
P1771r0 - [[nodiscard]] for constructors

Peter Sommerlad

2019-06-17

Document Number: P1771r0
Date: 2019-06-17
Project: Programming Language C++

Programming Language Vulnerabilities C++
Audience: EWGI/EWG/CWG

1 Introduction

The paper p0189 that introduced the [[nodiscard]] attribute did not consider constructors. How-
ever, gcc for example implements the checking for constructors, even so it warns about putting
[[nodiscard]] on a constructor definition. Here I propose to allow [[nodiscard]] also on con-
structors (which it implicitly is allowed by the current wording) and suggest checking it for cast
expressions so that we can put it on things like scoped_lock etc.

The need is more obvious in C++ 17 and later, where CTAD allows for fewer factory functions and
thus the easy to make mistake by just typing the type and constructor arguments instead of defining
a local variable.

Since this change is editorial only, it might be considered to be applied for the current working
paper.

2 Impact on the standard

The change is IMHO editorial only, since the semantics of warnings is only in a note. Change section
[dcl.attr.nodiscard] as follows. Note that a constructor declaration is a function declaration.

2.0.1 Nodiscard attribute [dcl.attr.nodiscard]
1 The attribute-token nodiscard may be applied to the declarator-id in a function declaration or to

the declaration of a class or enumeration. It shall appear at most once in each attribute-list and no
attribute-argument-clause shall be present.

2 [Note: A nodiscard call is a function call expression or an explicit type conversion that calls a function
or constructs an object through a constructor previously declared nodiscard, or whose return type

1



2 P1771r0 2019-06-17

or type is a possibly cv-qualified class or enumeration type marked nodiscard. Appearance of
a nodiscard call as a potentially-evaluated discarded-value expression (7.2)is discouraged unless
explicitly cast to void. Implementations should issue a warning in such cases. This is typically
because discarding the return value of a nodiscard call has surprising consequences. —end note ]

3 [Example:
struct [[nodiscard]] error_info { /* ... */ };
error_info enable_missile_safety_mode();
void launch_missiles();
void test_missiles() {

enable_missile_safety_mode(); // warning encouraged
launch_missiles();

}
error_info &foo();
void f() { foo(); } // warning not encouraged: not a nodiscard call, because neither

// the (reference) return type nor the function is declared nodiscard

—end example ]


	1 Introduction
	2 Impact on the standard

