
Suggestions for bulk_execute | P1933

Jared Hoberock

2019-10-07

Abstract. In order to standardize executors on schedule for C++23, bulk execution must provide an appropriate eager
substrate for our envisioned programming model for lazy execution. This paper compares two possible approaches that would
allow bulk_execute to be such a substrate.

Comparison Summary

The proposed submit(sender, callback) requires the invocation of a scalar function (i.e. callback) after the work
represented by sender completes execution. The purpose of this callback is to effect a transition to another execution context
where downstream work that depends on the sender will be executed.

P0443R10’s current specification of bulk_execute has no generic mechanism which could invoke a single scalar function
following the bulk group of execution agents’ completion:

template<class Function, class SharedFactory>
void bulk_execute(Function f, size_t n, SharedFactory shared_factory);

However, bulk_execute could be augmented to incorporate an explicit callback:

template<class Function, class SharedFactory, class Callback>
void bulk_execute(Function f, size_t n, SharedFactory shared_factory, Callback callback);

Alternatively, some executors could optionally return a successor executor from functions like execute and bulk_execute:

// submit f for execution and receive an executor in return
auto after_f_ex = ex.bulk_execute(f, n);

// my_callback is invoked only after f completes
after_f_ex.execute(my_callback);

This paper compares the two and suggests that the latter approach is technically superior.

Problem Definition

P0443R10 specifies bulk_execute(f, n, shared_factory)’s semantics (paraphrased):

Let s = shared_factory(). Invokes f(i, s) for each value of i in [0, n).

The semantics provide no in-band notification of the completion of the invocations of f, nor do they provide a mechanism for
invoking a callback function, which is required by the senders programming model. At first glance, it may seem straightforward
for a client to introduce an out-of-band augmentation of f that would elect one of its invocations to invoke a callback once all
invocations complete. However, because the execution agents created by bulk_execute may have weak forward progress,
there is no generic and efficient mechanism which could perform the necessary synchronization.

Instead, we require some explicit, in-band means of sequencing a scalar function invocation to follow the bulk function
invocation.

1



Possibility 1: Introduce a Callback

One straightforward solution suggested by P1660 is simply to introduce a callback into bulk_execute’s parameters.

A possible signature for bulk_execute could be:

template<class Function, class SharedFactory, class Callback>
void bulk_execute(Function f, size_t n, SharedFactory shared_factory, Callback callback);

callback would be invoked after f’s invocations are complete. We believe this is implementable on any platform that could
implement P0443R10’s specification of bulk_execute, because the destructor of the shared state returned by shared_factory
must also be invoked after f’s invocations are complete. If an executor is able to sequence that destructor invocation after the
bulk invocation, we reason that it ought to be possible to do so for an arbitrary function as well.

Incorporating an explicit callback, or finalizing function, would have a nice symmetry with the shared factory, which acts as
an initialization function. Moreover, the shared state variable could be passed off to the callback in cases where the value of
the shared variable is interesting to downstream tasks.

Caveats

While introducing a callback into bulk_execute is workable, we have identified important caveats.

A Callback hides dependency information. We desire for executors to take full advantage of scalable systems that exploit
visibility of task dependency relationships to create efficient schedules. The introduction of a callback hides dependencies from
such systems:

ex.bulk_execute(f, ...,
[=]{

ex.bulk_execute(after_f, ...);
});

In this example, an efficient scheduling runtime abstracted by ex cannot see that after_f’s invocation depends on the
completion of f, because the lambda passed as the callback to the outer bulk_execute is opaque. This hidden dependency
defeats the ability of the runtime to create efficient schedules.

Implementation strategies of Callbacks on GPU runtimes are limited. The most straightforward implementation
of a Callback on GPU runtimes would be scheduled on a so-called “host callback”. In this context, a host callback is a scalar
function invocation executed on a CPU thread after preceding GPU work completes. The CUDA runtime places important
restrictions on the code executed within such a callback. Critically, it is an error for host callbacks to make CUDA API calls.
This limitation defeats the purpose of the callback, which is to create chained, dependent work. Worse yet, because Callbacks
are opaque functions, there is no mechanism that can enforce this restriction.

No-op Callbacks waste resources. Some Callbacks will have no interesting work to perform. However, because Callbacks
are opaque functions, this case is undetectable. Callbacks following scalar function invocations may be inlined or elided by the
compiler because they may be scheduled on the same execution agent as the scalar function. Such a composition scheme
is unavailable to Callbacks following bulk function invocation. In the bulk case, a no-op Callback must be scheduled and
executed, wasting resources.

Possibility 2: Successor Executors

An optional result returned from execute and bulk_execute could be used as a token for chaining dependent work. Moreover,
using an executor as the token would avoid the introduction of a new concept into the programming model. In this model,
execution agents created by the resulting successor executor do not begin execution until the execution agents created from
the originating function complete:

// ex returns a successor
auto after_f_ex = ex.execute(f);

// g is guaranteed to begin after f completes
after_f_ex.execute(g);

A successor executor ensures that a scalar callback executes after bulk execution:

2



auto successor_ex = ex.bulk_execute(...);
successor_ex.execute(my_callback);

Because successor executors provide an in-band channel for eager submission of dependent tasks, they enable executors to
exploit dependency relationships for efficiency.

The purpose of a successor executor is to make explicit the ordering of tasks submitted through an executor. However, an
implicit task still hides within bulk_execute’s current specification. Namely, the destructor of the shared object created by
the shared factory must be invoked after the bulk work completes. If successor executors are adopted, we suggest eliminating
this implicit join point by removing shared factories. Fortunately, efficient implementations of shared state we are familiar
with may be efficiently reintroduced by a client via inspection of the executor’s properties.

The possible signatures of bulk_execute become:

// one-way, fire-and-forget
template<class Function>
void bulk_execute(Function f, size_t shape);

// two-way,
template<class Function>
Executor bulk_execute(Function f, size_t shape);

In such a model, all data flow would be described either out-of-band or in-band via higher-level senders. The lower-level
executor programming model would be concerned only with control flow.

Caveats

Successor executors also come with caveats.

Successors pessimize fire-and-forget tasks. Some use cases of executors do not require dependent tasks. In such cases,
a successor returned from execute or bulk_execute will be discarded and any associated resources associated will have been
wasted. Avoiding the initial resource allocation would allow the initial fire-and-forget task to execute more efficiently.

Adapting a fire-and-forget executor may be inefficient. We suggest that returning a successor executor be optional.
However, we still require the ability to chain dependent work from tasks created via fire-and-forget executors. In such cases,
we imagine that an adaptation could be applied to track the completion of the predecessor task. Some kind of reference
counting scheme seems necessary to ensure that all copies of the successor executor can correctly track the predecessor task’s
completion.

Comparison of Trade-offs

Callbacks Successors
Usage ex.bulk_execute(f, n, factory,

callback);
auto after = ex.bulk_execute(f,n);
after.execute(callback);

Example
submit(bulk_sender, cb)
implementation

bulk_sender.executor_
.bulk_execute(..., cb);

auto after = bulk_sender.executor_
.bulk_execute(...);
after.execute(cb);

Optional? Required by bulk_execute Yes

Caveats Hidden dependencies
Limited usefulness on GPUs
Inefficient no-ops

Pessimized fire-and-forget
Inefficient adaptations

3



Summary

Though both approaches have important caveats, the way that a Callback hides dependent work from the executor seems
to be the critical concern. Additionally, Successors’ caveats seem tractable. Pessimized fire-and-forget could be avoided by
naming the Successor-returning variants differently, possibly via a customization point. For these reasons, we prefer Successors
over Callbacks in order to integrate bulk_execute with Senders.

Acknowledgements

Thanks to Michael Garland, David Hollman, Chris Kohlhoff, Eric Niebler, and Kirk Shoop for feedback.

4


	Comparison Summary
	Problem Definition
	Possibility 1: Introduce a Callback
	Caveats

	Possibility 2: Successor Executors
	Caveats

	Comparison of Trade-offs
	Summary
	Acknowledgements

