
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Effective types: examples (P1796R0)

PETER SEWELL, University of Cambridge
KAYVAN MEMARIAN, University of Cambridge
VICTOR B. F. GOMES, University of Cambridge
JENS GUSTEDT, INRIA
HUBERT TONG

This is a collection of examples exploring the semantics that should be allowed for objects
and subobjects in allocated regions – especially, where the defined/undefined-behaviour
boundary should be, and how that relates to compiler alias analysis. The examples are in
C, but much should be similar in C++. We refer to the ISO C notion of effective types,
but that turns out to be quite flawed. Some examples at the end (from Hubert Tong) show
that existing compiler behaviour is not consistent with type-changing updates.

This is an updated version of part of n2294 C Memory Object Model Study Group:
Progress Report, 2018-09-16.

1 INTRODUCTION
Paragraphs 6.5p{6,7} of the standard introduce effective types. These were added to
C in C99 to permit compilers to do optimisations driven by type-based alias analysis,
by ruling out programs involving unannotated aliasing of references to different types
(regarding them as having undefined behaviour). However, this is one of the less clear,
less well-understood, and more controversial aspects of the standard, as one can see from
various GCC and Linux Kernel mailing list threads1, blog postings2, and the responses to
Questions 10, 11, and 15 of our survey3. See also earlier committee discussion4.

Moreover, the ISO text seems not to capture existing mainstream compiler behaviour.
The ISO text (recalled below) is in terms of the types of the lvalues used for access, but
compilers appear to do type-based alias analysis based on the construction of the lvalues,
not just the types of the lvalues as a whole. Additionally, some compilers seem to differ
from ISO in requiring syntactic visibility of union definitions in order to allow accesses to
structures with common prefixes inside unions. The ISO text also leaves several questions
unclear, e.g. relating to memory initialised piece-by-piece and then read as a struct or
array, or vice versa.

Additionally, several major systems software projects, including the Linux Ker-
nel, the FreeBSD Kernel, and PostgreSQL disable type-based alias analysis with the
-fno-strict-aliasing compiler flag. The semantics of this (as for other dialects of C) is
currently not specified by the ISO standard; it is debatable whether it would be useful to
do that.
1https://gcc.gnu.org/ml/gcc/2010-01/msg00013.html, https://lkml.org/lkml/2003/2/26/158, and http:
//www.mail-archive.com/linux-btrfs@vger.kernel.org/msg01647.html
2 http://blog.regehr.org/archives/959, http://cellperformance.beyond3d.com/articles/2006/06/
understanding-strict-aliasing.html, http://davmac.wordpress.com/2010/02/26/c99-revisited/,
http://dbp-consulting.com/tutorials/StrictAliasing.html, and http://stackoverflow.com/questions/
2958633/gcc-strict-aliasing-and-horror-stories
3https://www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html (N2014), http://www.
open-std.org/jtc1/sc22/wg14/www/docs/n2015.pdf (N2015)
4http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1409.htm and http://www.open-std.org/jtc1/
sc22/wg14/www/docs/n1422.pdf (p14)

2019.
Draft of June 18, 2019

https://gcc.gnu.org/ml/gcc/2010-01/msg00013.html
https://lkml.org/lkml/2003/2/26/158
http://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg01647.html
http://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg01647.html
http://blog.regehr.org/archives/959
http://cellperformance.beyond3d.com/articles/2006/06/understanding-strict-aliasing.html
http://cellperformance.beyond3d.com/articles/2006/06/understanding-strict-aliasing.html
http://davmac.wordpress.com/2010/02/26/c99-revisited/
http://dbp-consulting.com/tutorials/StrictAliasing.html
http://stackoverflow.com/questions/2958633/gcc-strict-aliasing-and-horror-stories
http://stackoverflow.com/questions/2958633/gcc-strict-aliasing-and-horror-stories
https://www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2015.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2015.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1409.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1422.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1422.pdf

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

2 Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and Hubert Tong

1.1 The ISO standard text
The C11 standard says, in 6.5:

6 The effective type of an object for an access to its stored value is the declared type
of the object, if any87). If a value is stored into an object having no declared type
through an lvalue having a type that is not a character type, then the type of the
lvalue becomes the effective type of the object for that access and for subsequent
accesses that do not modify the stored value. If a value is copied into an object having
no declared type using memcpy or memmove, or is copied as an array of character type,
then the effective type of the modified object for that access and for subsequent
accesses that do not modify the value is the effective type of the object from which
the value is copied, if it has one. For all other accesses to an object having no declared
type, the effective type of the object is simply the type of the lvalue used for the
access.

7 An object shall have its stored value accessed only by an lvalue expression that has
one of the following types:88)

– a type compatible with the effective type of the object,
– a qualified version of a type compatible with the effective type of the object,
– a type that is the signed or unsigned type corresponding to the effective type of the

object,
– a type that is the signed or unsigned type corresponding to a qualified version of

the effective type of the object,
– an aggregate or union type that includes one of the aforementioned types among its

members (including, recursively, a member of a subaggregate or contained union),
or

– a character type.
Footnote 87) Allocated objects have no declared type.
Footnote 88) The intent of this list is to specify those circumstances in which an object
may or may not be aliased.

As Footnote 87 says, allocated objects (from malloc, calloc, and presumably any fresh
space from realloc) have no declared type, whereas objects with static, thread, or automatic
storage durations have some declared type.

For the latter, 6.5p{6,7} say that the effective types are fixed and that their values
can only be accessed by an lvalue that is similar (“compatible”, modulo signedness and
qualifiers), an aggregate or union containing such a type, or (to access its representation)
a character type.

For the former, the effective type is determined by the type of the last write, or, if that
is done by a memcpy, memmove, or user-code char array copy, the effective type of the source.

2 EFFECTIVE TYPE EXAMPLES
2.1 Basic Effective Types

Q73. Can one do type punning between arbitrary types?
This basic example involves a write of a uint32_t that is read as a float (assuming

that the two have the same size, and, unchecked in the code, that the latter does not
require a stronger alignment constraint, and that casts between those two pointer types are
implementation-defined to work). The example is clearly and uncontroversially forbidden
by the standard text, and this fact is exploited by current compilers, which use the types
of the arguments of f to reason that pointers p1 and p2 cannot alias.

// effective_type_1.c
Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_1.c

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

Effective types: examples (P1796R0) 3

#include <stdio.h>
#include <inttypes.h>
#include <assert.h>
void f(uint32_t *p1, float *p2) {

*p1 = 2;

*p2 = 3.0; // does this have defined behaviour?
printf("f: *p1 = %" PRIu32 "\n",*p1);

}
int main() {
assert(sizeof(uint32_t)==sizeof(float));
uint32_t i = 1;
uint32_t *p1 = &i;
float *p2;
p2 = (float *)p1;
f(p1, p2);
printf("i=%" PRIu32 " *p1=%" PRIu32

" *p2=%f\n",i,*p1,*p2);
}

With -fstrict-aliasing (the default for GCC), GCC assumes in the body of f that the
write to *p2 cannot affect the value of *p1, printing 2 (instead of the integer value of the
representation of 3.0 that would the most recent write in a concrete semantics): while
with -fno-strict-aliasing it does not assume that. The former behaviour can be justified
by regarding the program as having undefined behaviour, due to the write of the uint32_t

i with a float lvalue.

2.2 Structs and their members

Q91. Can a pointer to a structure alias with a pointer to one of its members?
In this example f is given a pointer to a struct and an aliased pointer to its first member,

writing via the struct pointer and reading via the member pointer. We presume this
is intended to be allowed. The ISO text permits it if one reads the first bullet “a type
compatible with the effective type of the object” as referring to the int subobject of s and
not the whole st typed object s, but the text is generally unclear about the status of
subobjects.

// effective_type_2c.c
#include <stdio.h>
typedef struct { int i; } st;
void f(st* sp, int* p) {
sp->i = 2;

*p = 3;
printf("f: sp->i=%i *p=%i\n",sp->i,*p); // prints 3,3 not 2,3 ?

}
int main() {
st s = {.i = 1};
st *sp = &s;
int *p = &(s.i);
f(sp, p);
printf("s.i=%i sp->i=%i *p=%i\n", s.i, sp->i, *p);

}

Q76. After writing a structure to a malloc’d region, can its members can be
accessed via pointers of the individual member types?

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_2c.c

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

4 Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and Hubert Tong

The examples below write a struct into a malloc’d region then read one of its members,
first using a a pointer constructed using char * arithmetic, and then cast to a pointer to
the member type, and second constructed from p cast to a pointer to the struct type.

We presume both should be allowed.
The types of the lvalues used for the member reads are the same, so by the 6.5p6,7 text

this should make no difference, but a definition of effective types that matches current
TBAA practice, by taking lvalue construction into account, may need to take care to
permit this.

// effective_type_5.c
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
int main() {
void *p = malloc(sizeof(st1)); assert (p != NULL);
st1 s1 = { .c1=’A’, .f1=1.0};

*((st1 *)p) = s1;
float *pf = &(((st1 *)p)->f1);
// is this free of undefined behaviour?
float f = *pf;
printf("f=%f\n",f);

}

// effective_type_5d.c
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
int main() {
void *p = malloc(sizeof(st1)); assert (p != NULL);
st1 s1 = { .c1=’A’, .f1=1.0};

*((st1 *)p) = s1;
float *pf = (float *)((char*)p + offsetof(st1,f1));
// is this free of undefined behaviour?
float f = *pf;
printf("f=%f\n",f);

}

Q93. After writing all members of structure in a malloc’d region, can the
structure be accessed as a whole? Our reading of C11 and proposal for C2x:
C11: yes (?)

The examples below write the members of a struct into a malloc’d region and then read
the struct as a whole. In the first example, the lvalues used for the member writes are
constructed using char * arithmetic, and then cast to the member types, while in the
second, they are constructed from p cast to a pointer to the struct type.

Similarly to Q76 above, the types of the lvalues used for the member writes are the
same, so by the 6.5p6,7 text this should make no difference, but a definition of effective
types that matches current TBAA practice, by taking lvalue construction into account,
may need to take care to permit this.

// effective_type_5c.c
Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_5.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_5d.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_5c.c

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

Effective types: examples (P1796R0) 5

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
int main() {
void *p = malloc(sizeof(st1)); assert (p != NULL);
char *pc = &((*((st1*)p)).c1);

*pc = ’A’;
float *pf = &((*((st1*)p)).f1);

*pf = 1.0;
st1 *pst1 = (st1 *)p;
st1 s1;
s1 = *pst1; // is this free of undefined behaviour?
printf("s1.c1=%c s1.f1=%f\n", s1.c1, s1.f1);

}

// effective_type_5b.c
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
int main() {
void *p = malloc(sizeof(st1)); assert (p != NULL);
char *pc = (char*)((char*)p + offsetof(st1, c1));

*pc = ’A’;
float *pf = (float *)((char*)p + offsetof(st1,f1));

*pf = 1.0;
st1 *pst1 = (st1 *)p;
st1 s1;
s1 = *pst1; // is this free of undefined behaviour?
printf("s1.c1=%c s1.f1=%f\n", s1.c1, s1.f1);

}

2.3 Isomorphic Struct Types

Q92. Can one do whole-struct type punning between distinct but isomorphic
structure types in an allocated region?

This example writes a value of one struct type into a malloc’d region then reads it via a
pointer to a distinct but isomorphic struct type.

We presume this is intended to be forbidden. The ISO text is not clear here, depending
on how one understands subobjects, which are not well-specified.

// effective_type_2b.c
#include <stdio.h>
#include <stdlib.h>
typedef struct { int i1; } st1;
typedef struct { int i2; } st2;
int main() {
void *p = malloc(sizeof(st1));
st1 *p1 = (st1 *)p;

*p1 = (st1){.i1 = 1};
st2 *p2 = (st2 *)p;
st2 s2 = *p2; // undefined behaviour?

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_5b.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_2b.c

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

6 Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and Hubert Tong

printf("s2.i2=%i\n",s2.i2);
}

The above test discriminates between a notion of effective type that only applies to the
leaves, and one which takes struct/union types into account.

The following variation does a read via an lvalue merely at type int, albeit with that
lvalue constructed via a pointer of type st2 *. This is more debatable. For consistency
with the apparent normal implementation practice to take lvalue construction into account,
it should be forbidden.

// effective_type_2d.c
#include <stdio.h>
#include <stdlib.h>
typedef struct { int i1; } st1;
typedef struct { int i2; } st2;
int main() {
void *p = malloc(sizeof(st1));
st1 *p1 = (st1 *)p;

*p1 = (st1){.i1 = 1};
st2 *p2 = (st2 *)p;
int *pi = &(p2->i2); // defined behaviour?
int i = *pi; // defined behaviour?
printf("i=%i\n",i);

}

The following variation does a read via an lvalue merely at type int, constructed by
offsetof pointer arithmetic. This should presumably be allowed.

// effective_type_2e.c
#include <stdio.h>
#include <stdlib.h>
typedef struct { int i1; } st1;
typedef struct { int i2; } st2;
int main() {
void *p = malloc(sizeof(st1));
st1 *p1 = (st1 *)p;

*p1 = (st1){.i1 = 1};
st2 *p2 = (st2 *)p;
int *pi = (int *)((char*)p + offsetof(st2,i1));
int i = *pi; // defined behaviour?
printf("i=%i\n",i);

}

Q74. Can one do type punning between distinct but isomorphic structure
types?

Here f is given aliased pointers to two distinct but isomorphic struct types, and uses them
both to access an int member of a struct. We presume this is intended to be forbidden,
and GCC appears to assume that it is, printing f: s1p->i1 = 2.

However, the two lvalue expressions, s1p->i1 and s2p->i2, are both of the identical (and
hence “compatible”) int type, so the ISO text appears to allow this case. To forbid it, we
have to somehow take the construction of the lvalues into account, to see the types of s1p
and s2p, not just the types of s1p->i1 and s2p->i2.

// effective_type_2.c
#include <stdio.h>
typedef struct { int i1; } st1;

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_2d.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_2e.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_2.c

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

Effective types: examples (P1796R0) 7

typedef struct { int i2; } st2;
void f(st1* s1p, st2* s2p) {
s1p->i1 = 2;
s2p->i2 = 3;
printf("f: s1p->i1 = %i\n",s1p->i1);

}
int main() {
st1 s = {.i1 = 1};
st1 * s1p = &s;
st2 * s2p;
s2p = (st2*)s1p;
f(s1p, s2p); // defined behaviour?
printf("s.i1=%i s1p->i1=%i s2p->i2=%i\n",

s.i1,s1p->i1,s2p->i2);
}

2.4 Isomorphic Struct Types – additional examples
It’s not clear whether these add much to the examples above; if not, they should probably
be removed.

Q80. After writing a structure to a malloc’d region, can its members be ac-
cessed via a pointer to a different structure type that has the same leaf member
type at the same offset?

// effective_type_9.c
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
typedef struct { char c2; float f2; } st2;
int main() {
assert(sizeof(st1)==sizeof(st2));
assert(offsetof(st1,c1)==offsetof(st2,c2));
assert(offsetof(st1,f1)==offsetof(st2,f2));
void *p = malloc(sizeof(st1)); assert (p != NULL);
st1 s1 = { .c1=’A’, .f1=1.0};

*((st1 *)p) = s1;
// is this free of undefined behaviour?
float f = ((st2 *)p)->f2;
printf("f=%f\n",f);

}

Q94. After writing all the members of a structure to a malloc’d region, via
member-type pointers, can its members be accessed via a pointer to a different
structure type that has the same leaf member types at the same offsets?

// effective_type_9b.c
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
typedef struct { char c2; float f2; } st2;
int main() {

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_9.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_9b.c

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

8 Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and Hubert Tong

assert(sizeof(st1)==sizeof(st2));
assert(offsetof(st1,c1)==offsetof(st2,c2));
assert(offsetof(st1,f1)==offsetof(st2,f2));
void *p = malloc(sizeof(st1)); assert (p != NULL);
char *pc = (char*)((char*)p + offsetof(st1, c1));

*pc = ’A’;
float *pf = (float *)((char*)p + offsetof(st1,f1));

*pf = 1.0;
// is this free of undefined behaviour?
float f = ((st2 *)p)->f2;
printf("f=%f\n",f);

}

Here there is nothing specific to st1 or st2 about the initialisation writes, so the read of
f should be allowed.

// effective_type_9c.c
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
typedef struct { char c2; float f2; } st2;
int main() {
assert(sizeof(st1)==sizeof(st2));
assert(offsetof(st1,c1)==offsetof(st2,c2));
assert(offsetof(st1,f1)==offsetof(st2,f2));
void *p = malloc(sizeof(st1)); assert (p != NULL);
st1 *pst1 = (st1*)p;
pst1->c1 = ’A’;
pst1->f1 = 1.0;
float f = ((st2 *)p)->f2; // is this free of undefined behaviour?
printf("f=%f\n",f);

}

Here the construction of the lvalues used to write the structure members involves st1,
but the lvalue types do not. The 6.5p6,7 text is all in terms of the lvalue types, not their
construction, so in our reading of C11 this is similarly allowed.

2.5 Effective types and representation-byte writes
The ISO text explicitly states that copying an object “as an array of character type” carries
the effective type across:

“If a value is copied into an object having no declared type using memcpy or memmove, or is
copied as an array of character type, then the effective type of the modified object for that
access and for subsequent accesses that do not modify the value is the effective type of the
object from which the value is copied, if it has one.”

The first two examples below should therefore both be allowed, using memcpy to copy
from an int in a local variable and in a malloc’d region (respectively) to a malloc’d region,
and then reading that with an int* pointer.

// effective_type_4b.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main() {

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_9c.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_4b.c

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

Effective types: examples (P1796R0) 9

int i=1;
void *p = malloc(sizeof(int));
memcpy((void*)p, (const void*)(&i), sizeof(int));
int *q = (int*)p;
int j=*q;
printf("j=%d\n",j);

}

// effective_type_4c.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main() {
void *o = malloc(sizeof(int));

(int)o = 1;
void *p = malloc(sizeof(int));
memcpy((void*)p, (const void*)o, sizeof(int));
int *q = (int*)p;
int j=*q;
printf("j=%d\n",j);

}

The following variant of the first example should also be allowed, copying as an unsigned
character array rather than with the library memcpy.

// effective_type_4d.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void user_memcpy(unsigned char* dest,

unsigned char *src, size_t n) {
while (n > 0) {

*dest = *src;
src += 1; dest += 1; n -= 1;

}
}
int main() {
int i=1;
void *p = malloc(sizeof(int));
user_memcpy((unsigned char*)p, (unsigned char*)(&i), sizeof(int));
int *q = (int*)p;
int j=*q;
printf("j=%d\n",j);

}

Should representation byte writes with other integers affect the effective type? The first
example below takes the result of a memcpy’d int and then overwrites all of its bytes with
zeros before trying to read it as an int. The second is similar, except that it tries to
read the resulting memory as a float (presuming the implementation-defined fact that
these have the same size and alignment, and that pointers to them can be meaningfully
interconverted). The first should presumably be allowed. It is unclear to us whether the
second should be allowed or not.

// effective_type_4e.c
#include <stdio.h>
#include <stdlib.h>

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_4c.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_4d.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_4e.c

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

10 Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and Hubert Tong

#include <string.h>
int main() {
int i=1;
void *p = malloc(sizeof(int));
memcpy((void*)p, (const void*)(&i), sizeof(int));
int k;
for (k=0;k<sizeof(int);k++)

(((unsigned char)p)+k)=0;
int *q = (int*)p;
int j=*q;
printf("j=%d\n",j);

}

// effective_type_4f.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
int main() {
int i=1;
void *p = malloc(sizeof(int));
memcpy((void*)p, (const void*)(&i), sizeof(int));
int k;
for (k=0;k<sizeof(int);k++)

(((unsigned char)p)+k)=0;
int *q = (int*)p;
assert(sizeof(float)==sizeof(int));
assert(_Alignof(float)==_Alignof(int));
float f=*q;
printf("f=%f\n",f);

}

2.6 Unsigned character arrays

Q75. Can an unsigned character array with static or automatic storage dura-
tion be used (in the same way as a ‘malloc‘’d region) to hold values of other
types?

This seems to be forbidden by the ISO text, but we believe it is common in practice.
Question 11 of our survey relates to this.

A literal reading of the effective type rules prevents the use of an unsigned character
array as a buffer to hold values of other types (as if it were an allocated region of storage).
For example, the following has undefined behaviour due to a violation of 6.5p7 at the
access to *fp. (This reasoning relies on the implementation-defined property that the
conversion of the (float *)c cast gives a usable result – the conversion is permitted by
6.3.2.3p7 but the standard text only guarantees a roundtrip property.)

// effective_type_3.c
#include <stdio.h>
#include <stdalign.h>
int main() {
_Alignas(float) unsigned char c[sizeof(float)];
float *fp = (float *)c;

*fp=1.0; // does this have defined behaviour?
printf("*fp=%f\n",*fp);

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_4f.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_3.c

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

Effective types: examples (P1796R0) 11

}

Even bytewise copying of a value via such a buffer leads to unusable results in the
standard:

// effective_type_4.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdalign.h>
int main() {
_Alignas(float) unsigned char c[sizeof(float)];
// c has effective type char array
float f=1.0;
memcpy((void*)c, (const void*)(&f), sizeof(float));
// c still has effective type char array
float *fp = (float *) malloc(sizeof(float));
// the malloc’d region initially has no effective type
memcpy((void*)fp, (const void*)c, sizeof(float));
// does the following have defined behaviour?
// (the ISO text says the malloc’d region has effective
// type unsigned char array, not float, and hence that
// the following read has undefined behaviour)
float g = *fp;
printf("g=%f\n",g);

}

This seems to be unsupportable for a systems programming language: a character array
and malloc’d region should be interchangeably usable, either on-demand or by default.
GCC developers commented that they essentially ignore declared types in alias analysis
because of this.

For C2X, we believe there has to be some (local or global) mechanism to allow this.

2.7 Overlapping structs in malloc’d regions

Q79. After writing one member of a structure to a malloc’d region, can a mem-
ber of another structure, with footprint overlapping that of the first structure,
be written?

// effective_type_8a.c
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
typedef struct { char c2; float f2; } st2;
int main() {
assert(sizeof(st1)==sizeof(st2));
assert(offsetof(st1,c1)==offsetof(st2,c2));
assert(offsetof(st1,f1)==offsetof(st2,f2));
void *p = malloc(sizeof(st1)); assert (p != NULL);
((st1 *)p)->c1 = ’A’;
// is this free of undefined behaviour?
((st2 *)p)->f2 = 1.0;
// is this defined, and always prints ’A’ ?
printf("((st1 *)p)->c1 = ’%c’\n", ((st1 *)p)->c1);

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_4.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_8a.c

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

12 Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and Hubert Tong

}

// effective_type_8b.c
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
typedef struct { char c2; float f2; } st2;
int main() {
assert(sizeof(st1)==sizeof(st2));
assert(offsetof(st1,c1)==offsetof(st2,c2));
assert(offsetof(st1,f1)==offsetof(st2,f2));
void *p = malloc(sizeof(st1)); assert (p != NULL);
((st1 *)p)->c1 = ’A’;
// is this free of undefined behaviour?
((st2 *)p)->f2 = 1.0;
// is this defined, and always prints ’A’ ?
printf("((st2 *)p)->c2 = ’%c’\n", ((st2 *)p)->c2);

}

Again this is exploring the effective type of the footprint of the structure type used to
form the lvalue. We presume this should be allowed – from one point of view, it is just a
specific instance of the strong (type changing) updates that C permits in malloc’d regions.

2.8 Effective types and uninitialised reads

Q77. Can a non-character value be read from an uninitialised malloc’d re-
gion?

// effective_type_6.c
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
int main() {
void *p = malloc(sizeof(float)); assert (p != NULL);
// is this free of undefined behaviour?
float f = *((float *)p);
printf("f=%f\n",f);

}

The effective type rules seem to deem this undefined behaviour.

// effective_type_6b.c
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
int main() {
void *p = calloc(1, sizeof(float)); assert (p != NULL);
// is this free of undefined behaviour?
float f = *((float *)p);
printf("f=%f\n",f);

}

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_8b.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_6.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_6b.c

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

Effective types: examples (P1796R0) 13

For this variant where calloc does initialise to zero, Jens suggests the program should
be well defined (but the current standard text still makes this undefined).

Q78. After writing one member of a structure to a malloc’d region, can its
other members be read?

// effective_type_7.c
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; unsigned int ui1; } st1;
int main() {
void *p = malloc(sizeof(st1)); assert (p != NULL);
((st1 *)p)->c1 = ’A’;
// is this free of undefined behaviour?
unsigned int ui = ((st1 *)p)->ui1;
printf("ui=%d\n",ui);

}

If the write should be considered as affecting the effective type of the footprint of the
entire structure, then it would change the answer to effective_type_5.c here. It seems
unlikely but not impossible that such an interpretation is desirable.

There is a defect report (which?) about copying part of a structure and effective types.

2.9 Properly overlapping objects

Q81. Can one access two objects, within a malloc’d region, that have overlap-
ping but non-identical footprint?

Robbert Krebbers asks on the GCC list (https://gcc.gnu.org/ml/gcc/2015-03/msg00083.
html) whether “GCC uses 6.5.16.1p3 of the C11 standard as a license to perform certain
optimizations. If so, could anyone provide me an example program. In particular, I am
interested about the ’then the overlap shall be exact’ part of 6.5.16.1p3: If the value being
stored in an object is read from another object that overlaps in any way the storage of
the first object, then the overlap shall be exact and the two objects shall have qualified or
unqualified versions of a compatible type; otherwise, the behavior is undefined.” Richard
Biener replies with this example (rewritten here to print the result), saying that it will be
optimised to print 1 and that this is basically effective-type reasoning.

// krebbers_biener_1.c
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
struct X { int i; int j; };
int foo (struct X *p, struct X *q) {
// does this have defined behaviour?
q->j = 1;
p->i = 0;
return q->j;

}
int main() {
assert(sizeof(struct X) == 2 * sizeof(int));
unsigned char *p = malloc(3 * sizeof(int));
printf("%i\n", foo ((struct X*)(p + sizeof(int)),

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_7.c
https://gcc.gnu.org/ml/gcc/2015-03/msg00083.html
https://gcc.gnu.org/ml/gcc/2015-03/msg00083.html
https://cerberus.cl.cam.ac.uk/cerberus?defacto/krebbers_biener_1.c

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

14 Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and Hubert Tong

(struct X*)p));
}

2.10 Examples from Jens’ visit
The interaction between out-of-bound pointer arithmetic checks (at the level of subobject)
and unions is problematic. In the following, a choice needs to be made regarding which
subobject is being accessed by the last line of the main function. If it is the array inside
the first member of the union, the access is out of bound. But if it is the array in the
second member of union, this program is well defined.

// effective_type_jens_1.c
struct T{
union U {
struct T1 {
int x[2];

} st1;
struct T2 {
int y[3];

} st2;
} un;
char c;

} z;

int main(void)
{
int *p = (int*)((char*)(&(z.c)) - offfsetof(struct T, c));
p[2] = 10; // this is a defined access to z.un.st2.y[2] ?

}

One could think of making the semantics “angelic”, but the following variant shows it is
not clear how to do so.

// effective_type_jens_1b.c
struct T{
union U {
struct T1 {
int x[2];
int y[3];

} st1;
struct T2 {
int x[3];
int y[2];

} st2;
} un;
char c;

} z;

int main(void)
{
int *p = (int*)((char*)(&(z.c)) - offfsetof(struct T, c));
p[2] = 10; // what’s happening here?

}

// effective_type_jens_2.c
struct S {

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_jens_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_jens_1b.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_jens_2.c

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

Effective types: examples (P1796R0) 15

int x;
};

struct T {
int y;

};

int main(void)
{
int *p = malloc(sizeof *p);

*p = 5;

struct T *q = (struct T*)p;
q->y = 10;

struct S *s = (struct S*)p; // is s a valid pointer to a fully initialised "struct S" object?
}

2.11 Hubert’s examples
These examples show that current compiler behaviour is not consistent with the ISO C
notion of effective types that allows type-changing updates within allocated regions simply
by memory writes.

This was his first example:

// effective_type_hubert_1.c
#include <stdlib.h>
#include <string.h>

typedef struct A { int x, y; } A;
typedef struct B { int x, y; } B;

//__attribute__((__noinline__, __weak__))
B *newB(void *p) {

static const B b = { 0 };
return (B *)memcpy(p, &b, sizeof b);

}

int main(void) {
static const A a = { 0 };

A *const ap = (A *)malloc(sizeof a);
memcpy(ap, &a, sizeof a);

B *const bp = newB(ap);
bp->y = 42;
ap->y = 0; // Hubert says: I think this should be UB.

// Both Clang and GCC will not expect
// this to alias bp->y under TBAA.

return bp->y; // 42?
}

This was his example from the 2019-05-28 teleconf:

#include <stdlib.h>
#include <stdio.h>

Draft of June 18, 2019

https://cerberus.cl.cam.ac.uk/cerberus?defacto/effective_type_hubert_1.c

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

16 Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and Hubert Tong

typedef struct A { int x, y; } A;
typedef struct B { int x, y; } B;

__attribute__((__noinline__, __weak__))
void f(long unk, void *pa, void *pa2, void *pb, long *x) {
for (long i = 0; i < unk; ++i) {
int oldy = ((A *)pa)->y;
((B *)pb)->y = 42;
((A *)pa2)->y = oldy ^ x[i];

}
}

int main(void) {
void *p = malloc(sizeof(A));
((A *)p)->y = 13;
f(1, p, p, p, (long []){ 0 });
printf("pa->y(%d)\n", ((A *)p)->y);

}

He tried gcc and clang on x86 and POWER, with optimisation. The compiler thinks the
write to {(B*)pb)->y is constant, so compilers lift or sink out of loop, clobbering the value
of ((A *)p)->y, because they assume (B*)pb and (A*)pa / (A*)pa2 don’t alias.

Changing to an int/float case makes no difference, so one couldn’t work around this by
just looking at the access types:

How could we proceed? Some conceivable options are below, but many look quite
unappealing.
(1) add syntactic clues for type-changing updates, along the lines of the C++ placement

new and launder
(2) provide an analogue of -fno-strict-aliasing on finer granularities
(3) specify the two dialects, with and without -fno-strict-aliasing, with the latter

having a blanket prohibition on type-changing updates
(4) change compilers to remove this use of TBAA
(5) make function arguments all restrict
(6) use Hal’s TBAA sanitiser (or other tools) to survey how common type-changing up-

dates are in practice, in code bases that are compiled without -fno-strict-aliasing
(7) add new qualifier that lets one say the compiler can assume the types don’t change

Draft of June 18, 2019

	1 Introduction
	1.1 The ISO standard text

	2 Effective Type Examples
	2.1 Basic Effective Types
	2.2 Structs and their members
	2.3 Isomorphic Struct Types
	2.4 Isomorphic Struct Types – additional examples
	2.5 Effective types and representation-byte writes
	2.6 Unsigned character arrays
	2.7 Overlapping structs in malloc'd regions
	2.8 Effective types and uninitialised reads
	2.9 Properly overlapping objects
	2.10 Examples from Jens' visit
	2.11 Hubert's examples

