
Document number: P1856R0
Revises:
Date: 2019-10-07
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: LEWG, LWG
Reply to: Vincent Reverdy

University of Illinois at Urbana-Champaign
vince.rev@gmail.com

Bit operations do not work on bytes:
a generic �x

Abstract

The current wording of low level bit manipulation functions speci�ed by P0553R4: Bit operations
and by P0556R3: Integral power-of-2 operations make these functions unusable with std::byte.
We suggest a generic and extensible mechanism to �x this limitation inspired by P0237R10:
Wording for fundamental bit manipulation utilities. Instead of limiting the functions to unsigned
integer types, we suggest to introduce: (1) a type trait that acts as a customization point for
user-de�ned types behaving like machine words and (2) a type trait to check whether a type
is a machine word. This removes the current limitation and allows advanced users to provide
their own word types. Both of these traits have been used for years as part of the bit library that
serves as a basis of P0237 which is currently under review by LWG for a later revision of the
C++ standard.

Contents
1 Proposal 2

1.1 Tony tables . 2
1.2 Problem description . 2
1.3 Proposed solution . 3
1.4 Design options . 4

2 Acknowledgements 5

1

mailto:vince.rev@gmail.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0553r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0556r3.html
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2017/p0298r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0237r10.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0237r10.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0237r10.pdf

1 Proposal
1.1 Tony tables

Before
1 // Initialization
2 unsigned char c = 42;
3 unsigned int u = 42;
4 std::byte b{42};
5 int result = 0;
6
7 // Ispow2
8 result = std:: ispow2(c);
9 result = std:: ispow2(u);

10 // result = std:: ispow2(b); // Does not compile
11
12 // Ceil2
13 result = std::ceil2(c);
14 result = std::ceil2(u);
15 // result = std:: ceil2(b); // Does not compile
16
17 // Floor2
18 result = std:: floor2(c);
19 result = std:: floor2(u);
20 // result = std:: floor2(b); // Does not compile
21
22 // Log2p1
23 result = std:: log2p1(c);
24 result = std:: log2p1(u);
25 // result = std:: log2p1(b); // Does not compile
26
27 // Rotl
28 result = std::rotl(c);
29 result = std::rotl(u);
30 // result = std::rotl(b); // Does not compile
31
32 // Rotr
33 result = std::rotr(c);
34 result = std::rotr(u);
35 // result = std::rotr(b); // Does not compile
36
37 // Countl0
38 result = std:: countl_zero(c);
39 result = std:: countl_zero(u);
40 // result = std:: countl_zero(b); // Does not compile
41
42 // Countl1
43 result = std:: countl_one(c);
44 result = std:: countl_one(u);
45 // result = std:: countl_one(b); // Does not compile
46
47 // Countr0
48 result = std:: countr_zero(c);
49 result = std:: countr_zero(u);
50 // result = std:: countr_zero(b); // Does not compile
51
52 // Countr1
53 result = std:: countr_one(c);
54 result = std:: countr_one(u);
55 // result = std:: countr_one(b); // Does not compile
56
57 // Popcount
58 result = std:: popcount(c);
59 result = std:: popcount(u);
60 // result = std:: popcount(b); // Does not compile

After
1 // Initialization
2 unsigned char c = 42;
3 unsigned int u = 42;
4 std::byte b{42};
5 int result = 0;
6
7 // Ispow2
8 result = std:: ispow2(c);
9 result = std:: ispow2(u);

10 result = std:: ispow2(b);
11
12 // Ceil2
13 result = std::ceil2(c);
14 result = std::ceil2(u);
15 result = std::ceil2(b);
16
17 // Floor2
18 result = std:: floor2(c);
19 result = std:: floor2(u);
20 result = std:: floor2(b);
21
22 // Log2p1
23 result = std:: log2p1(c);
24 result = std:: log2p1(u);
25 result = std:: log2p1(b);
26
27 // Rotl
28 result = std::rotl(c);
29 result = std::rotl(u);
30 result = std::rotl(b);
31
32 // Rotr
33 result = std::rotr(c);
34 result = std::rotr(u);
35 result = std::rotr(b);
36
37 // Countl0
38 result = std:: countl_zero(c);
39 result = std:: countl_zero(u);
40 result = std:: countl_zero(b);
41
42 // Countl1
43 result = std:: countl_one(c);
44 result = std:: countl_one(u);
45 result = std:: countl_one(b);
46
47 // Countr0
48 result = std:: countr_zero(c);
49 result = std:: countr_zero(u);
50 result = std:: countr_zero(b);
51
52 // Countr1
53 result = std:: countr_one(c);
54 result = std:: countr_one(u);
55 result = std:: countr_one(b);
56
57 // Popcount
58 result = std:: popcount(c);
59 result = std:: popcount(u);
60 result = std:: popcount(b);

1.2 Problem description
C++17 introduced std::byte as proposed by P0298: A byte type de�nition as a vocabulary type
for the smallest adressable entity that can be used to store bits. As suggested by P0237R0: On the
standardization of fundamental bit manipulation utilities for such types, std::byte is only equiped
with bitwise operations, unlike unsigned char which was previously used to represent at the same
time a storage of bits, a character, and an unsigned integer. In this context, C++20 is expected to in-
troduce a new <bit> header as originally proposed by P0237. The current draft of the C++ standard
N4830 provides the following functionalities as part of this header: bit_cast as proposed by P0476:
Bit-casting object representations, ispow2, ceil2, floor2, log2p1 as proposed by P0556: Integral
power-of-2 operations, and rotl, rotr, countl_zero, countl_one, countr_zero, countr_one,
popcount as proposed by P0553: Bit operations. In all the following we focus on the last two groups
of functionalities.

Currently, the standard draft speci�es that the functions of the last two groups shall not partic-
ipate in overload resolution unless the type of the argument is an unsigned integer type. In the

2

http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2017/p0298r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0237r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0237r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0237r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4830.pdf
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2018/p0476r2.html
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2018/p0476r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0556r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0556r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0553r4.html

standard, an unsigned integer type is, according to [basic.fundamental], either a standard un-
signed integer type (unsigned char, unsigned short int, unsigned int, unsigned long int,
unsigned long long int), or an implementation-speci�c extended unsigned integer type. The
good thing is that bool and char are not included in this category even if the two standard type
traits std::is_integral_v and std::is_unsigned_v may return true for these types. The bad
thing, however, is that std::byte, which was purposefully introduced to model a storage of bits,
is not included either. And on top of that, specifying these functions in terms of unsigned integer
types brings us back to the pre-std::byte world, where unsigned integer types were used to mean
several things at the same time. The whole motivation behind the standardization of std::byte
was to break the ambiguity and provide a way to express whether a type is just a collection of bits
or whether it should be seen as an integer. Typically, in the context of std::memcpy, the integral
interpretation of the collection of bits is irrelevant: it’s a pure memory operation. In generic code, it
can be important for users to convey this information through types. It makes the code clearer, and
far easier to debug. Again, this was one of the main motivation when we voted std::byte in the
C++17 standard.

1.3 Proposed solution
So if low level bit operations should not operate on unsigned integer types, what should they operate
on? We argue that the whole problem arises from the fact that the standard library is currently
missing a simple but essential concept for bit operations: words (as in machine words). The whole
machinery of bit proxy types and bit iterators introduced by P0237, currently under review by LWG
and probably targeting C++23, relies around this notion. Also, to solve the problem described here
for low level bit operations, we propose to introduce two simple type traits to make machine words
a part of the standard library. This, we feel, represents, a very minor change that can provide far
cleaner and more robust foundations to the <bit> header, as well as a clean evolution path for the
next revision of the standard.

For the exact same reason that integer values are irrelevant to std::memcpy, integer values are
irrelevant to operations like counting bits or rotating bits. For counting or rotating bits, as well as
for all low level bit operations, the only two things one needs in order to provide an implementation
are (1) the size of the collection of bits and (2) bitwise operators: left shift << and <<=, right shift >>
and >>=, bitwise and & and &=, bitwise or | and |=, bitwise xor ^ and ^=, and bitwise not ∼, which
happen to be the set of operators provided for std::byte. As a consequence we propose the two
following traits:

• template <class T> struct binary_digits that acts as a customization point to specify
that a type should be treated as a machine word by specifying its size in bits. The standard
would provide specializations for (optionally cv-quali�ed) standard unsigned integer types
and std::byte. Implementations could provide specializations for extended unsigned in-
teger types. Advanced users could provide their own specializations. Note that the trait
std::binary_digits_v<std::byte> would �nally provide a modern C++ replacement of
CHAR_BIT. As a remark, the name of the trait here is the one provided in P0237 and approved
by LEWG, but this can be changed. Alternative names may include (machine_)word_(digits,
size, bits, bitsize, bit_size, bitcount, bit_count, width, length).

• template <class T> struct is_word that returns whether a type should be treated as
a machine word, that is: (1) binary_digits<T>::value is de�ned, (2) T is equiped with
bitwise operators, and (3) can be converted to standard unsigned integer types. Alternative
names may include is_machine_word. Whether or not the standard library should specify a
corresponding concept is left as an open question. To provide a unique interface for integer
conversion in bit manipulation context, we suggest to overload the existing std::to_integer

3

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0237r10.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0237r10.pdf

template function that exists for bytes.
And that is all. These two type traits would be su�cient to solve the current problem in a generic, ro-
bust, and extensible way, as well as to provide a clean and consistent evolution path to <bit>.

1.4 Design options
In order to be exhaustive, we list below the potential options available regarding the design of the
two type traits:

• Should std::binary_digits and std::is_word be part of:
– <bit> because it’s directly related to bit manipulation
– <type_traits> because it’s where other type traits are
– <limits> because it’s where std::numeric_limits<T>::digits is
– <memory> because words are related to memory manipulation

• Should the dependency of std::is_word on std::binary_digits:
– require only std::binary_digits<T>::value to be de�ned
– require std::binary_digits<T>::value to be de�ned and be such that the condition
std::binary_digits_v<T> > 0 is true

• What should be the type of std::binary_digits_v<T>?
– std::size_t as approved by LEWG in P0237R10
– int as the current return type of the low level bit operation functions speci�ed by P0556

and P0553 (std::popcount and the other functions listed in this paper)
– std::ptrdiff_t as the type that is most likely to be returned by standard algorithms

like std::count when executed on sequence of bits through bit iterators
– std::intmax_t as an alternative to std::ptrdiff_t since a sequence of bits can con-

tain more bits than the maximum number of addressable bytes
– std::uintmax_t as an unsigned alternative to std::intmax_t
– a standard integer type left to the implementation
– a standard signed integer type left to the implementation
– a standard unsigned integer type left to the implementation
– other alternatives not listed in this proposal

• Should std::to_integer be extended with a generic overload that can take any type T as an
input such that

– std::is_integral_v<T> is true as an input?
– static_cast<IntType>() is true as an input?

that can take any type T such that std::is_integral_v<T> is true as an input?
• What should be the name of std::binary_digits?

– std::binary_digits, originally based on std::numeric_limits<T>::digits and
approved by LEWG in P0237R10

– std::word_digits to keep the pattern of std::numeric_limits<T>::digits but high-
light the fact that it is a customization point for word types

– std::machine_word_digits to highlight the fact that we are speaking about machine
words and not words made of characters

– std::word_width or std::machine_word_width as width is often used in computer
science and engineering to refer to the size of a register in bits

– std::word_size or std::machine_word_size to highlight that it returns the size of a
word

– std::binary_word_size, std::word_bit_size, or std::machine_word_bit_size
to make it clear that the size is expressed in bits

– std::word_bit_count, or std::machine_word_bit_count to avoid using the term

4

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0237r10.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0556r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0553r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0237r10.pdf

size as it means something speci�c in the standard library related to containers and
ranges

– other alternatives not listed in this proposal
• What should be the name of std::is_word?

– std::is_word as suggested here
– std::is_machine_word to highlight the fact that we are speaking about machine words

and not words made of characters
– std::is_binary_word to highlight the fact that we are speaking about words for bits

and binary manipulation and not words made of characters
– other alternatives not listed in this proposal

• Should the standard library provide a concept corresponding to the std::is_word type trait?
• If the standard library provides a machine word concept, should the low level bit operation

functions speci�ed by P0556 and P0553 (std::popcount and the other functions listed in this
paper) be formally constrained by it?

• If the standard library provides a machine word concept, what should be its name?
– std::word to correspond to a std::is_word type trait
– std::machine_word to correspond to a std::is_machine_word type trait
– std::binary_word to correspond to a std::is_binary_word type trait
– other alternatives not listed in this proposal

2 Acknowledgements
This work has been made possible thanks to the National Science Foundation through the awards
CCF-1647432 and SI2-SSE-1642411.

5

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0556r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0553r4.html

	1 Proposal
	1.1 Tony tables
	1.2 Problem description
	1.3 Proposed solution
	1.4 Design options

	2 Acknowledgements

