
Wording for class template argument deduction for aggregates

Timur Doumler (papers@timur.audio)

Document #: P1816R0
Date: 2019-07-17
Project: Programming Language C++
Audience: Core Working Group

Abstract

This paper provides wording for class template argument deduction for aggregates [P1021R4].

Proposed wording
The proposed changes are relative to the current C++20 working draft [N4820].
In [over.match.class.deduct], append to paragraph 1 as follows:

— For each deduction-guide, a function or function template with the following proper-
ties:

— The template parameters, if any, and function parameters are those of the
deduction-guide.

— The return type is the simple-template-id of the deduction-guide.

In addition, if C satisfies the conditions for an aggregate class with the assumption that
any dependent base class has no virtual functions and no virtual base classes, and the
initializer is a non-empty braced-init-list or parenthesized expression-list, the set contains
an additional function template, called the aggregate deduction candidate, defined as
follows. Let x1, ..., xn be the elements of the initializer-list or designated-initializer-list
of the braced-init-list, or of the expression-list. For each xi, let ei be the corresponding
element of C or of one of its (possibly recursive) subaggregates that would be initialized
by xi ([dcl.init.aggr]) if brace elision is not considered for any subaggregate that has a
dependent type. If there is no such element ei, the program is ill-formed. The aggregate
deduction candidate is derived as above from a hypothetical constructor C(T1, ..., Tn),
where Ti is the declared type of the element ei.

In [over.match.class.deduct], paragraph 3, add to the example as follows:

B b{(int*)0, (char*)0}; // OK, deduces B<char*>

template <typename T>
struct S {

T x;
T y;

};

1

mailto:papers@timur.audio


template <typename T>
struct C {

S<T> s;
T t;

};

template <typename T>
struct D {

S<int> s;
T t;

};

C c1 = {1, 2}; // error: deduction failed
C c2 = {1, 2, 3}; // error: deduction failed
C c3 = {{1u, 2u}, 3}; // OK, C<int> deduced

D d1 = {1, 2}; // error: deduction failed
D d2 = {1, 2, 3}; // OK, braces elided, D<int> deduced

template <typename T>
struct I {

using type = T;
};

template <typename T>
struct E {

typename I<T>::type i;
T t;

};

E e1 = {1, 2}; // OK, E<int> deduced

— end example ]

References

[N4820] Richard Smith. Working Draft, Standard for Programming Language C++. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4820.pdf, 2019-06-17.

[P1021R4] Mike Spertus, Timur Doumler, and Richard Smith. Filling holes in Class Template Ar-
gument Deduction. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/
p1021r4.html, 2019-06-17.

2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4820.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4820.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1021r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1021r4.html

	References

