
Clarifying atomic<thread::id>::compare_exchange_*
Document Number: P1801 R0 Date: 2019-07-17
Reply-to: Herb Sutter (hsutter@microsoft.com) Audience: SG1, LEWG, LWG

1 Overview
atomic<thread::id> is intended to work and is used in practice, including in Boost.Thread, MongoDB, Firefox,
Chromium, and protobuf. (See: http://lists.isocpp.org/parallel/2019/06/2688.php.)

thread::id meets all of the requirements on T of atomic<T>, including that it is trivially copyable (see
[thread.thread.id]/2). It also provides user-defined comparison operators. However, the standard doesn’t explic-
itly state the intent that thread::id is cmpxchg-friendly.

atomic<thread::id>::compare_exchange_* can be easily implemented for any conforming thread::id in the
same way as general atomic<T> where T can be an arbitrarily large trivially copyable struct, by masking any
thread-id-irrelevant bits (such as padding or status bits) in one parameter each in .store and .compare_ex-
change_*. EWG already decided on this approach in general for all T, not just thread::id, in Albuquerque 2017.

Thanks to Anthony Williams for pointing out this issue, to JF Bastien for P0528 and reminder of this issue’s his-
tory, and to the following for their additional comments: Olivier Giroux, Daniel Krügler, Jens Maurer, Billy
O’Neal, Detlef Vollmann, Ville Voutilainen, Jonathan Wakely, Anthony Williams.

2 Discussion

2.1 Key history: P0528
P0528 has covered much related ground in previous EWG and SG1 discussions, including that EWG already de-
cided on this approach for all atomic<T> including atomic<big_struct> (Albuquerque 2017 EWG wiki notes):

Straw polls: SF | F | N | A | SA

Make the padding bits of atomic and the incoming value of T have a consistent value for
the purposes of read/modify/write atomic operations? 3 | 14 | 3 | 0 | 0

This technique works with all types that are not unions having members of different sizes, so the only thing that
remains is to ensure thread::id is not a union whose members could have different padding, which is fine be-
cause no known implementation of thread::id is a union or uses one (see also pthread_t discussion later on).

2.2 Status quo in the standard
thread::id meets all of the requirements on T of atomic<T> in [atomics.types.generic]/1: “The template argu-
ment for T shall meet the Cpp17CopyConstructible and Cpp17CopyAssignable requirements. The program is ill-
formed if any of is_trivially_copyable_v<T>, is_copy_constructible_v<T>, is_move_constructi-
ble_v<T>, is_copy_assignable_v<T>, or is_move_assignable_v<T> is false.” And it is already intended to
store unique values, per [thread.thread.id]/1-2: “An object of type thread::id provides a unique identifier …
The library may reuse the value …”.

mailto:hsutter@microsoft.com
https://nam06.safelinks.protection.outlook.com/?url=http%3A%2F%2Flists.isocpp.org%2Fparallel%2F2019%2F06%2F2688.php&data=02%7C01%7Chsutter%40microsoft.com%7Cdf606d2033b348928dfc08d6f6683a0f%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636967324850106422&sdata=w885Q2pl80sbI4ymEYfM7EBKeUSQjmQzPmkMedHFbcw%3D&reserved=0
https://wg21.link/p0528
http://wiki.edg.com/bin/view/Wg21albuquerque/P0528R0

In [atomics.types.operations]/18, atomic<T>::compare_exchange_* “atomically compares the value represen-
tation” for equality. It does not use the object representation or overloaded comparison operators. (Note: per
previous discussion of P0528, padding bits and other related bitwise requirements are not a concern.)

EWG Albuquerque 2017 decided that the intent is that atomic<T> work for types T that may contain padding
bits as long as they otherwise meet the atomic<T> requirements (which thread::id does), as long as those
padding bits are known at compile time, which effectively means “not a union with members of different sizes.”1

So we just need to make it clearer that thread::id is cmpxchg-friendly.

2.3 Status quo in implementations, and pthread_t
atomic<thread::id> works on the Microsoft compiler and Windows.

libstdc++ and libc++ implement thread::id as pthread_t or direct wrapper thereof, which appears to work in
practice on major platforms even though there are several issues, most of which are about meeting the require-
ments of thread::id itself:

1. pthread_t is not guaranteed to support a “not a valid thread” value, which is required by thread::id’s
default constructor.

2. pthread_t is not supposed to be directly copied, whereas thread::id must be trivially copyable and
copy/move constructible and assignable.

3. pthread_t is only guaranteed to support equality comparison via pthread_equal, but not ordered com-
parisons as required by thread::id. Further, the behavior of pthread_equal is undefined for “not a
valid thread” values (see #1 above).

4. pthread_t is not guaranteed to be bitwise comparable — this is the part that affects compare_ex-
change_*, and it is just a special case of the more general #3 above.

Some notes about pthread_t:

• In practice, pthread_t must support many operations it does not formally support, such as copying. See
for example this lively pragmatic-vs-pedantic 2007 discussion.

• On several common platforms, pthread_t is a pointer or an integer with all bits used, and pthread_t
equality comparison is implemented as pointer/integer equality in libstdc++ and using pthread_equal in
libc++. On those platforms, pthread_t can satisfy the thread::id and compare_exchange_* require-
ments directly, even though POSIX also permits implementations that do not satisfy these requirements.
For example, see this glibc pthread.h.

• On the platforms and implementations where pthread_t cannot directly satisfy the compare_ex-
change_* requirements, it does not satisfy the other thread::id requirements either. For example, see
Facebook’s Folly library pthread.h where pthread_t is an alias for a std::shared_ptr<de-
tail::pthread_t> which is not trivially copyable.

• I don’t know of any implementation of pthread_t that is a union. Searching Google for “union
pthread_t” returns one hit, which when followed does not lead to a definition using a union (it leads to a
definition that is an integer). Searching codesearch.isocpp.org for union pthread_t returns no hits.

1 The atomic<thread::id> specialization can mask off non-id bits on the argument to .store and on the expected value to
.compare_exchange_*. Such an implementation can still be lock-free if an integer of the same size would be lock-free.

https://wg21.link/p0528
https://groups.google.com/forum/#!topic/comp.programming.threads/H7eunx_uzhI
https://codesearch.isocpp.org/actcd19/main/g/glibc/glibc_2.24-10/sysdeps/nptl/pthread.h
https://github.com/facebook/folly/blob/master/folly/portability/PThread.h
https://www.google.com/search?q=%22union+pthread_t%22
https://www.google.com/search?q=%22union+pthread_t%22
https://codesearch.isocpp.org/cgi-bin/cgi_ppsearch?q=union+pthread_t&search=Search

3 Proposed resolution

3.1 Alternative 1: Repeat the [atomics.types.operations] text
Note: This option was unanimously approved by SG1 in Cologne.

In [thread.thread.id]/2, after “thread::id is a trivially copyable class” add:

and has no padding bits that participate in the object’s value representation

That is sufficient to make it clearly meet the existing requirements in [atomics.types.operations], by repeating
the text from there.

3.2 Alternative 2: Say it’s not a union
As already noted, the only types that won’t cmpxchg properly all the time are unions with members of different
size, and no known implementation of thread::id is in terms of an underlying union type.

In [thread.thread.id]/2, after “thread::id is a trivially copyable class” add:

and is not a union and does not have a base class or data member of union type

4 Summary and implementation impact
atomic<thread::id> is used in practice, and the standard should clarify that it works. Either alternative pro-
posed resolution appears to be sufficient, and as far as I know it does not create any problems for any conform-
ing implementation of thread::id.

5 Additional note
Separately from this paper’s issue:

• The wording of [atomics.types.operations] could be improved to replace “has no padding bits” with “ig-
nores any padding bits.” (And possibly add “not a union whose members have different padding bits” to
atomic<T>’s requirements on T.)

	1 Overview
	2 Discussion
	2.1 Key history: P0528
	2.2 Status quo in the standard
	2.3 Status quo in implementations, and pthread_t

	3 Proposed resolution
	3.1 Alternative 1: Repeat the [atomics.types.operations] text
	3.2 Alternative 2: Say it’s not a union

	4 Summary and implementation impact
	5 Additional note

