
Naming Text Encodings to Demystify Them
Document #: P1885R0
Date: 2019-10-06
Project: Programming Language C++
Audience: SG-16, LEWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

If you can’t name it, you probably don’t know what it is
If you don’t know what it is, you don’t know what it isn’t

Tony Van Eerd

Target

C++23

Abstract

For historical reasons, all text encodings mentioned in the standard are derived from a locale object,
which does not necessarily match the reality of how programs and system interact.

This model works poorly with modern understanding of text, ie the Unicode model separates
encoding from locales which are purely rules for formatting and text transformations but do not
affect which characters are represented by a sequence of code units.

Moreover, the standard does not provide a way to query which encodings are expected or used by
the system, leading to guesswork and unavoidable UB.

This paper introduces the notions of literal encoding, system encoding and a way to query them.

Use cases

This paper aims to make C++ simpler by exposing information that is currently hidden to the
point of being perceived as magical by many. It also leaves no room for a language below C++ by
ensuring that text encoding does not require the use of C functions.

The primary use cases are:

• Ensuring a specific string encoding at compile time

• Ensuring at runtime that string literals are compatible with the system encoding

1

mailto:corentin.jabot@gmail.com

• Custom conversion function

• locale-independent text transformation

The many text encodings of a C++ system

Text in a technical sense is a sequence of bytes to which is virtually attached an encoding. Without
encoding, a blob of data simply cannot be interpreted as text.

In many cases, the encoding used to encode a string is not communicated along with that string
and its encoding is therefore presumed with more or less success.

Generally, it is useful to know the encoding of a string when

• Transferring data as text between systems or processes (io)

• Textual transforming of data

• Interpretation of a piece of data

In the purview of the standard, text i/o text originates from

• The source code (literals)

• The iostream library as well as system functions

• Environment variables and command-line arguments intended to be interpreted as text.

Locales provide text and transformations and conversions facilities and as such, in the current model
have an encoding attached to them.

There are therefore 3 sets of encodings of primary interest:

• The encoding of narrow and wide characters and string literals

• The narrow and wide encodings used by a program when sending or receiving strings from its
environment

• The encoding of narrow and wide characters attached to a std::locale object

[Note: Because they have different code units sizes, narrow and wide strings have different encodings.
char8_t, char16_t, char32_t literals are assumed to be respectively UTF-8, UTF-16 and UTF-32
encoded. —end note]

[Note: A program may have to deal with more encoding - for example, on windows, the encoding of
the console attached to cout may be different from the system encoding.

Likewise depending on the platform, paths may or may not have an encoding attached to them,
and that encoding may either be a property of the platform or the filesystem itself. —end note]

The standard only has the notion of execution character sets (which implies the existence of execution
encodings), whose definitions are locale-specific. That implies that the standard assumes that string
literals are encoded in a subset of the encoding of the locale encoding.

2

This has to hold notably because it is not generally possible to differentiate runtime strings from
compile-time literals at runtime.

This model does, however, present several shortcomings:

First, in practice, C++ software are often no longer compiled in the same environment as the one on
which they are run and the entity providing the program may not have control over the environment
on which it is run.

Both POSIX and C++ derives the encoding from the locale. Which is an unfortunate artifact of
an era when 255 characters or less ought to be enough for anyone. Sadly, the locale can change at
runtime, which means the encoding which is used by ctype and conversion functions can change
at runtime. However, this encoding ought to be an immutable property as it is dictated by the
environment (often the parent process). In the general case, it is not for a program to change
the encoding expected by its environment. A C++ program sets the locale to "C" (see [N2346],
7.11.1.1.4) (which assumes a US ASCII encoding) during initialization, further losing information.

Many text transformations can be done in a locale-agnostic manner yet require the encoding to
be known - as no text transformation can ever be applied without prior knowledge of what the
encoding of that text is.

More importantly, it is difficult or impossible for a developer to diagnose an incompatibility between
the locale-derived, encoding, the system-assumed encoding and the encoding of string literals.

Exposing the different encodings would let developers verify that that the system environment is
compatible with the implementation-defined encoding of string literals, aka that the encoding and
character set used to encode string literals are a strict subset of the encoding of the environment.

Identifying Encodings

To be able to expose the encoding to developers we need to be able to synthesize that information.
The challenge, of course, is that there exist many encodings (hundreds), and many names to refer
to each one. Fortunately there exist a database of registered encoding covering almost all encodings
supported by operating systems and compilers. This database is maintained by IANA through a
process described by [rfc2978].

This database lists over 250 registered character sets and for each:

• A name

• A unique identifier

• A set of known aliases

We propose to use that information to reliably identify encoding across implementation and systems.

3

Design Considerations

Encodings are orthogonal to locales

The following proposal is mostly independent of locales so that the relevant part can be implemented
in an environment in which <locale> is not available, as well as to make sure we can transition
std::locale to be more compatible with Unicode.

Naming

SG-16 is looking at rewording the terminology associated with text and encoding throughout the
standard, this paper does not yet reflect that effort.

However "system encoding" and "literal encoding" are descriptive terms. In particular "system" is
illustrative of the fact that a C++ program has, in the general case, no control over the encoding it
is expected to produce and consume.

MIBEnum

We provide a text_encoding::id enum with the MIBEnum value of a few often used encodings for
convenience. Because there is a rather large number of encodings and because this list may evolve
faster than the standard, it was pointed out during early review that it would be detrimental to
attempt to provide a complete list. [Note: MIB stands for Management Information Base, which is
IANA nomenclature, the name has no particular interest beside a desire not to deviate from the
existing standards and practices. —end note]

Name and aliases

The proposed API offers both a name and aliases. The name method reflects the name with which the
text_encoding object was created, when applicable. This is notably important when the encoding
is not registered, or its name differs from the IANA name.

Implementation flexibility

This proposal aims to be implementable on all platforms as such, it supports encoding not registered
with IANA, does not impose that an implementation is aware of all registered encoding, and it let
implementers provide their own aliases for IANA-registered encoding.

const char*

A primary use case is to enable people to write their own conversion functions. Unfortunately, most
APIs expect NULL-terminated strings.

4

Example

#include <text_encoding>
#include <iostream>

void print(const std::text_encoding & c) {
std::cout << c.name()
<< " (iana mib: " << c.mib() << ")\n"
<< "Aliases:\n";
for(auto && a : c.aliases()) {

std::cout << ’\t’ << a << ’\n’;
}

}

int main() {
std::cout << "Literal Encoding: ";
print(std::text_encoding::literal());
std::cout << "Wide Literal Encoding: ";
print(std::text_encoding::wide_literal());
std::cout << "System Encoding: ";
print(std::text_encoding::system());
std::cout << "Wide system Encoding: ";
print(std::text_encoding::wide_system());

}

compiled with g++ -fwide-exec-charset=EBCDIC-US -fexec-charset=SHIFT_JIS, this program
may display:
Literal Encoding: SHIFT_JIS (iana mib: 17)
Aliases:

Shift_JIS
MS_Kanji
csShiftJIS

Wide Literal Encoding: EBCDIC-US (iana mib: 2078)
Aliases:

EBCDIC-US
csEBCDICUS

System Encoding: UTF-8 (iana mib: 106)
Aliases:

UTF-8
csUTF8

Wide sytem Encoding: ISO-10646-UCS-4 (iana mib: 1001)
Aliases:

ISO-10646-UCS-4
csUCS4

5

Implementation

The following proposal has been prototyped using a modified version of GCC to expose the encoding
information.

On windows, the run-time encoding can be determined by GetACP - and then map to MIB values,
while on POSIX platform it corresponds to value of nl_langinfo when the user ("") locale is set -
before the program’s locale is set to C.

On OSX CFStringGetSystemEncoding and CFStringConvertEncodingToIANACharSetName can
also be used.

While exposing the literal encoding is novel, a few libraries do expose the system encoding, including
Qt and wxWidget, and use the IANA registry.

Future work

Exposing the notion of text encoding in the core and library language give use the tools to simplify
some problems in the standard.

Notably, it offers a sensible way to do locale-independent, encoding aware padding in std::format
as in described in [P1868].

While this give us the tools to handle encoding, it does not fix the core wording.

6

Proposed wording

(which is known to be terrible)

New header <text_encoding>

A text_encoding describe a text encoding portably across platforms by exposing data
from the Character Sets databased described by [rfc2978] and [rfc3808].

namespace std {

struct text_encoding {
enum id {

other = 1,
unknown = 2,
ascii = 3,
latin1 = 4,
utf8 = 106,
ucs4 = 1001,
utf16be = 1013,
utf16le = 1014,
utf16 = 1015,
utf32 = 1017,
reserved = 3000

};

constexpr text_encoding(const char* name);

constexpr int mib() const noexcept;
constexpr const char* name() const noexcept;

constexpr auto aliases() const noexcept -> see below ;

constexpr bool operator==(const text_encoding & other) const;
constexpr bool operator==(text_encoding::id mib) const;

static consteval text_encoding literal();
static consteval text_encoding wide_literal();

static text_encoding system();
static text_encoding wide_system();

static text_encoding for_locale(const std::locale&);
static text_encoding wide_for_locale(const std::locale&);

private:
unsigned mib_; // exposition only
std::string name_; // exposition only

};
}

7

A register-character-set is a character set registered by the process described in [rfc2978] and which
is known of the implementation.

Let bool COMP_NAME(const char* a, const char* b) be a function that returns true if two
ASCII string are identical equal, ignoring case and all - and _ characters.

constexpr text_encoding(const char* name);

For each implementation-defined alias a of each register-character-set, if COMP_NAME(a,
name.c_str()) is true, initialize mib_ with the MIBenum associated with that register-character-
set. Otherwise initialize mib_ with text_encoding::id::other.

Ensures: name == name_.

constexpr int text_encoding::mib() const noexcept;

Returns: mib_.

[Note: The enumerator value text_encoding::id::unknown is provided for compatibility
with [rfc3808], text_encoding::mib() never returns text_encoding::id::unknown. —end
note]

constexpr const char* name() const noexcept;

Returns: name_.c_str().

constexpr auto text_encoding::aliases() const noexcept;

Returns: an implementation defined object r representing a sequences of aliases such that:

• ranges::view<decltype(r)> is true,

• ranges::random_access_range<decltype(r)> is true,

• same_as<ranges::range_value_t<decltype(r)>, string_view> is true,

• !ranges::empty(r) || mib() == id::other is true.

If mib() is equal to the MIBEnum value of one of the register-character-sets, r[0] is the name
of the register-character-set.

r contains the aliases of the register-character-set as specified by [rfc2978].

r may contain implementation defined values.

r does not contain duplicated values - The equality of 2 values is determined by COMP_NAME.

[Note: The order of elements in r is unspecified. —end note]

constexpr bool text_encoding::operator==(const text_encoding & other) const;

Returns: name() == other.name() if mib() == id::other && other.mib() == id::other
is true, otherwise mib() == other.mib().

constexpr bool text_encoding::operator==(text_encoding::id i) const;

Returns: (mib() != id::other)? mib() == i : false.

8

static consteval text_encoding text_encoding::literal();

Returns: a text_encoding object representing the encoding used to encode narrow characters
and string literals.

static consteval text_encoding text_encoding::wide_literal();

Returns: a text_encoding object representing the encoding used to encode wide characters
and string literals.

static text_encoding text_encoding::system();

Return the presumed system narrow encoding. On POSIX systems this is the encoding
attached to the user locale ("") at the start of the program.

[Note: This function should always return the same value during the lifetime of a program
and is not affected by calls to setlocale. —end note]

static text_encoding text_encoding::wide_system();

Return the presumed system wide encoding. On POSIX systems this is the encoding attached
to the user locale ("") at the start of the program.

[Note: This function should always during the same value during the lifetime of a program
and is not affected by calls to setlocale. —end note]

In <locale>

namespace std {
text_encoding text_encoding_for_locale(const std::locale&);
text_encoding text_encoding_wide_for_locale(const std::locale&);

}

text_encoding text_encoding_for_locale(const std::locale& loc);

Returns: The text encoding for narrow string associated with the locale loc.

text_encoding text_encoding_wide_for_locale(const std::locale& loc);

Returns: The text encoding for wide strings associated with the locale loc

Acknowledgments

Many thanks to Victor Zverovich and Thiago Macieira for reviewing this work and providing valuable
feedback.

9

References

[N4830] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.link/n4830

[N2346] Working Draft, Standard for Programming Language C
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2346.pdf

[rfc3808] I. McDonald IANA Charset MIB
https://tools.ietf.org/html/rfc3808

[rfc2978] N. Freed IANA Charset MIB
https://tools.ietf.org/html/rfc3808

[Character Sets] IANA Character Sets
https://www.iana.org/assignments/character-sets/character-sets.xhtml

[iconv encodings] GNU project Iconv Encodings
http://git.savannah.gnu.org/cgit/libiconv.git/tree/lib/encodings.def

[P1868] Victor Zverovich Clarifying units of width and precision in std::format
http://wg21.link/P1868

10

https://wg21.link/n4830
 http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2346.pdf
https://tools.ietf.org/html/rfc3808
https://tools.ietf.org/html/rfc3808
https://www.iana.org/assignments/character-sets/character-sets.xhtml
http://git.savannah.gnu.org/cgit/libiconv.git/tree/lib/encodings.def
http://wg21.link/P1868

	1 Target
	2 Abstract
	3 Use cases
	4 The many text encodings of a C++ system
	5 Identifying Encodings
	6 Design Considerations
	6.1 Encodings are orthogonal to locales
	6.2 Naming
	6.3 MIBEnum
	6.4 Name and aliases
	6.5 Implementation flexibility
	6.6 const char*

	7 Example
	8 Implementation
	9 Future work
	10 Proposed wording
	11 Acknowledgments

