
Extended locale-specific presentation 
specifiers for std::format 

Document No. P1892 R0 Date 2019-10-04 
Reply To Peter Brett pbrett@cadence.com Audience: SG16, LEWG 

Introduction 
 provides a safe and extensible alternative to the  family of functions for 

formatted output. By default, it does not use locale-aware numeric formatting.  It provides a ‘ ’ 

format specifier so that users can request locale-aware formatting if required [1]. 

 has overloads that allow specifying a particular locale; it is not limited to using the 

current global locale [2]. This makes  the best approach to locale-aware formatted 

output. 

This paper arises from a GB national body comment on the C++ Committee Draft [3]. For reference, 

the comment is included in ‘Appendix: GB national body comment on C++20’. If this paper was 

applied to the C++20 Committee Draft, then it would resolve the NB comment. 

The ‘ ’ specifier currently only allows for a restrictive subset of locale-aware presentations.  This 

particularly affects access to useful floating-point formats. 

This paper proposes a change to ‘ ’ into a modifier of other specifiers which adds locale-aware 

formatting.  For example: 

This would ensure that all locale-specific presentations that are provided by  can be obtained 

using . 

Design 

Easy to explain as an extension of existing syntax 
Currently, using the ‘ ’ specifier for formatting integer values gives the same result as using no 

specifier at all, but with locale-specific digit group and decimal radix separator characters.  For 

example: 

This behaviour can be explained in terms ‘ ’ as a modifier: here, it is modifying the default 

formatting in a locale-specific way.  

Locale-specific modifier is placed before the format specifier 
In the current formatting mini-language, all modifiers occur before the type specifier, and the type 

specifier is optional.  Placing the ‘ ’ modifier immediately before the type specifier preserves this 

ordering, without affecting existing code. 

mailto:pbrett@cadence.com?subject=Re:%20P1892R0%20Extended%20locale-specific%20presentation%20specifiers%20for%20std::format


P1892 R0 

2 
 

Presentation of numbers with non-decimal radix 
When formatting numbers for reading with a non-decimal radix, it can still be useful to use the 

locale to group the digits.  Locale-specific binary, octal and hexadecimal presentation is therefore 

deliberately included.  For example: 

Presentation of Boolean values 
The current default presentation for  when no specifier is provided is one of the English words 

“true” and “false”.  When modified with ‘ ’, congruence can be achieved if the presentation uses the 

locale’s  facet. For example: 

Presentation of pointers 
This paper proposes allowing the ‘ ’ modifier to be specified only with arithmetic types.  Therefore a 

‘ ’ substitution would be ill-formed. 

The default behaviour of  is to display pointers as if they were numbers, but a pointer is 

not a number. 

Prohibiting the ‘ ’ modifier for pointer values preserves the possibility of defining a locale-

dependent pointer presentation in the future, if a compelling use-case arises. 

Impact on existing code 
All previously well-formed format strings continue to work unchanged.  Some format strings that 

were previously ill-formed become well-formed. 

Alternative modifier character 
‘ ’ may be a better conceptual mapping for “use the context’s locale” than ‘ ’ is. 

The Committee Draft [3] underspecifies the units of width and precision for string arguments, 

possibly creating an ambiguity in variable-width string encodings.  The use of a ‘ ’ modifier has been 

proposed to cause the locale’s text encoding to be used when computing the display width of a 

string [4]. These semantics could be added to a ‘ ’ or ‘ ’ as a locale-specific presentation modifier.  

One of the attractions of  is its similarity to  in the Python standard 

library, which uses ‘ ’ to request locale-specific presentation [5].  Retaining ‘ ’ permits many Python 

format strings to be used unchanged with . 



P1892 R0 

3 
 

Post C++20 alternatives 
If C++20 is not revised to make the ‘ ’ format specifier congruent with default formatting, then this 

paper will be updated to propose an optional ‘ ’ modifier and the deprecation of ‘ ’ in C++23. 

This would be inferior to generalizing ‘ ’ in two respects: 

• Many pieces of wording would need to be duplicated to describe the effects of ‘ ’ and ‘ ’ 

and their subtle differences. 

• Teachability would be impaired by needing to explain the differences between ‘ ’ and ‘ ’ 

and when (not to) use them 

Proposed wording 

Editing notes 
All wording is relative to the post-Cologne C++ committee draft [3]. 

20.20.2.2 Standard format specifiers [format.string.std] 

Update ¶1: 
[…] The syntax of format specifications is as follows: 

std-format-spec: 

fill-and-alignopt signopt opt opt widthopt precisionopt opt typeopt 

[…] 
type: one of 

 

Insert after ¶9: 

The  option the causes the locale-specific form to be used for the conversion.  This option is 

only valid for arithmetic types. 

Update ¶13: 

The available integer presentation types for integral types other than  and  are 

specified in [tab:format.type.int]. If the locale-specific form is requested, the context’s locale 

is used to insert the appropriate digit group separator characters. [Example: 

—end example] 

Update [tab:format.type.int]: 

Type Meaning 

[…] […] 

; the base prefix is . 

The same as , except that it uses uppercase letters for digits above 9 and the 

base prefix is . 

N The same as , except that it uses the context’s locale to insert the appropriate 
digit group separator characters. 



P1892 R0 

4 
 

none The same as . [Note: If the formatting argument type is  or , the 
default is instead  or , respectively. —end note] 

Update [tab:format.type.char]: 

Type Meaning 

none, Copies the character to the output 

, , , , , , ,  As specified in [tab:format.type.int]. 

Update ¶15: 

The available bool presentation types are specified in [tab:format.type.bool]. If the locale-

specific form is requested for the textual representation, the context’s locale is used to 

insert the appropriate string as if obtained with  or 

. 

Update [tab:format.type.bool]: 

Type Meaning 

none, Copies textual representation, either  or , to the 
output. 

, , , , , , ,  As specified in [tab:format.type.int] for the value 

. 

Update ¶16: 

[…] [Note: In either case, a sign is included if indicated by the sign option. —end note] If the 

locale-specific form is requested, the context’s locale is used to insert the appropriate digit 

group and decimal radix separator characters. 

Update [tab:format.type.float] 

Type Meaning 

[…] […] 

Equivalent to 

where  is the specified formatting precision, or 6 if precision is not 
specified. 

The same as , except that it uses  to indicate exponent. 

n The same as , except that it uses the context’s locale to insert the appropriate 
digit group and decimal radix separator characters. 

none If precision is specified, equivalent to 

where  is the specified formatting precision; equivalent to 

otherwise. 

 

References 

[1]  V. Zverovich, “P0645R10 Text Formatting,” 16 July 2019. [Online]. Available: http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2019/p0645r10.html. 

[2]  V. Zverovich, D. Engert and H. E. Hinnant, “P1361R2 Integration of chrono with text formatting,” 

17 July 2019. [Online]. Available: http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2019/p1361r2.pdf. 



P1892 R0 

5 
 

[3]  R. Smith, “N4830 Committee Draft, Standard for Programming Language C++,” 15 August 2019. 

[Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4830.pdf. 

[4]  V. Zverovich and Z. Laine, “D1868R0 🦄 width: clarifying units of width and precision in 

std::format,” 29 September 2019. [Online]. Available: https://fmt.dev/D1868R0.html. [Accessed 

04 October 2019]. 

[5]  “Python 3.7.5rc1 Format Specification Mini-Language,” [Online]. Available: 

https://docs.python.org/3/library/string.html#formatspec. [Accessed 04 October 2019]. 

 

Appendix: GB national body comment on C++20 

Comments 
Make locale-dependent formats for  congruent with default formatting 

The design of  prefers "locale-independent" formatting options for performance reasons. It 

provides very limited support for locale-dependent formatting via the ‘ ’ specifier. 

It's particularly problematic that the ‘ ’ specifier for floating point numbers is specifically limited to 

the  presentation. It would be very useful to have access to 

 and  formatting with locale-dependent 

presentation. 

Adding these features to  at this stage would require significant wording changes that are too 

large to contain in a comment. However, one approach that could be taken in the future would be to 

make ‘ ’ be an additional suffix that could be added to format specifiers, rather than being a lone 

format specifier. This would enable locale-dependent formatting of any of the conversions of any of 

the arithmetic types. 

In order to keep the design space open for making this change in a future version of the standard, it 

would be ideal for ‘ ’ conversions to always be congruent with the default conversion. It provides an 

intuitive semantic: ‘ ’ is the same as "no specifier", but with locale-dependent presentation. 

The integer and  presentation types currently specify ‘ ’ conversions that are congruent with 

the default conversion. 

The bool and floating-point presentation types have ‘ ’ conversions that are not congruent with the 

default conversion. 

For C++20: 

Remove the ‘ ’ conversion for . 

Make the ‘ ’ conversion for floating-point match the default conversion, i.e. dependent on whether 

a precision is specified. 



P1892 R0 

6 
 

These changes are the minimum necessary to allow enhanced support for locale-dependent 

formatting in the standard library to be added in a backwards-compatible way in a future edition of 

C++. 

Proposed change 
In [tab:format.type.bool]: Remove . 

In [tab:format.type.float]: Replace the “Meaning” of the ‘ ’ specifier with: 

If precision is specified, equivalent to 

, where  is the specified formatting 

precision; equivalent to  otherwise. The context's locale is 

used to insert the appropriate digit group and decimal radix separator characters. 

 


	Introduction
	Design
	Easy to explain as an extension of existing syntax
	Locale-specific modifier is placed before the format specifier
	Presentation of numbers with non-decimal radix
	Presentation of Boolean values
	Presentation of pointers
	Impact on existing code
	Alternative modifier character
	Post C++20 alternatives

	Proposed wording
	Editing notes
	20.20.2.2 Standard format specifiers [format.string.std]
	Update 1:
	Insert after 9:
	Update 13:
	Update [tab:format.type.int]:
	Update [tab:format.type.char]:
	Update 15:
	Update [tab:format.type.bool]:
	Update 16:
	Update [tab:format.type.float]


	References
	Appendix: GB national body comment on C++20
	Comments
	Proposed change


