
Rename concepts to standard_case for C++20, while we still can

Document Number: P1754 R0 Date: 2019-06-16

Reply-to: Herb Sutter (hsutter@microsoft.com) Audience: EWG, LEWG, LWG

 Casey Carter

 Gabriel Dos Reis

 Eric Niebler

 Bjarne Stroustrup

 Andrew Sutton

 Ville Voutilainen

1 Motivation: Why we need to do this, and why it’s a bug-fix
Before C++20, standard identifiers have always used standard_case, without exception.1 However, current draft

C++20 creates a new inconsistency by making concept names use PascalCase.

Importantly, the standard’s consistent use of standard_case has always made it possible for programmers to

create a clear delineation between standard names and domain-specific names, by using PascalCase for domain-

specific names. The current draft C++20 PascalCase naming scheme for library concepts breaks that by doing a

land grab into that swamp, making it murkier than before. The ambiguity is more than just a naming clash – it is

about the standard style now conflicting with styles that it didn’t conflict with before, which is a readability

problem, a mental-model-compartmentalization problem, and a whole host of other problems.

Secondarily, this new taking of PascalCase names does also create potential new ambiguities with user-defined

names like Integral and Common and OutputRange and Boolean which previously could never conflict with the

standard’s names. For example, a quick look at codesearch.isocpp.org for “Integral” shows over 2,200 uses in

frameworks, and in domain-specific libraries for chemistry, mathematics, and other domains. In the past these

names were safe and known to be immune from clashes with the standard library, even in the presence of us-

ing namespace std, so despite the current issues with using namespace directives, a library could use Pascal-

Case and know it was safe to be used in programs that did using namespace std specifically, which is by far the

most common using-directive.2

Why now: We can still change these names before we publish C++20, but whatever names we ship with C++20

are the ones we will live with for decades.

Why a bug-fix: This could be a NB comment on the CD, if needed. It is a straight renaming, with no technical se-

mantic change and no impact on existing conforming Standard C++ code. There is minor impact on code that

uses pre-standard Ranges TS names, which can do a global replace (or macro); note that such code already

needs to make other changes to use the standardized version of Ranges.

1 The only normative names in the standard that are not standard_case are MACRO_NAMES, which are rightly visually dis-
tinct because they are fundamentally different – they’re not just “not identifiers,” they’re outside the language entirely.
2 in codesearch.isocpp.org’s code corpus, of all 311,000 hits for using namespace, over 18% are specifically for using
namespace std, compared to 3% for all using namespace boost which includes subnamespaces boost::*.

mailto:hsutter@microsoft.com

1.1 Alternatives and objections considered
The following alternatives and objections were considered:

 Retain status quo PascalCase, on the principle that it’s desirable to

make concepts stand out because they’re new.
We think this would be a shortsighted choice, because soon they won’t be new and then would look different

forever. Some of the authors think there are similarities to the rationale used by some C++ developers in the

1990s for naming classes starting with C, or templates starting with T, and in hindsight we think it is good that

the standard never followed those conventions (although individual libraries are free to do so and some are

quite happy with them).

 Retain status quo PascalCase, because (for example) having both

std::copy_constructible and std::is_copy_constructible

mean different things and give subtly different answers in some cases

creates user confusion and pitfalls.
We think this concern already exists with std::is_copy_constructible_v<T> and std::CopyConstructi-

ble<T>, because new users don’t know that PascalCase means something magical any more than they know

that the prefix is_ and suffix _v mean something magical. Novice users will conflate the trait and the concept

regardless of the transformation we apply to the words “copy” and “constructible” if both the trait and the con-

cept contain some variation of those words. One of the authors who initially preferred PascalCase concept nam-

ing “found that after a while std::copy_constructible, std::is_copy_constructible, and std::CopyCon-

structible are equally similar, equally different, and if you see any two of them you have to head for cpprefer-

ence.com or equivalent to find out the difference.” Finally, in this particular example and others like it of simi-

larly-named concepts and type traits, in the examples we’ve looked at the difference very minor (here, primarily

in explicit copy constructors, which should be rare and are discouraged) and we conjecture they are unlikely to

be actually noticed by most users.

 Retain status quo PascalCase, on the principle of consistency with

standard template parameters (e.g., template<class T, auto Size>).
We think there is a precedent here, but not with the PascalCase names which are not identifiers, they are only

expository and so not subject to standard_case for all actual library names; rather, the “concepts” precedents in

those examples are class and auto which are lowercase. So we think that there is some guiding precedent

here, but that it argues in favor of changing concept names to standard_case.

 Retain status quo PascalCase, on the principle that concepts are not

types, and are thus named differently from standard types.
We think this is a variation of ‘make the new things look different’ so similar rationale applies. Some of the au-

thors think there are similarities to the rationale used by some C++ developers in the 1990s for naming enums

with E because they’re not classes, or templates with T because they’re not types (the instantiations are types),

and in hindsight we think it is good that the standard never followed those conventions (although individual li-

braries are free to do so and some are quite happy with them). It is also contrary to the intent of several of the

designers of concepts that concepts are (or should be) like types, and who want to further blur that distinction

rather than accentuate it.

 Put concepts in a sub-namespace.
We think we should not do this because it is probably ugly (commonly we would type concept:: before stand-

ard concepts) and too late to experiment (we don’t have time to verify whether there may be unintended usa-

bility consequences with name lookup, such as if users common do/don’t using namespace std::concepts;).

2 Proposal
This paper proposes that we should continue to follow our standard identifier naming style consistently also for

concept names. This is nearly our last opportunity to revisit that before casting the current names in stone in a

published standard. We should:

• Rename standard library concept names to standard_case.

• Use a name that is an adjective or abstract noun. (Prefer names like “regular” and “swappable” and

“color.” Avoid names like “has constructor” and “red.”)

• Occasionally, use a “_type” suffix as a concession to avoiding name collisions, usually for very general

concepts with very common names.

Notes:

• Concepts that are similar to the existing traits often just drop the “is_” prefix, which feels both nicely

consistent and nicely nonconflicting.

• None of the proposed names conflict with existing names.

• It would be nice if the X_with concepts could be merged with their X variants, but that is independent of

the name change.

2.1 Impact
No impact on portable standard-conforming code, and low impact on code that uses Ranges TS concepts:

• This proposal has no technical (semantic) impact, it is only renaming.

• No existing portable standard-conforming code is affected because the names are not yet in a published

standard.

• Existing code that uses Ranges TS concepts can be updated to use the new names by a global edit or a

transient header loaded with macros (e.g., #define CopyConstructible copy_constructible). Note that

Ranges TS code already needs to make other changes to use the standardized version of Ranges.

2.2 Examples
Some names are harder to read with PascalCase, notably if they start with the letter I (EYE, not ELL):

// status quo
template <std::Integral T> void foo(T);

// proposed

template <std::integral T> void foo(T);

Ville Voutilainen notes: “I can instantly see that that’s not a lower-case l after std. Curiously, none of the con-
cepts seem to start with an l, but plenty of them start with an I.” (Note: At least one of the other authors had to
read that comment three times to see it was written correctly, which highlights the problem.)

Many names are unchanged except for case and underscores:

// status quo

void f(SignedIntegral auto x);

// proposed

void f(signed_integral auto x);

Some have minor changes:

// status quo

template <Assignable<Foo> T> void foo(T);

// proposed

template <assignable_from<Foo> T> void foo(T);

The latter is clearer about the direction, so also an improvement on the name.

2.3 Comprehensive list of current/proposed names
Here is the complete proposed renaming.

Current Proposed Notes

Same same_as Consistent with derived_from and con-

vertible_to

DerivedFrom derived_from

ConvertibleTo convertible_to

CommonReference has_common_reference “common_reference” might be better, but

that’s a struct (however, it’s a struct

added in C++20, so it could be possible to

rename it if we want)

Common has_common_type “common_type” is already in use since

C++11

Integral integral

SignedIntegral signed_integral

UnsignedIntegral unsigned_integral

Assignable assignable_from

Swappable swappable Casey notes: Swappable<T> is *almost*

equivalent to SwappableWith<T&, T&> -

Current Proposed Notes

the CommonReference requirement intro-

duces some squirrely differences - and it

will be equivalent if I can get LWG3175

properly resolved. The differences in us-

age syntax mirror the differences in the

type traits: is_swappable_v<T> is equiva-

lent to is_swappable_with_v<T&, T&>.

The two exist to support different uses;

Swappable<T>/is_swappable_v<T> is a

convenient shorthand for “lvalues of type

T can be swapped” vs. SwappableWith<T,

U>/is_swappable_with_v<T, U>‘s meaning

“expressions E and F such that decltype(E)

and decltype(F) are T and U can be

swapped.” I don’t think the benefit of hav-

ing fewer concepts would outweigh the

convenience of the shorthand version.

SwappableWith swappable_with See swappable

Destructible destructible Consistent with is_destructible, but no

conflict because traits use is_*

Constructible constructible Consistent (but no conflict) with is_con-

tructible and with descriptive uses

DefaultConstructible default_constructible Consistent (but no conflict) with is_de-

fault_constructible

MoveConstructible move_constructible Consistent (but no conflict) with

is_move_constructible

CopyConstructible copy_constructible Consistent (but no conflict) with

is_copy_constructible

Boolean boolean_type Suffixed because “boolean” is likely com-

mon in user code (“boolean” has no con-

flict in the standard itself), and we can

squint a little to say it fits the rule of using

_type for a broad category

EqualityComparable equality_comparable

EqualityComparableWith equality_comparable_with

StrictTotallyOrdered totally_ordered Shouldn’t we drop the “strict” here?

StrictTotallyOrderedWith totally_ordered_with Ditto, see also weakly_ordered

Current Proposed Notes

Movable movable Used as a descriptive word (only 3 places)

Copyable copyable Used consistently as a descriptive word

Semiregular semiregular Note that the “semiregular [italics] exposi-

tion-only” is a known poor name that is

being actively proposed to be renamed

(and isn’t a collision even if not renamed)

Regular regular No conflict, including with file_type::regu-

lar

Invocable invocable

RegularInvocable regular_invocable

Predicate predicate

Relation relation

StrictWeakOrder weakly_ordered For consistency with StrictTotallyOr-

dered[With], or should these really be

spelled differently?

Q (Andrew): Why is there we have a

StrictWeakOrder concept but not an

EquivalenceRelation concept? Both were

in the Palo Alto TR and used for (at least)

equal() and mismatch(). It looks like the

committee weakened all of the Equiva-

lenceRelation requirements to simple bi-

nary predicates. That means you can pa-

rameterize equal() in a way that the algo-

rithm doesn’t compute equality?

A (Casey): Relation was roughly Equiva-

lenceRelation before P1248 removed the

semantics; now it is “these four totally un-

related Predicates must be valid” and

therefore a meaningless concept. It’s on

my huge list of things to fix (most likely by

incorporating it into StrictWeakOrder and

replacing uses of IndirectRelation with a

new IndirectPredicate concept).

Readable readable More consistent with readable_traits

Writable writable More consistent with writable_traits

Current Proposed Notes

WeaklyIncrementable weakly_incrementable

Incrementable incrementable More consistent with incrementable_traits

Iterator iterator_type “iterator” could work except that std::iter-

ator is still alive in [depr.iterator.basic]

Sentinel sentinel_for Casey notes: I’ve been considering “senti-

nel_for” / “sized_sentinel_for” which is

quite readable in type-constraint usage

which is typical for these concepts: “tem-

plate<frob_iterator I, sentinel_for<I> S>”.

Despite that we don’t really *need* to

change the name, it has caused some con-

fusion that we use “sentinel” as a name

for “the thing that denotes the end of a

range” and “Sentinel” as the name of the

concept that describes the relationship be-

tween those things and iterators.

SizedSentinel sized_sentinel_for See sentinel_for

InputIterator input_iterator More consistent with input_iterator_tag

OutputIterator output_iterator More consistent with output_iterator_tag

ForwardIterator forward_iterator More consistent with forward_itera-

tor_tag

BidirectionalIterator bidirectional_iterator More consistent with bidirectional_itera-

tor_tag

RandomAccessIterator random_access_iterator More consistent with random_access_iter-

ator_tag

ContiguousIterator contiguous_iterator More consistent with contiguous_itera-

tor_tag

IndirectUnaryInvocable indirect_unary_invocable

IndirectRegularUnaryInvocable indirect_regular_unary_invocable

IndirectUnaryPredicate indirect_unary_predicate

IndirectRelation indirect_relation

IndirectStrictWeakOrder indirect_strict_weak_order

IndirectlyMovable indirect_movable

IndirectlyMovableStorable indirect_movable_storable

Current Proposed Notes

IndirectlyCopyable indirect_copyable

IndirectlyCopyableStorable indirect_copyable_storable

IndirectlySwappable indirect_swappable

IndirectlyComparable indirect_comparable

Permutable permutable

Mergeable mergeable No conflict, but appears as a function

name once in an example in [expr.new],

might want to rename that one example

even though we don’t have to

Sortable sortable

Range range_type For symmetry with view_type (which can’t

be just “view”)

SizedRange sized_range More consistent with disable_sized_range

View view_type “view” is not available, it’s a namespace

alias for std::ranges::view

OutputRange output_range No conflict, but is used as a formal param-

eter name in uninitialized_copy and unini-

tialized_move, so probably want to re-

name those parameters (4 occurrences to-

tal) if we take this name just to avoid any

potential reader confusion

InputRange input_range Same as output_range (same 4 occur-

rences)

BidirectionalRange bidirectional_range

RandomAccessRange random_access_range

ContiguousRange contiguous_range

CommonRange common_range

ViewableRange viewable_range

UniformRandomBitGenerator uniform_random_bit_generator

3 Proposed wording
In the C++ working paper:

• change each “Current” name to its corresponding “Proposed” name in the foregoing table

Additionally, to avoid confusion with the new concept names (these changes are not necessary, just nice):

In [expr.new]/12’s Example:

• change mergeable to can_merge

• change unmergeable to cannot_merge

In [uninitialized.copy]/3, [uninitialized_move]/2, and [memory.syn]:

• change input_range to in_range (4 occurrences)

• change output_range to out_range (4 occurrences)

