
Doc.No.: P1920R0
Project: Programming Language - C++ (WG21)
Author: Andrew Tomazos <andrewtomazos@gmail.com>
Date: 2019-05-30
Audience: EWGI SG17: EWG Incubator
Vehicle: C++23

Proposal of Namespace Templates

1. Abstract

We describe the library configuration problem, current solutions (and why they are lacking), and
then propose namespace templates as an elegant solution.

2. The Library Configuration Problem

Let us define a library as a set of related source files that share a common directory, where all
the entities defined in its source files are placed in some exclusive namespace for the library.

eg A directory called libfoo containing files:

 foo1.h

 foo1.cc

 foo2.h

 foo2.cc

 foo3.h

 foo3.cc

...where each fooi.{h|cc} contains:

 /* preamble */

 namespace foo {

 /* entity declarations and definitions */

 } // namespace foo

...we would call a library (“the foo library”).

Many times there are domain-specific cross-cutting characteristics of a library.

mailto:andrewtomazos@gmail.com

For example:

- For a physics simulation library, does it use single-precision or double-precision
floating-point arithmetic?

- For a containers library, what kind of memory allocation scheme does it use?
- For an audio signal processing library what frequency and bitrate does it normalize to

and operate on?
- For some virtual machine library, what are its limits? Max threads? Max Memory? etc

Let us call a set of answers to such questions about some specific library as a library
configuration.

Rather than duplicating the code of a library for each possible library configuration, we would
like to define the library, once, in terms of an abstract configuration. Users of the library can
then select which concrete configuration they would like to use.

There are several different ways this is handled today.

2.1. Hard-code Library Configuration

The simplest solution is to define the library configuration as normal entities in a library config
header. Each source file of the library then includes that header and gets the definitions (which
it uses):

 libfoo/config.h

 #pragma once

 namespace foo {

 // libfoo configuration

 using RealType = float;

 constexpr size_t normalized_bitrate = 32’000;

 constexpr int max_heap_size = 1’000’000;

 /* ... */

 } // namespace foo

If the library configuration is changed it can be achieved by modifying the source code of the
config header.

This isn’t ideal as it requires source code changes whenever the configuration changes.

2.2. Preprocessor-based Library Configuration

To improve on the situation one can use the preprocessor / macros / conditional inclusion to
generate the config header based on defines (-Dkey=value) passed into the implementation.
There are countless examples of this in the wild, for one example see luaconf.h from liblua.

This isn’t great as the data model of defines is not very expressive and is tough to manage.

2.3. Code-generated Library Configuration

Another approach is to generate the config.h header in a pre-build step. Again, there are
numerous examples of this. For this we would point at things like the autotools system that
generates a config header based on build-time testing of the target system. There are also
systems that take a configuration in some declarative format (like JSON) and then code
translate them into a C++ header.

All of the approaches mentioned thus far don’t allow for multiple instances of the library, each
with different configurations, to be included in the same program.

Imagine a situation where a library A and a library B both use some configurable library C, each
with a different configuration of C (lets call the two configurations Ca and Cb). Now we want to
create a program that uses both library A and library B. Roughly speaking this is an ODR
violation and doesn’t work, as there are two different definitions of the same entity in the same
program.

2.4. Entire Library in Class Template

To solve this problem one could put the entire library into one big source file and wrap it in a
class template. Library A could then use C<Ca> and library B could then use C<Cb>, avoiding
the linking problem. However placing an entire library into a single source file goes against the
best practice of keeping source files small. (There are also a number of features that
namespaces have that classes don’t.)

2.5. Template Each Entity in Library

Another solution is to make every entity in the library a templated entity that is parameterized on
the library configuration. This requires an enormous amount of boilerplate as the library
configuration is repeated (a DRY violation) not only in every source file, but for every entity in
every source file in the library, and, even worse, must be passed around the library. Many times
when the definition of an entity X in the library makes use of some entity Y, it must explicitly
instantiate Y<Config> with the library configuration.

2.6. Use Namespace Templates (proposed)

This library configuration problem comes up a lot in practice. It has been independently
suggested at least four times by four different groups over the years that namespace templates
would be an elegant solution to the problem.

The way the solution works is that the library configuration is the template parameter set of the
namespace template that encloses the library. The library is defined in terms of those abstract
template parameters. Users of the library instantiate the namespace template with the concrete
configuration (which are the template arguments in the namespace template-id).

3. Namespace Template Design

The obvious starting point here (and the least surprising) is to say that a namespace template is
“just like” a class template:

A class template…

template<typename T>

class C {

 /* ... */

};

A namespace template...

template<typename T>

namespace N {

 /* ... */

};

Unlike a class template, and in order to solve the library configuration problem, we want a
namespace template to be able to span multiple source files.

Meaning that, unlike a class template (but like a namespace) there may be more than one
definition of the same namespace template - and those definitions are merged into one:

template<int x> namespace { constexpr int a = 2*x; }

template<int x> namespace { constexpr int b = a + 3*x; }

A small toy program to illustrate the proposed mechanics:

template<int i>

namespace n {

 constexpr int I = i;

 constexpr int x = I + 2;

}

template<int> namespace n {

 constexpr int y = x + I + 3;

}

template<int> namespace n {

 constexpr int z = 2 * y;

}

int main() {

 static_assert(n<10>::x == 10 + 2);

 using namespace n<100>;

 static_assert(y == 102 + 100 + 3);

 static_assert(z == 410);

}

4. Issues

4.1. Namespace template parameters

The new entity that is proposed in this paper is called a namespace template. It is a template
used to create one or more namespaces. A usage of that template would be a “namespace
template instantiation” which is a namespace. This is like how a usage of a “class template” is a
“class template instantiation” which is a class type.

Separately, a “namespace template parameter” would be a template parameter that is a
namespace:

 // NOT proposed in this paper.

 template<namespace N> // a namespace template parameter

 class C {

 /*...*/

 }

Template parameters can currently be type template parameters, non-type template parameters
and template template parameters. A namespace template parameter would be a fourth kind of
template parameter in this list.

The relationship between a namespace template and a namespace template parameter, is
similar to the relationship between a variable template and a non-type template parameter - in
that the template/template-parameter pair both relate to the same kind of underlying entity. The
first of each pair is a template of the entity, the second is when the entity is used as a parameter
to a template.

Namespace template parameters are not proposed in this paper. During initial discussions of
namespace templates, namespace template parameters came up.

The proposal author's position on namespace template parameters is that the motivation is
completely different for them to namespace templates. This can be illustrated by the fact that
we had non-type template parameters long before we had variable templates. We can easily
imagine a C++ with any of:

- namespace templates and not namespace template parameters, or
- namespace template parameters and not namespace templates, or
- both namespace templates and namespace template parameters.

For this reason we suggest that namespace template parameters should be advanced
separately, and independently, by a separate line of proposals.

4.2. Out-of-class definitions of members of a class template.

It has been suggested that another possible motivation for something like namespace templates
is cutting down the boilerplate on out-of-class definitions of class template members....

ie Instead of:

template<typename T>

class C {

 void f();

 void g();

 void h();

}

template<typename T>

void C<T>::f() { /* … */ }

template<typename T>

void C<T>::g() { /* … */ }

template<typename T>

void C<T>::h() { /* … */ }

Maybe we could write something like:

template<typename T>

class C {

 void f();

 void g();

 void h();

}

// NOT PROPOSED

template<typename T> {

void C<T>::f() { /* … */ }

void C<T>::g() { /* … */ }

void C<T>::h() { /* … */ }

}

..to save the boilerplate of repeating the template prefix.

While saving on boilerplate is certainly interesting it pales in comparison to the utility of
namespace templates vs the “Template Each Entity in Library” solution (and other solutions) to
address the library configuration problem.

The proposal author (at the time of writing) does not currently see a unified design for
namespace templates that both addresses the library configuration problem and addresses this
out-of-class use case. Therefore, while we remain open to ideas about this, we are not
proposing addressing this use case at this time with namespace templates.

4.3. Integration with nested namespaces

We propose a syntax for nested namespace templates, based on syntactic equivalence, such
that

template<typename T> namespace A::B {}

...is syntactically equivalent to...

namespace A {

template<typename T>

namespace B {}

}

A namespace template can only be the last namespace in a nested namespace definition.

If you want to express a namespace template nested within another namespace template, then
you simply write it out in full, and cannot use the nested namespace shorthand:

template<typename T> namespace A {

template<typename T> namespace B {

 /*...*/

} // namespace B

} // namespace A

4.4. Namespace Templates and Modules

What best practices surrounding modules that will evolve in the wild after C++20 is released
isn’t entirely clear at the time of writing. We assume source files will remain small and for the
use of namespaces to enclose libraries to persist. That said, our intent is that namespace
templates should work in a similar fashion as they would in a non-module world, and in a similar
way to how class templates work with modules. We intend to refine this if and when this
proposal progresses.

4.5 Explicit specializations, partial specializations, and explicit instantiations

Given the problem we are trying to solve (library configuration), we don’t think having partial
specializations or explicit specializations of a namespace template are well-motivated. So we
propose for the first version of the feature that only a primary namespace template may be
defined. We can always add partial specializations and explicit specializations as an extension
later. (Also notice that a namespace template can be dependant on a type template parameter
that is an instantiation of a class template that has multiple partial specializations.)

Explicit instantiations are however well-motivated. You may want to have a specific list of library
configurations that you want to instantiate for the usual compile-time savings. So we propose
that explicit instantiations work as expected:

 extern template namespace N<args>;

declares the explicit namespace template instantiation N<args> and

 template namespace N<args>;

defines it. The declaration suppresses implicit instantiation, and the definition explicitly
instantiates the content of the namespace templates visible at point of explicit instantiation.

4.6 Entities that can be in namespaces but not classes

There are a number of constructs that can appear in namespace definitions but not within class
definitions. If this proposal progresses we intend to go through each one to make a design
decision as to whether each such construct may or may not also appear within namespace
templates. In general this is a balance between implementation feasibility and whether there is
strong motivation to have each construct within a namespace template.

5 Proposal Roadmap

Our goal is to get feedback from WG21 on the described motivation and design decisions we
have put forward to determine whether there is sufficient support to justify an investment in
preparing wording and implementation. An encourage / discourage vote from EWGI, along with
any other feedback, would be appreciated.

6 References

2014 first std-proposals thread started by dgutson
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/8IDbb1L5_UA/TVdjru4mFCEJ

2017 second std-proposals thread started by Jake Arkinstall
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/3MR8IhevevU/HQNEFn5fAwAJ

https://groups.google.com/a/isocpp.org/d/msg/std-proposals/8IDbb1L5_UA/TVdjru4mFCEJ
https://groups.google.com/a/isocpp.org/forum/#!searchin/std-proposals/templated$20namespaces/std-proposals/3MR8IhevevU/HQNEFn5fAwAJ

