
Contracts have failed to provide a portable “assume”

Timur Doumler (papers@timur.audio)

Document #: P1773R0
Date: 2019-06-17
Project: Programming Language C++
Audience: Evolution Working Group

Abstract

The “assume” semantic, i.e. a condition that is not checked but can be assumed by the compiler,
is a powerful tool for generating both faster and smaller code. However, the contract checking
facility (CCF) in the current C++20 working draft does not provide this semantic in a useable
way. This can be solved by 1) allowing to spell contract semantics directly, instead of contract
“levels” and 2) introducing a lower-level facility outside of the CCF that implements this semantic.

1 The “assume” semantic
Contract checking statements (CCS) can have essentially one of three possible semantics:

— check: The statement is checked at runtime. If the statement is false, some form of runtime
error handling is invoked.

— ignore: The statement is not checked at runtime. The compiler ignores the statement.

— assume: The statement is not checked at runtime. The compiler assumes that the statement
is true, and is free to optimise based on that assumption. If the statement is false, the
behaviour is undefined.

Only one of them, “assume”, is not already portably implementable today in C++. It can currently
only be achieved using platform-specific compiler intrinsics such as __builtin_assume (Clang) or
__assume (MSVC, Intel). It is also a very powerful tool for generating both faster and smaller code.
Providing this semantic in a portable way in C++20 would be a huge benefit for low-latency and
performance-critical C++ programs.
Adding a portable “assume” was already proposed once [N4425] and discussed by EWG in 2015 in
Lenexa1. The paper was rejected. EWG’s guidance was that this functionality should be provided
within the proposed contract checking facility (CCF), and not as a separate facility.
Unfortunately, four years later we are now in a situation where this functionality is neither part of
the CCF, nor available as a separate facility. In this paper we argue why the current CCF does not
provide a useable “assume” semantic, and how this situation can be improved.

1https://cplusplus.github.io/EWG/ewg-closed.html#179

1

mailto:papers@timur.audio
https://cplusplus.github.io/EWG/ewg-closed.html#179


2 Use cases
Correctly using “assume” statements in performance-critical code can lead to generation of both
faster and smaller machine code, without changing the observable behaviour of the program.
Consider the following function:

int divide_by_32(int x)
{

__builtin_assume(x >= 0);
return x/32;

}

Without the assumption, the compiler has to generate code that works correctly for all possible
input values. With the assumption, it can implement the calculation using a single instruction (shift
right by 5 bits). Here is the output generated by clang (trunk) with -O3:

Without __builtin_assume:
mov eax, edi
sar eax, 31
shr eax, 27
add eax, edi
sar eax, 5
ret

With __builtin_assume:
mov eax, edi
shr eax, 5
ret

Another example: consider looping over an array of numbers and performing math on the elements.
Often, there are invariants on the array size such as: it’s a power of two, it’s a multiple of the SIMD
register size, etc (all very common e.g. in audio processing code). Telling the optimiser about such
invariants leads to a much better optimisation and vectorisation of the loop:

void limiter(float* buffer, size_t size)
{

__builtin_assume(size % 8 == 0);
for (size_t i = 0; i < size; ++i)

data[i] = std::clamp(data[i], -1.0f, 1.0f);
}

For this function, clang (trunk) with -O3 generates 70 lines of assembly without the assumption,
and only 42 lines with it.
See [Regehr2014] for more examples and use cases.

3 The problems with the current CCF
Such “assume” statements typically have the following four characteristics in common:

1. The assumption is a simple expression (for example, a comparison) and therefore would be
easy to check.

2. The assumption is an invariant that is guaranteed to hold by code elsewhere – i.e. the intent
of writing it is not to check for bugs, but to actually perform the optimisation.

3. The assumption is typically a local implementation detail found inside performance-sensitive
code, and not part of a public API.

4. The assumption expression is guaranteed to be unevaluated.

2



The current working draft however does not let us spell the intended contract semantics at all.
Instead, it only gives us “contract levels” which are then assigned semantics using “build modes”:
essentially global compiler switches that live outside of the code.
This model works against all four of the characteristics discussed above:

1. Statements that are not meant to be evaluated are represented by “axioms”. However, the
concept of “axiom” conflates two very different kinds of statements: on the one hand, easy-to-
check statements that are meant to be used as guides for optimisation (like shown above),
and on the other hand, conditions that are hard or impossible to check by the compiler (such
as “is this object moved from?” or “is this a valid range?”) that are essentially used as an
enhanced “comment” to be ignored by the compiler, but possibly consumed by other tools.

2. The fact that you can only spell “contract levels” in code, but not the intended semantics of
a contract, prevents the developer from spelling their intent in C++ code. There is no way
to express that the primary intent of a particular CCS is “assume this statement to perform
optimisation”.

3. The fact that semantics can only be assigned globally by a compiler switch, as opposed
to locally, prevents the usage of assumptions as an implementation detail. Consider this
important use case: you ship a header-only library providing optimised implementations of
algorithms. You use “assume” statements internally as an implementation detail to get the
desired optimisation. You want to be able to ship this library without the user being aware
of this implementation detail, and without them being able to change its semantics. With
“contract levels” and “build modes”, this is not possible.

4. Because CCS can have different semantics assigned to them at build time, including “check”,
we can never have CCS that are guaranteed to be unevaluated. Either they will be evaluated
(if using a semantic that checks it), or it is unspecified whether they are evaluated (if using a
semantic that does not). This makes it impossible to use assumptions for optimisation that
would have side effects when evaluated, which is useful (consider ++ptr != end).

We therefore believe that the CCF, as it exists currently in the C++20 working draft, is not
adequate and should not be standardised in its current form.

4 Proposed solution

4.1 Literal semantics

The problems 1. and 2. can be solved by allowing to spell the semantics of a contract explicitly in
a CCS. This can be done either instead of the contract levels, as proposed in the second half of
[P1607R0] (“Minimizing contracts”), or in addition to contract levels, as proposed in [P1429R2]
(“Contracts that work”). We therefore support adopting one of those papers, or some similar
solution that allows the developer to express contracts semantics in C++ code, for C++20. This
would allow us to spell an optimisation hint like this:

[[assert assume: x >= 0]]

Note that the effective semantics of a CCS might still potentially be subject to a build mode. This
is useful: you can use CCS as an optimisation hint, but still fall back to a different semantic, for
example, for QA purposes.

3



4.2 std::assume

Adding literal semantics to CCS however still does not solve problems 3. and 4. For use cases like
assumptions as a local implementation detail in a header-only library (where the end user should
not be able to change the semantics or even be aware of that implementation detail), a lower-level
facility outside of the CCF is needed. This can be achieved by additionally standardising the facility
currently provided by __builtin_assume (Clang) and __assume (MSVC, Intel). We could then
spell an assumption directly like this (modulo bikeshed):

std::assume(x >= 0);

Please see the companion paper [P1774R0] for a formal proposal to standardise std::assume for
C++.
In order to enable all use cases of the “assume” semantic discussed here, we need both the CCS
literal semantics and the lower-level std::assume facility, as both serve different needs. Note that
the CCS “assume” semantic can be naturally implemented in terms of the lower-level std::assume.

References

[N4425] Hal Finkel. Generalized Dynamic Assumptions. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2015/n4425.pdf, 2015-04-07.

[P1429R2] Joshua Berne and John Lakos. Contracts That Work. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2019/p1429r2.pdf, 2019-06-14.

[P1607R0] Joshua Berne, Jeff Snyder, and Ryan McDougall. Minimizing Contracts. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r0.pdf, 2019-03-10.

[P1774R0] Timur Doumler. Portable optimisation hints. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2017/p1774r0.pdf, 2019-06-17.

[Regehr2014] John Regehr. Assertions Are Pessimistic, Assumptions Are Optimistic. https:
//blog.regehr.org/archives/1096, 2014-02-05.

4

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1429r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1429r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p1774r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p1774r0.pdf
https://blog.regehr.org/archives/1096
https://blog.regehr.org/archives/1096

	1 The ``assume'' semantic
	2 Use cases
	3 The problems with the current CCF
	4 Proposed solution
	References

