
Paper Number: P1830R1

Title: std::dependent_false

Authors: Ruslan Arutyunyan <Ruslan.Arutyunyan@intel.com>

With Input from: Billy O’Neal <bion@microsoft.com>,

 CJ Johnson <johnsoncj@google.com>

Audience: LEWG-I (Library Evolution Working Group-Incubator)

Date: 2019-10-03

I. Introduction
We need to introduce a generic solution to create the dependent scope for static_assert(false)

expression where it is semantically necessary.

II. Motivation and Scope
In several scenarios static_assert(false) expression is a useful construction. That happens when

better diagnostics should be provided to the user. However, if implementer just writes false as the first

argument of the static_assert the program has never been compiled successfully.

Consider the following examples where such semantics can be useful:

Suppose the user have to implement the function with the signature:

template <typename T>

int my_func(const T&)

and it is necessary to implement it in accordance with the following requirements:

• If T is integral type, returns 1

• Otherwise if T is convertible to std::string, returns 2

• Otherwise the program is ill-formed.

Possible implementation might be:

template <typename T>

int my_func(const T&)

{

 if constexpr(std::is_integral_v<T>)

 {

 return 1;

 }

 else if constexpr (std::is_convertible_v<std::string, T>)

 {

 return 2;

 }

 else

 {

 // Always Compile-time error

 static_assert(false, "T is not integral and is not

 convertible to std::string");

 }

mailto:Ruslan.Arutyunyan@intel.com
mailto:Ruslan.Arutyunyan@intel.com
mailto:bion@microsoft.com
mailto:bion@microsoft.com
mailto:johnsoncj@google.com
mailto:johnsoncj@google.com

}

But as mentioned above this code cannot be compiled successfully due to static_assert(false)

expression.

Another example where static_assert(false) might be useful is the class template for which

primary template is not defined. Instead, user should always pass correct template arguments that one of

specializations has been chosen.

Consider the following code snippet:

// Primary template

template <typename T, typename U>

struct my_struct;

// Partial specialization

template <typename T, typename Alloc>

struct my_struct<int, std::vector<T, Alloc>>

{

};

// User code

int main()

{

 my_struct<int, int> s;

}

Examples of compiler messages are:

• Clang: error: implicit instantiation of undefined template 'my_struct<int,

int>'

• GCC: error: aggregate 'my_struct<int, int> s' has incomplete type and

cannot be defined

• Intel Compiler: error: incomplete type is not allowed my_struct<int, int> s;

Implementer might want to provide better diagnostics to the user. The possible approach might be:

template <typename T, typename U>

struct my_struct

{

 // Always Compile-time error

 static_assert(false, "Type T and Type U cannot be used in such

 combination. See the documentation");

};

Unfortunately, the static assertion in the code above is always failed despite if primary template has been

chosen or not.

III. Problem statement
To overcome the mentioned issue the implementer should write some implementation to create dependent
scope for the static_assert(false) expression.

Example:

template <typename T>

constexpr bool always_false()

{

 return false;

}

template <typename T, typename U>

struct my_struct

{

 // static_assert fails only if primary template is chosen

 static_assert(always_false<T>());

};

Many template libraries implement the approach above in their manner. It’s better to have one standard
solution instead of having a lot of workarounds everywhere implemented differently.

IV. Proposal
The issue may be addressed by introducing the generic solution for such problem. The proposed solution

based on the previous discussion and analyzed use-cases

dependent_bool_value variable template

template <bool value, typename... Args>

inline constexpr bool dependent_bool_value = value;

Since the vast majority of use-cases is the necessity to instantiate exactly the dependent_false the following

helper variable template is proposed:

template <typename... Args>

inline constexpr bool dependent_false = dependent_bool_value<false,

 Args...>;

In that case the static_assert would look like either:

template <typename T, typename U>

struct my_struct

{

 static_assert(dependent_bool_value<false, T>);

};

or even simpler with the helper:

template <typename T, typename U>

struct my_struct

{

 static_assert(dependent_false<false, T>);

};

A dependent static assertion is created with help of dependent_bool_value variable template. It

would be evaluated only if primary template is chosen.

The proposed API uses variadic templates for dependent context creation. The example below shows why it

is convenient. Let’s use dependent_false helper API as the main use-case:

Suppose that we have my_struct declaration as follows:

template <typename... Args>

struct my_struct;

and the API for dependent scope is

template <typename T>

inline constexpr bool dependent_false = dependent_bool_value<false, T>;

In that case my_struct definition is

template <typename... Args>

struct my_struct

{

 static_assert(dependent_false<std::void_t<Args...>>);

};

As you can see user needs std::void_t (or something else) to transform variadic templates to the one

type parameter.

With the proposed API the variadic templates can be directly passed to the dependent_false helper:

template <typename... Args>

struct my_struct

{

 static_assert(dependent_false<Args...>);

};

Since variadic templates can be empty, Args… may be missed by mistake but such kind of error would be
easily caught at compile-time.

V. Additional notes

a) Non-type template parameters
Current API of dependent_bool_constant and dependent_false covers the dependent scope

with non-type template parameters. See the example below:

template <std::size_t N>

void function()

{

 if constexpr (N == 0)

 {

 static_assert(dependent_false<decltype(N)>, "N shall be > 0");

 }

};

b) template template parameters
The support of template template parameters looks impossible. Consider the following example.

template <typename T, std::size_t, template <typename, int>

 typename Clazz>

class Strange {};

template <template <typename, std::size_t, template <typename, int>

 typename> typename Clazz>

void func()

{

 // Cannot use dependent_false

}

// call foo with Strange

foo<Strange>();

It’s hard to impossible to create such API of dependent_false that works with any template template

parameters count and combination.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific

computer systems, components, software, operations and functions. Any change to any of those factors

may cause the results to vary. You should consult other information and performance tests to assist you in

fully evaluating your contemplated purchases, including the performance of that product when combined

with other products.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk,

and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and

SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or

effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-

dependent optimizations in this product are intended for use with Intel microprocessors. Certain

optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to

the applicable product User and Reference Guides for more information regarding the specific instruction

sets covered by this notice.

Notice revision #20110804

