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On the names of shift algorithms

Abstract

The current draft of the standard introduces shift_left and shift_right algorithms for
C++20. We suggest that the notions of left and right can be misleading in some contexts, includ-
ing bit containers and strings. We suggest alternative names to remove the ambiguity.
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1 History
• P1914R0: original version submitted to LEWG/LWG for the Belfast 2019 Standards Commit-

tee Meeting

2 Context
The paper P0769: Add shift to <algorithm> introduced two new algorithms to shift sequence of el-
ements, namely std::shift_left and std::shift_right. Subsequently, the paper P1233: Shift-
by-negative in shift_left and shift_right proposed a new speci�cation for the behaviour of the
original shift algorithms when provided with negative inputs. The algorithms and the subsequent
modi�cations have been voted in the standard and are now part of the standard draft N4830 for
C++20.

Even if the original version of the proposal P0769R0 included open questions about the naming of
the algorithms, the LEWG notes on the 2017 Albuquerque wiki do not report discussions or votes
on the chosen names. The open issue section of the original proposal is reported below:

It would be preferable for shift_left and shift_right to have more generic names; the fact that
the �rst element in a range is the left-most is a matter of convention which is not speci�ed in the
standard, and some programmers may think of the �rst element as the right most, or maybe the
top-most, etc.
However, shift_backward, shift_back and shift_forward are probably all out of the ques-
tion, since other algorithms exist, e.g., std::move_backward and std::copy_backward, in which
“backward” means performing the operation starting from the back of the range, instead of from its
front.
shift_to_front and shift_to_back come to mind; more ideas would be welcome.

We strongly feel that the naming should be discussed, especially in the light of two real-word sce-
narios in which the chosen names can be very misleading.

3 The problem
3.1 Introduction
As pointed out by the �rst version of P0769, the notions of left and right are a purely conventional.
In practice there is at least two scenarios where the conventions are reversed when compared to
what the algorithms are actually doing, leading to ambiguous situations for users:

• bit sequences
• strings for languages that are written from the right to the left

3.2 Bit sequences
Bit iterators as proposed by P0237 are expected to provide a generic way to manipulate bit sequences
in a future revision of the standard. To exploit bit parallelism, standard library vendors may pro-
vide specializations of the standard algorithms for bits. Experimental implementations of such spe-
cializations have been written over the last few years by the author of this proposal and his team
at the University of Illinois at Urbana-Champaign. When implementing std::shift_left and
std::shift_right it appeared that to make it work properly with bit sequences, std::shift_left
had to call the bitwise right shift operator >>, while std::shift_right had to call the bitwise left
shift operator <<. In practice this quickly escalated into a nightmare of ambiguity, and everything
had to be renamed internally to avoid the confusion of library implementers.
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3.3 Strings
One can also easily imagine that for languages that are written from the right to the left, the exact
same problem will arise. What std::shift_left really means is shifting elements towards the
beginning of the provided range, and std::shift_right to the end of the provided range. In the
case of languages that are written from the right to the left, the right corresponds to the beginning
of the text while the left corresponds to the end of the text.

3.4 Conclusion
These two cases constitute real-world scenarios in which the convention of left and right is already
problematic. The same problem is likely to arise in plenty of more specialized application domains.
Since the standard algorithms are meant to be generic, their names should re�ect this genericity, as
written in the original version of P0769.

4 Proposed resolution
4.1 Option 1: provide one shift algorithm
The �rst option would be to have only one shift algorithm std::shift where the direction would
be deduced from the sign of the integer representing the shift amount. A negative integer would
translate into a shift towards the beginning of the sequence while a positive integer would translate
into a shift towards the end of the sequence. However, this may translate into a branching overhead
that may be problematic in low latency and high performance applications.

4.2 Option 2: rename the shift algorithms
The other solutions is simply to rename the existing algorithms with more generic names that re-
moves the ambiguity. Also, we propose the following alternative names:

• shift_prev/shift_next
• shift_begin/shift_end
• rshift/shift
• shift_to_back/shift_to_front
• shift_back/shift_front
• shift_backward/shift_forward
• shift_backward/shift
• backward_shift/forward_shift
• backward_shift/shift
• back_shift/front_shift
• back_shift/shift
• backshift/foreshift
• backshift/shift

We strongly encourage readers of this proposal to suggest new names.
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