above.

Let’s pretend we allow another token, for example ⁑ - which has been chosen for its
ludicrousness so that we don’t get lost in specifics.

A module name is now boost⁑asio⁑ip⁑address:iterator;

The intent of the dot removal proponents is for the dot to be added back later.
So now our module looks like:
boost⁑asio⁑ip.address:iterator; Where each of [. : ⁑] has a different
semantic meaning.

This starts too looks complicated and needlessly increases the cognitive overhead.

But more than that, it will not be possible to rename modules without incurring an API
break.
In that scenario modules written after c++23 would have a different naming scheme than the
one written before.

(Note: A single module is closed while namespaces are not - for that reason, while module
names and namespaces should share a common root name it would not be a good idea to
use the same component separator for modules and namespaces).

Big modules
Deprived of the ability of organizing their modules into both organizational and logical entities
(Generally libraries namespaces are organizational entities, libraries should be logical units
and modules names are both), an uninformed developer might be under the impression that
modules should be big.

`import boost`;
`import qt`;

This poses a number of issues.
From a maintenance standpoint, everything now depends on everything - Maybe not, but
who could tell what is used and what is not?
It could be worse though:
`export import qt`;

Ô Hyrum.

It would be astute to notice that boost cannot be a module as it is a mutable collection of
libraries rather than a library, but again, without a dot that is not codifiable.

More concerning still, `import QtBase`; requires that the binary module interfaces that
compose that module would be present at the point of use.

But the issue is mostly that, at link time, all the module implementation units defining
entities which are ODR-used must have been compiled.

It would be really difficult for a tool to infer what implementation files are required to be
provided, which leaves 2 implementation strategies

● Compile and link all implementation units of an imported module, transitively.
● Manually specify a “library” subdivision such that modules could span multiple

libraries.

The later is the model that has been used for header/sources files but it present significant
disadvantages:

● Cognitive overhead of having to know which library defines a given symbol

● Libraries tend for simplicity to be large organizational units, which present all the
same issues as big modules

● Maintaining these build system has a high cost
● Precludes low or zero configuration build systems

In both cases, we know that the number of dependencies grow quadratically and the state of
the ecosystem favors big libraries, which makes the cost of having dependencies very high.

Dependency management should follow the “don’t pay for what you don’t use” guidance
such that code should

1. Depend on what it needs
2. Not depend on what it doesn’t need

The lack of dots in module names make promoting these practices very difficult.

I should also note that, for all the same reasons, `export import` is a much sharper tool that it
appears - and export import -ed modules are part of the API - In general a module should
probably export only the thing that module needs.

Submodules
For the reasons stated above, I do not think submodules as a syntactically enforced
language feature are a particularly good idea short of mandating a file hierarchy.
There are other reasons:

● Some components can never be modules on their own: The existence of an
google.abseil.hash_map module should not imply the existence of a google
module.

● More importantly, the set of modules available on a given system is not closed.
Hence if a module could implicitly import an arbitrary, mutable collection of
submodules the code could be affected by changes in the environment in
unpredictable ways.

You will notice that languages that have a notion of submodules baked in the language
usually have a filesystem hierarchy matching the module hierarchy such that the set of
submodule is bounded (and closed at a given point in time) and under the control of the
author of some top level module.

Private modules:

The idea of private modules - where one module could only be imported from some other
modules - is a much more convincing idea.

I however fail to see how precluding dots from appearing in module names would favor that
use case.

It is easy to find ways to add private modules on top of the existing design:

export private module corentin.foo._bar //Modules starting with _

are private

friend module corentin.other_mod.*; // Could also have an explicit

syntax instead of assuming a hierarchy.

export module corentin.foo:private_access.with.dots // as

suggested by Richard Smith

I am more concerned with the fact that submodules seems to be a more general, simpler
idea than partitions, and by having partitions now and submodules later, we would end up
with 2 ways to represent the same ideas.

Recommendations
● I strongly advise the committee to keep the dots in module names in 20.
● The grammar of module names need to be better specified so that a module name is

a single token
● I would recommend reserving a single leading underscore in a module name

component for future use
● I would recommend not allowing modules and partition names names to be keyword

or to contain keyword, especially friend, private, public and protected.
● Carefully consider whether partitions are necessary in 20 if there is a strong desire

for a generalized submodule mechanism later.
● I encourage SG-15 to consider offering some guidelines pertaining to module

naming, module re-exporting and module composition as to encourage a healthy and
scalable ecosystem of module-based projects

Acknowledgments

Thanks to Rene Rivera and Colby Pike for reviewing and proof-reading this paper.

References
● P1873R1: [SG2, Evolution] remove.dots.in.module.names (Michael Spencer)
● P1634R0: [SG15] Naming guidelines for modules (Corentin Jabot)

https://wg21.link/p1873r1
https://wg21.link/p1634r0

● CppCon 2019: Corentin Jabot “Dependency Management at the End of the Rainbow
● CppCon 2018: Peter Bindels “Build Systems: a Simple Solution to a Complicated

Problem”
● P0816R0: [Library Evolution] No More Nested Namespaces in Library Design (Titus

Winters)
● P1876R1: [SG2] All The Module Names (Rene Rivera)

https://www.youtube.com/watch?v=k3Q-fPBe9Z0
https://www.youtube.com/watch?v=mWOmkwv8N_U
https://www.youtube.com/watch?v=mWOmkwv8N_U
https://wg21.link/p0816r0
https://wg21.link/p1876r1

