

Document No. P1745R0

Date 2019-06-17

Reply To Lewis Baker <lbaker@fb.com>

Audience Evolution

Targeting C++20, C++Next

Coroutine changes for C++20 and beyond

Abstract 3

Overview 5

Changes for C++20 5
Splitting coroutine_handle responsibilities 5
Passing non-type-erased handles 8
Type-erased handle types 10

The continuation_handle type 10
The suspend_point_handle type 11

Convertibility between different suspend_point_handle instantiations 13
Mapping from coroutine_handle usages to suspend_point_handle usages 13

The noop_continuation 14

Incremental steps to incorporate proposed changes 15
Merge initial_suspend() and get_return_object() 15
Remove coroutine_handle::from_promise() 16
Remove coroutine_handle::address()/from_address() 17
Simplify final_suspend() 18
Rename final_suspend() to done() 19
Split coroutine_handle into suspend_point_handle and continuation_handle 19
Split suspend_point_handle::destroy() into set_done() and destroy() 21
Rename std::noop_coroutine() to std::noop_continuation() 21
Limit suspend-point handles to only allow resuming a coroutine once 22
Modify the compiler to pass compiler-generated, per-suspend-point handle types to get_return_object()
and await_suspend() 23

Roadmap of changes for post-C++20 26
Add support for async RAII 26
Add support for async return-value optimisation 26

Add support for async range-based for-loops 28
Add support for co_return as a suspend-point 28
Add support for non-type-erased coroutines 29
Add support for delaying choice of promise-type 29
Add support for exposing coroutine-frames as types 29
Add support for heterogeneous resume 29

Implementation Experience 31

Bikeshedding 32
Bikeshedding coroutine resumption method names 32

References 33

Acknowledgements 34

Appendix A - Examples 35

Abstract
The Coroutines TS was recently merged into the working draft and is on track for being included in C++20.

The Coroutines TS has been available for several years now, along with multiple compiler implementations,
and in that time we have gained much usage experience with coroutines. There are multiple open-source
libraries that provide abstractions for using coroutines (e.g. cppcoro , folly and boost::asio). Facebook is 1 2

now using coroutines successfully in production in a number of key services.

This usage experience has highlighted some limitations of the current design and given insight into ways we
can improve the coroutines feature over time.

Some improvements, such as exposing non-type-erased coroutines, deferred coroutine-frame creation and
coroutine-frames as types have been explored in [P1342R0, P1492R0, P1493R0] and we are reasonably
confident that support for these capabilities can be added incrementally to the current coroutines design in
the future.

We have also been exploring some other directions for evolving the design coroutines in the post-C++20
timeframe that we think are important for improving the expressiveness, safety and performance of code
written using coroutines.

The main areas of exploration have been:

● Async RAII - the ability to co_await automatically at the end of a scope (expressiveness, safety)
● RVO for co_await - eliminate copies typically needed for co_await expressions (performance)
● RVO for synchronous coroutines - E.g., allow std::expected coroutines to take advantage of

return-value optimisation (performance)
● Non-type-erased coroutine handles - Allow the compiler to avoid indirect calls or branches when

resuming a coroutine, improving the likelihood of inlining (performance)
● Heterogeneous resume - improve the expressiveness of a co_await expression to match what is

currently possible with callback-based code where the call operator is overloaded by allowing a
co_await expression to resume with one of several possible result types (expressiveness,
performance)

We have been exploring potential designs for these capabilities in more detail over the last 6 months to
determine, with a reasonable level of confidence, whether there is a viable path to adding them
incrementally to the current design in a future version of the standard or whether changes to the coroutines
design are required prior to C++20 being finalised to enable such a viable path.

1 cppcoro - https://github.com/lewissbaker/cppcoro
2 folly::coro - https://github.com/facebook/folly/tree/master/folly/experimental/coro

https://github.com/lewissbaker/cppcoro
https://github.com/facebook/folly/tree/master/folly/experimental/coro

The papers "Adding async RAII support to coroutines" [P1662R0] and "Supporting return value optimisation
in coroutines" [P1663R0] discuss the results of exploration of some of these areas in more detail, covering
motivation, use-cases and design discussion.

All of these papers conclude that the current design of the coroutine_handle type either limits or
prevents the evolution of coroutines to support these capabilities in future.

The core limitation is that a coroutine_handle currently only supports resuming a coroutine along a
single resumption path - the resume() path - whereas these capabilities all require the ability to resume a
coroutine along one of several possible paths.

Adding async RAII means that when cancelling the execution of the rest of a suspended coroutine we must
ensure that any async cleanup work is run before calling coroutine_handle::destroy() . [P1662R0]
proposes that we add a 'done' resumption path separate from resume() that will asynchronously unwind
the coroutine from its current suspend-point back to the final suspend-point without needing to throw an
exception instead of calling the synchronous destroy() method. The motivation for requiring a separate
signal for cancellation is discussed in more detail in the paper "Cancellation is not an error" [P1667R0].

Supporting async RVO requires the ability to resume execution of the awaiting coroutine either along a
'value' path that produces the value or along an 'exception' path that immediately throws when it is resumed.
The current design merges those two paths into the 'resume' path and lets await_resume() decide
which path should be taken - however this indirection through await_resume() inhibits RVO.

Supporting heterogeneous resume requires further extending the async RVO capability, which has a 'value'
and 'exception' resumption path, to support resuming on one of many possible 'value' paths and many
possible 'exception' paths. This allows async operations to avoid needing to type-erase results and thus
avoid the resulting branches or indirect calls in the same way that an async operation built on callbacks can
by overloading operator() . This capability would further harmonize the design of coroutines with the
design of async operations and callbacks proposed in [P1341R0, P1660R0].

This paper proposes splitting the current responsibilities of coroutine_handle into two separate
concepts, a suspend-point-handle and a continuation-handle, to enable support for resuming a
coroutine on one of multiple possible resumption paths while also retaining the ability to
symmetrically-transfer execution to another coroutine (See [P0913R0]).

The proposed design changes do not affect the syntax for authoring coroutines. The changes only affect the
implementers of new coroutine promise_types and awaitable types and even then the changes required
to these types are typically minor.

A prototype of the proposed design has been implemented in clang as an incremental change to clang's
existing implementation of coroutines.
This implementation can be found at https://github.com/lewissbaker/llvm/tree/P1745

https://github.com/lewissbaker/llvm/tree/P1745

Overview
This document is structured into four main parts:

1. A description of the proposed revised design for C++20.
2. A step-by-step walk through of the incremental changes required to get from the current coroutines

design to the proposed design for C++20
3. A description of some of the features that we propose adding post-C++20 that provides some

context for the changes proposed for C++20.
4. A description of implementation experience for the proposed changes.

The appendix contains some code examples that show usage of the revised design.

Changes for C++20
This section describes the proposed revised design for coroutines that splits the coroutine_handle
responsibilities into separate concepts: SuspendPointHandle and ContinuationHandle.

This section also describes the interface of the two new types, suspend_point_handle and
continuation_handle , which replace coroutine_handle in the proposed design.

The following section titled "Incremental steps to incorporate proposed changes" walks through the set of
incremental changes needed to go from the current design in the working draft to the proposed design and
goes into more detail about the rationale for each of these changes.

Splitting coroutine_handle responsibilities
The main change to coroutines being proposed by this paper is to split the responsibilities of the
coroutine_handle type into two distinct concepts: a SuspendPointHandle and a ContinuationHandle.

This change is necessary to support resuming a coroutine along one of several possible resumption paths
while retaining the ability to symmetrically transfer to the chosen resumption path.

This enables adding a set_done() resumption path to support asynchronously cancelling/unwinding a
coroutine without needing to throw an exception. This resumption path executes 'goto done; ' instead of
calling await_resume() .

It also enables the ability to support async RVO in future, which requires the ability to resume a coroutine on
either the 'value' path or on the 'exception' path.

The current design of coroutine_handle is restricted to resuming a coroutine along only a single path;

the 'resume() ' path which executes await_resume() .

A SuspendPointHandle represents a coroutine suspended at a particular suspend-point.
A ContinuationHandle represents a particular continuation path on which to resume the coroutine.

A coroutine suspended at a suspend-point can have one of several operations performed on it. The set of
operations available can depend on what kind of suspend-point the coroutine is currently suspended at.

The SuspendPointHandle allows user-code to select a particular continuation path to resume the
coroutine with by calling one of the continuation factory methods on the SuspendPointHandle object.
Each of these methods returns a different ContinuationHandle which corresponds to the selected
resumption path.

The ContinuationHandle can then either be invoked asymmetrically using operator() or can be
invoked symmetrically (ie. with tail-recursion) by returning the handle from await_suspend() .

The ContinuationHandle concept is defined as follows:

// A helper concept for defining traits common to the various handle concepts.

template<typename T>

concept _Handle =

 std::is_nothrow_default_constructible_v<T> &&

 std::is_nothrow_copy_constructible_v<T> &&

 std::is_nothrow_move_constructible_v<T> &&

 std::is_nothrow_copy_assignable_v<T> &&

 std::is_nothrow_move_assignable_v<T> &&

 std::is_trivially_destructible_v<T> &&

 requires (const T handle) {

 { handle ? (void)0 : (void)0 } noexcept;

 { !handle ? (void)0 : (void)0 } noexcept;

 };

template<typename T>

concept ContinuationHandle =

 _Handle<T> &&

 Invocable<T> &&

 unspecified;

Note that the ContinuationHandle concept contains an 'unspecified' condition. This has the effect of
preventing user-defined types from satisfying this concept. The rationale here is that to support the ability to
perform tail-recursive resumption of a coroutine there will likely need to be some implementation-defined
mechanics present on the handle to support appropriate calling-conventions and type-erasure of the handle
type (see later section on type-erased handles).

There is not a single SuspendPointHandle concept but rather a number of lower-level concepts that can be
composed together to make one of several different suspend-point handle concepts, one for each kind of
suspend-point.

For C++20 this paper is proposing to define 3 operations that can be performed on a suspend-point handle
corresponding to a co_await /co_yield expression:

● resume() - Returns a continuation-handle that will resume execution of the coroutine.
This will immediately call await_resume() upon invocation of the returned continuation-handle.

● set_done() - Returns a continuation-handle that will resume execution of the coroutine by
immediately executing 'goto done; ' upon invocation of the returned continuation-handle.

● promise() - Obtains a reference to the coroutine's promise object.

And 4 operations that can be performed on a coroutine-handle passed to get_return_object() :

● destroy() - Destroys the coroutine frame.
Only valid to be called if the coroutine has either never been resumed or has run to completion and
is currently suspended at the final suspend-point.

● resume() - Returns a continuation-handle that will start executing the coroutine body when
invoked.

● set_done() - Returns a continuation-handle that will start execution of the coroutine by
immediately executing 'goto done; ' upon invocation of the returned continuation-handle.

● promise() - Obtains a reference to the coroutine's promise object.

Different kinds of suspend-points within a coroutine will have different combinations of these operations.

Future versions of the language may define new kinds of suspend-points that support a different
configuration of operations. For example, the operator ~co_await() suspend point described in
P1662R0 to support async RAII. Or they may add new operations, such as the
set_value() /set_exception() operations described in P1663R0 to support async
return-value-optimisation.

The suspend-point concepts are defined as follows:

template<typename T>

concept SuspendPointHandleWithResume =

 _Handle<T> &&

 requires (const T sp) {

 sp.resume();

 requires ContinuationHandle<decltype(sp.resume())>;

 } &&

 unspecified;

template<typename T>

concept SuspendPointHandleWithDone =

 _Handle<T> &&

 requires (const T sp) {

 sp.set_done();

 requires ContinuationHandle<decltype(sp.set_done())>;

 } &&

 unspecified;

template<typename T>

concept SuspendPointHandleWithPromise =

 _Handle<T> &&

 requires (const T sp) {

 sp.promise();

 } &&

 unspecified;

template<typename T, typename Promise>

concept SuspendPointHandleWithPromiseOf =

 SuspendPointHandleWithPromise<T> &&

 requires (const T sp) {

 { sp.promise() } -> Promise&;

 };

template<typename T>

concept SuspendPointHandleWithDestroy =

 _Handle<T> &&

 requires (const T sp) {

 { sp.destroy() } -> void;

 } &&

 unspecified;

Given these definitions we can then build suspend-point handle concepts for the suspend-point kinds
proposed for C++20:

The concept for suspend-point handles passed to the promise.get_return_object() method:

template<typename T>

concept InitialSuspendPointHandle =

 SuspendPointHandleWithDestroy<T> &&

 SuspendPointHandleWithResume<T> &&

 SuspendPointHandleWithSetDone<T> &&

 SuspendPointHandleWithPromise<T>;

An alternative name for this concept could be CoroutineHandle as it represents a handle to the
coroutine frame that was created for a particular invocation.

The concept for suspend-point handles passed to the await_suspend() method in a co_await or
co_yield expression:

template<typename T>

concept AwaitSuspendPointHandle =

 SuspendPointHandleWithResume<T> &&

 SuspendPointHandleWithSetDone<T> &&

 SuspendPointHandleWithPromise<T>;

Passing non-type-erased handles
When the compiler generates calls to the get_return_object() or await_suspend() it passes a
suspend-point handle that represents the particular suspend-point.

This paper proposes that the handle types that the compiler passes to these methods are anonymous,
per-suspend-point handle types which are not type-erased. The compiler generates a unique type

corresponding to that particular suspend-point in that particular coroutine and passes an instance of that
type into the method call.

Note that the underlying coroutine frame type is still hidden from the program, the type of the handle only
encodes knowledge of the location of the suspend-point within the coroutine body, not of the layout of the
coroutine frame.

The get_return_object() and await_suspend() methods can then call the continuation factory
methods on the suspend-point handle to select a continuation path to resume the coroutine on.

For example:

struct on_new_thread {
 bool await_ready() { return false; }

 auto await_suspend(SuspendPointHandleWithResume auto suspendPoint) {
 std::thread{[suspendPoint] { suspendPoint.resume()(); }}.detach();

 return std::noop_continuation();
 }

 void await_resume() {}
};

task<void> example() {
 co_await on_new_thread{};

 // Rest of the function is now executing on a new std::thread.

 // ...

}

When the example() coroutine is invoked the function will create a new coroutine frame, construct a new
instance of a compiler-generated InitialSuspendPointHandle type that knows statically that it
represents the initial suspend-point for the example() coroutine and pass this handle as a parameter to
promise.get_return_object() .

When the coroutine is resumed and eventually reaches the co_await expression, the coroutine is
suspended and the compiler passes a new instance of a compiler-generated
AwaitSuspendPointHandle type that knows statically that it represents that particular suspend-point in
that particular coroutine.

This means that when the thread executes the lambda the lambda can resume the coroutine without
needing an indirect call to resume the coroutine. The compiler is therefore able to emit a direct jump to the
resumption point in the coroutine.

However, to be able to store the InitialSuspendPointHandle passed to get_return_object() in
the returned task<T> we need to be able to type-erase the handle. To avoid the need for libraries to
type-erase the handle manually, and also to guarantee the ability to support symmetric-transfer to the

continuation, the standard library provides a type-erased handle type that can be used to store the
type-erased handle.

Type-erased handle types
The standard library provides two type-erased handle types: continuation_handle and
suspend_point_handle<Ops...> .

These types replace the existing coroutine_handle type described by the Coroutines TS.

The continuation_handle type
The public interface of the continuation_handle type is as follows:

class continuation_handle {

public:

 // Construct to the null continuation_handle.

 constexpr continuation_handle() noexcept;

 // Copy construction/assignment.

 continuation_handle(const continuation_handle&) noexcept;

 continuation_handle& operator=(const continuation_handle&) noexcept;

 // Trivial destructor

 ~continuation_handle() = default;

 // Implicit conversion from compiler-generated ContinuationHandle types.

 continuation_handle(ContinuationHandle auto handle) noexcept;

 // Test for the null coroutine_handle

 explicit operator bool() const noexcept;

 bool operator!() const noexcept;

 // Invoke the continuation.

 void operator()() const;

private:

 // exposition only

 void* data;

 void (*fn)(void*);

};

The continuation_handle type satisfies the ContinuationHandle concept and is also implicitly
constructible from any of the compiler-generated ContinuationHandle types returned from continuation
methods on compiler-generated suspend-point handle types.

Note that the size of the continuation_handle is unspecified. Implementations that choose to store the
resumption state in the coroutine frame may have a continuation_handle type that stores a single
pointer to the coroutine frame. Whereas implementations that store the resumption state in the
continuation_handle may store a pointer to the coroutine frame as well as either a function pointer or
integer that encodes the resumption-path.

The suspend_point_handle type
The suspend_point_handle type is designed to support type-erasure of different kinds of
suspend-points which support different sets of operations.

The intent is also to allow library code to specify the minimum set of operations that the type-erased
suspend-point needs to support so that the compiler can avoid generating code for resumption paths that
will never be called.

The suspend_point_handle type is also designed to be extensible to support type-erasing new kinds of
operations that may be added in future versions of C++, such as a set_value<T>() , set_error<E>()
and set_exception() operations, described in P1663R0, to support async return-value optimisation.

To support these goals, the suspend_point_handle has a variadic template argument which can be
passed the set of operation types as template arguments that are to be made available on the type-erased
handle.

The standard library also provides types that represent each of the operations supported by suspend-point
handles which can be used as the template arguments to suspend_point_handle . Note that only these
types are valid to pass as template arguments to suspend_point_handle - user-defined types are not
supported.

The operation types simply serve as tag types and do not have any public API and are not intended to be
used other than as template arguments to suspend_point_handle .

The public interface of suspend_point_handle is defined as follows:

using with_resume = unspecified;
using with_set_done = unspecified;
using with_destroy = unspecified;
template<typename Promise>

using with_promise = unspecified;

// Helper concepts to assist with definition.

template<typename T, typename... Values>

concept _OneOf = (Same<T, Values> || ...);

template<typename T>

concept _CompilerGeneratedSuspendPointHandle = unspecified;

template<typename... Operations>

struct __promise_type_helper {};

template<typename Promise, typename... Rest>

struct __promise_type_helper<with_promise<Promise>, Rest...> {

 using type = Promise;

};

template<typename First, typename... Rest>

struct __promise_type_helper<First, Rest...>

: __promise_type_helper<Rest...> {};

template<typename... Operations>

concept _HasWithPromise =

 requires() {

 typename __promise_type_helper<Operations...>::type;

 };

template<typename... Operations>

class suspend_point_handle {

public:

 // Construct to the null handle.

 constexpr suspend_point_handle() noexcept;

 // Copy construction/assignment

 suspend_point_handle(const suspend_point_handle&) noexcept;

 suspend_point_handle& operator=(const suspend_point_handle&) noexcept;

 // Implicit conversion from a compiler-generated suspend-point handle type.

 // Only valid if the handle supports all of the specified Operations.

 template<_CompilerGeneratedSuspendPointHandle Handle>

 requires /* ... see below */

 suspend_point_handle(Handle handle) noexcept;

 // Trivial destructor

 ~suspend_point_handle() = default;

 // Test for the null handle.

 explicit operator bool() const noexcept;

 bool operator!() const noexcept;

 [[nodiscard]]

 continuation_handle resume() const

 requires _OneOf<with_resume, Operations...>;

 [[nodiscard]]

 continuation_handle set_done() const

 requires _OneOf<with_set_done, Operations...>;

 void destroy() const

 requires _OneOf<with_destroy, Operations...>;

 auto promise() const

 -> typename __promise_type_helper<Operations...>::type&

 requires _HasWithPromise<Operations...>;

private:

 // Exposition only.

 void* data;

 void* vtable;

};

Note that the implicit conversion from a compiler-generated suspend-point handle type is constrained to
require the source handle type support all of the operations that have been requested by the type-erased
handle.

The constraint on this constructor can be written using a concept requires clause as follows:

template<_CompilerGeneratedSuspendPointHandle Handle>

 requires

 (!_OneOf<with_resume, Operations...> ||

 SuspendPointHandleWithResume<Handle>) &&

 (!_OneOf<with_destroy, Operations...> ||

 SuspendPointHandleWithDestroy<Handle>) &&

 (!_OneOf<with_set_done, Operations...> ||

 SuspendPointHandleWithSetDone<Handle>) &&

 (!_HasWithPromise<Operations...> ||

 SuspendPointHandleWithPromiseOf<

 Handle, typename __promise_type_helper<Operations...>::type>)

suspend_point_handle(Handle handle) noexcept;

However, implementations may be able to define this constructor with equivalent constraints in a more
direct way without relying on disjunctions in the requires clauses. e.g. by making use of the internal details
of the Operation types.

Convertibility between different suspend_point_handle instantiations
Note also that this does not support conversion from one type-erased handle type to a different type-erased
handle type.

Reference implementations of the handle type store a pointer to the frame and a pointer to a vtable which
encodes information about the type-erased operations. Supporting conversion between type-erased handle
types would require being able to generate a new vtable for the combination of the target subset of
operations and the original handle type. However, as we have already type-erased the original handle type
we cannot easily do that unless we pre-generate vtables for all possible combinations of sub-operations.

User code can still convert the same compiler-generated handle type to multiple different type-erased
handle types as required, however.

Mapping from coroutine_handle usages to suspend_point_handle usages
To translate code written against the Coroutines TS from using coroutine_handle to using
suspend_point_handle

Table 1: Handles representing initial and final suspend-points

coroutine_handle<void> suspend_point_handle<with_resume, with_destroy>

coroutine_handle<Promise> suspend_point_handle<

 with_resume, with_destroy,

 with_promise<Promise>>

Table 2: Handles representing co_await /co_yield suspend-points

coroutine_handle<void> suspend_point_handle<with_resume, with_set_done>

coroutine_handle<Promise> suspend_point_handle<

 with_resume, with_set_done,

 with_promise<Promise>>

Note that there is not a direct correspondence between these types for all use-cases due to the change in
semantics of destroy() , which was previously allowed to be called at any suspend-point and is now only
allowed at initial and final suspend points, and due to the introduction of set_done() , which can now be
called at any suspend-point except the final suspend-point.

The noop_continuation
In cases where an awaitable does not have another continuation to transfer execution to it needs to be able
to suspend and return execution back to the most-recent caller on the stack that asymmetrically invoked a
continuation handle.

Under the Coroutines TS you can call std::noop_coroutine() to obtain a coroutine_handle that
represents the no-op continuation (ie. when it was resumed it would immediately return to the caller). If such
a handle was returned from await_suspend() then this would cause the top-most call to resume() on
the stack to return to its caller.

The same facility is provided here, however it is named std::noop_continuation() and returns a
noop_continuation_handle that satisfies the ContinuationHandle concept.

The synopsis for the std::noop_continuation() and std::noop_continuation_handle type:

class noop_continuation_handle {

public:

 // Construct to the null handle

 constexpr noop_continuation_handle() noexcept;

 // Copy construction/assignment

 noop_continuation_handle(const noop_continuation_handle&) noexcept;

 noop_continuation_handle& operator=(const noop_continuation_handle&) noexcept;

 // Trivial destructor

 ~noop_continuation_handle() = default;

 // Test for the null handle

 explicit operator bool() const noexcept;

 bool operator!() const noexcept;

 // Invoke the noop-continuation

 void operator()() noexcept {}

private:

 unspecified;
};

// Returns a non-null handle.

noop_continuation_handle noop_continuation() noexcept;

Incremental steps to incorporate proposed changes
The following changes describe a set of logical steps to get from the current wording in the C++20 working
draft to wording that incorporates the changes proposed by this paper.

1. Merge initial_suspend() and get_return_object() .
2. Remove coroutine_handle::from_promise()
3. Remove coroutine_handle::address() /from_address()
4. Simplify final_suspend() method to return a coroutine_handle
5. Rename final_suspend() to done()
6. Split coroutine_handle into two separate types suspend_point_handle and

continuation_handle

a. Compiler passes a suspend_point_handle to get_return_object() and
await_suspend()

b. Library returns a continuation_handle from await_suspend() and done()
7. Refactor destroy() into set_done() and destroy()
8. Rename std::noop_coroutine() to std::noop_continuation()
9. Limit suspend-point handles to only allow resuming a coroutine once
10. Modify the compiler to pass compiler-generated, per-suspend-point handle types to

get_return_object() and await_suspend() .
11. Modify suspend_point_handle to take template parameters indicating operations to type-erase

and add with_resume , with_set_done , with_promise<P> , with_destroy operation types.

A followup paper with proposed wording for the changes will be made available post-Cologne.

Merge initial_suspend() and get_return_object()
This change is described in more detail in P1477R1, but the basic summary of the change is:

● No longer evaluate 'co_await promise.initial_suspend(); ' at the start of the coroutine.
● The coroutine is always created initially suspended.
● The promise.get_return_object() method is passed the initial coroutine_handle

This results in the following change in definition of a promise_type:
// Coroutines TS promise_type interface

struct promise_type
{

 T get_return_object();

 Awaitable< void > initial_suspend();
 ...

};

// Proposed promise_type interface

struct promise_type
{

 T get_return_object(coroutine_handle<promise_type>

h);

 ...

};

The motivation for this change is:
● It reduces the amount of code needed to implement a coroutine's promise_type .
● It eliminates a number of specification issues relating to the behaviour of a coroutine if an exception

is thrown from the co_await promise.initial_suspend() expression.
● It eliminates the need to call coroutine_handle::from_promise() to obtain a

coroutine_handle in get_return_object() .
● It opens the door to making coroutine_handle 's resumption single-shot.
● It opens the door to having the compiler pass different kinds of handles for different types of

suspend-points.
● This is an important step for later changes.

Remove coroutine_handle::from_promise()
The primary use for coroutine_handle::from_promise() is to allow a coroutine_handle that references
the current coroutine to be manufactured from within the get_return_object() method so that a handle to
the coroutine can be passed to the constructor of the return value. eg. task<T>

The motivation for this change is:

● from_promise() is no longer needed once we have merged initial_suspend() and
get_return_object() as the compiler is now passing the coroutine_handle to
get_return_object() .

● from_promise() is a potentially dangerous function:
○ You need to pass the exact promise-type used for the coroutine frame.

Calling coroutine_handle<promise_base>::from_promise(*this) when the
dynamic type of *this is a derived type has undefined-behaviour.
Any derived promise type will need to override get_return_object() to ensure that the
coroutine_handle is constructed using the most-derived type.

○ This method manufactures a coroutine_handle for a coroutine that is not necessarily
suspended. Callers will need to be careful that they do not call methods on this handle unless
the coroutine is actually suspended at a suspend-point.

● The existence of this method constrains implementations in how they can layout the coroutine frame:
○ The existence of this function requires the coroutine frame to be laid out such that the

address of the coroutine's resumption state is able to be deterministically calculated from the
address of the promise object. This typically means that the promise must be located at a
fixed offset from the storage of the ABI-stable part of the coroutine resumption state.

○ This can potentially constrain what implementations are able to support in the future if we
were to, at some stage, require different flavours of ABI-stable coroutine resumption state for
different kinds of suspend-points.

● Removing this method is a step towards supporting different kinds of handles for different kinds of
suspend-points.

○ To be able to support adding new kinds of suspend-points in future (eg. for async
return-value optimisation or a 'for co_await' facility) we need the flexibility to be able to have

different kinds of suspend-points use different kinds of handles with different sets of
operations available on them.

○ A factory function that allows you to manufacture a coroutine_handle for a coroutine at
any point in time, regardless of kind of suspend-point it is suspended at, may constrain the
design to only ever supporting a single kind of coroutine_handle .

Remove coroutine_handle::address()/from_address()
The coroutine_handle::address() and coroutine_handle::from_address() methods allow
converting a coroutine_handle to/from a void* pointer.

This step removes those methods from the interface.

The motivation for this change is:

● Later steps introduce a type-erased suspend_point_handle where a reasonable
implementation strategy requires a handle-type that is larger than a single pointer.

● The presence of the ability to convert to/from a void* either requires the handle type to be the size
of a single pointer or requires the coroutine frame to reserve additional storage in the coroutine
frame to store enough state allow reconstructing the handle from a void* .

● Removing these methods frees implementations to define handle types larger than a pointer without
needing to reserve storage in the coroutine frame for the conversion to/from void*

This ability to convert a coroutine_handle to/from a void* was originally added to facilitate passing a
coroutine_handle through existing async C APIs that accepted a void* data parameter which was
then passed back to the user-provided callback.

However, in cases where the C API produces a result that is to be returned from the co_await expression,
the coroutine_handle alone can be insufficient for resuming the coroutine. The result would need to be
stored inside the awaitable object so that when the coroutine is resumed the await_resume() method
can return this result.

In these cases it is typical to pass a pointer to the awaitable object as the void* parameter rather than
passing coroutine_handle::address() .

For example: An awaitable wrapper around a fictional OS API with a void* data parameter

using callback_t = void(int /* result */, void* /* data */);

void os_async_start_foo(callback_t* cb, void* data);

struct foo_awaitable {

 bool await_ready() { return false; }

 void await_suspend(coroutine_handle<> h) {

 continuation_ = h;

 os_async_start_foo(&foo_awaitable::on_complete, /*data=*/this);

 }

 int await_resume() { return result_; }

private:

 static void on_complete(int result, void* data) {

 foo_awaitable* awaitable = static_cast<foo_awaitable*>(data);

 awaitable->result_ = result;

 awaitable->handle_.resume();

 }

 coroutine_handle<> continuation_;

 int result_;

};

The same approach can be used as an alternative to converting the coroutine_handle to/from void* .
Just store the handle in the awaitable object and pass a pointer to it.

Simplify final_suspend()
This change is described in more detail in P1477R1, but the basic summary of the change is:

● Instead of executing co_await promise.final_suspend(); at the end of the coroutine body,
the coroutine is unconditionally suspended and the compiler calls promise.final_suspend()
and then symmetrically-transfers to the coroutine identified by the returned coroutine_handle .

● The coroutine is no longer implicitly destroyed when execution runs off the end of the coroutine.
● Any exceptions thrown from promise.final_suspend() call propagate out of the current call to

coroutine_handle::resume() .

Motivation for this change:

● Reduces the amount of code needed to implement final_suspend() methods.
See P1477R1 for examples.

● Eliminates some of the specification issues relating to exceptions propagating from evaluating the
co_await promise.final_suspend(); statement.

● Encourages usage patterns that call .destroy() from the coroutine wrapper type rather than from
final_suspend() . These patterns are more likely to have their coroutine frame allocations elided

Note that this paper has a further simplification to final_suspend() compared with the simplification
described in P1477R1, which described the final_suspend() method as being passed a
coroutine_handle which could be used to destroy the coroutine, whereas this paper proposes that
final_suspend() is called without any arguments.

The rationale for this difference from P1477R1 is:

● It is a further simplification of the interface.
● The only operation that it is valid to perform on a coroutine suspended at the final-suspend point is to

destroy the coroutine frame.

● If we add support for coroutine-frames-as-types in future (See [P1342R0]) then calling destroy()
on a handle passed to final_suspend() would actually be a no-op / not be meaningful as it
should be the destructor of the coroutine-frame object itself that would destroy the coroutine frame.

● If the frame was created by calling the constructor on a type then it should be destroyed by calling
the destructor on that type rather than calling .destroy() on the coroutine frame.

● The only reason for passing a handle to final_suspend() was to support self-destructing
coroutine types

○ This can be implemented by storing the handle passed to get_return_object() in the
promise and calling .destroy() on that from final_suspend() .
See detached_task example in Appendix A.

Rename final_suspend() to done()
Rename the promise.final_suspend() method to promise.done() .
Rename the label used by co_return definition from 'final_suspend:' to 'done:' .

Rationale:

● No need to maintain consistency of naming with now removed initial_suspend()
● Matches terminology from sender/receiver design for executors.

See P1341R0, P1660R0

Split coroutine_handle into suspend_point_handle and
continuation_handle

This change is the primary enabling change for some of the extensions to coroutines we anticipate adding in
future versions of C++. These extensions include supporting async cancellation (needed for async RAII -
See P1662R0), async return-value-optimisation (See P1663R0) and heterogeneous resume.

All of these features have in common that they require the ability for a suspended coroutine to be resumed
along one of several possible continuation paths rather than just along a single 'resume() ' path.

For example, support for async RVO would require resumption on either a 'value' path, which continues with
the result of the co_await expression having the provided value, or resumption on an 'error' path, which
immediately throws an exception when the coroutine is resumed.

This step splits the coroutine_handle type into two separate types:

● A suspend_point_handle , which represents a coroutine suspended at a particular point in its
execution.

● A continuation_handle , which represents a selected resumption path of a coroutine from a
particular suspend-point.

If you were to represent the control-flow of a coroutine as a graph then a suspend-point represents a node
in the control flow graph at which the coroutine can be suspended and this node has a single incoming
edge. That node in the graph can have zero or more out-edges, each corresponding to a particular
resumption path (eg. resuming with a value or resuming with cancellation).

A suspend_point_handle represents the suspend-point node in the control-flow graph. The interface of
the suspend_point_handle allows the caller to select which outgoing edge the coroutine should resume
on by calling one of the methods that returns a continuation_handle . The returned
continuation_handle represents the chosen out-edge of the control-flow graph.

By splitting the coroutine_handle into suspend_point_handle and continuation_handle types
we allow a coroutine to be resumed on one of several possible paths while still retaining the ability to
perform symmetric transfer (See P0913R0).

If, instead, we were to simply add another method, say set_done() , to coroutine_handle which
would, like resume() , asymmetrically resume the coroutine but along the path that executed 'goto
done; ', then we would still need some other way to indicate that this path should be taken for the
symmetric-transfer cases when the handle was returned from await_suspend() , which is currently
defined to call resume() on the returned handle.

The interface of the suspend_point_handle and continuation_handle types are described above
in the section on "Type-erased handle types".

Split suspend_point_handle::destroy() into set_done() and
destroy()

This change separates the current responsibilities of the suspend_point_handle::destroy() method
into two separate operations:

● set_done() - Returns a continuation_handle that, when invoked, will resume the coroutine
and immediately execute 'goto done; '.

● destroy() - Destroys the promise, parameters and coroutine frame.
The destroy() method is only valid to call when the coroutine is suspended either at the initial or
final suspend-points.

The suspend_point_handle::destroy() method is currently used by generator types to cancel
execution of the rest of the coroutine when the consumer destroys the generator object, in addition to being
used in general to destroy a coroutine that has run to completion.

The destroy() method synchronously calls the destructors of any in-scope objects before freeing the
coroutine frame memory. The destroy() method is required to complete synchronously and optimisations
like HALO (See P0981R0) rely on destroy() completing synchronously so that it knows the memory used
by the coroutine frame is no longer in-use.

This need for destroy() to complete synchronously does not generalise well to supporting cancellation of
a coroutine once support for async RAII has been added to the language (see P1662R0 for a discussion of
async RAII). Once we have async RAII support then exiting the scopes of a suspended coroutine may
involve executing some async operations and thus cancelling a coroutine cleanly needs to be an
asynchronous operation.

By introducing a separate set_done() method which resumes the coroutine and executes 'goto done; '
it allows the coroutine to subsequently suspend again while executing async cleanup. It will then eventually
reach the 'done: ' label and execute the 'promise.done() ' method at which point the library can safely
call .destroy() to destroy the coroutine frame since it knows that all async cleanup has completed.

For more details see the paper P1662R0 - "Adding async RAII support to coroutines".

Note that the addition of the set_done() continuation path can also potentially be used to break out of
a 'for co_await' . See the later section "Add support for async range-based for loops".

Rename std::noop_coroutine() to std::noop_continuation()
This step performs the following changes:

● Adds a new std::noop_continuation_handle type

● Removes std::noop_coroutine_promise type
● Renames std::noop_coroutine() to std::noop_continuation() and changes the

return-type to std::noop_continuation_handle

The std::noop_coroutine() method in the current coroutines design returns a coroutine_handle
that has a no-op resume() and destroy() method.

The representation of std::noop_coroutine() as a coroutine_handle was always a bit of
stretched analogy as it does not actually refer to a coroutine. It was only ever meaningful to call
.resume() on the handle - the semantics of a call to .destroy() or .done() was well-defined but not
meaningful.

Logically, the returned handle represented a no-op continuation that could be returned from
await_suspend() to allow it to resume the caller of the top-most call to
coroutine_handle::resume() on the stack.

Now that we have split the concept of a suspend-point from that of a continuation we can now just have this
function return a continuation-handle without needing to implement the other parts of the
coroutine_handle interface that were not relevant because the handle was not referring to a coroutine.

Limit suspend-point handles to only allow resuming a coroutine once
The design of coroutine_handle in the Coroutines TS permitted using the any coroutine_handle
that referred to the coroutine to resume the coroutine regardless of what suspend-point the coroutine was
currently suspended at.

This step restricts a suspend_point_handle to only being valid to resume the coroutine from that
particular suspend-point. Once the coroutine has been resumed from a given suspend point it is no longer
valid to use that suspend-point handle to resume the coroutine again. You must use the suspend-point
handle passed to await_suspend() when the coroutine next suspends.

Note that it is still valid to use a suspend-point handle's promise() method to access the promise for that
coroutine, provided that the coroutine has not yet been destroyed.

Motivation for this change:

● This restriction enables support for more efficient non-type-erased suspend-point handles.
If a coroutine can be resumed by any suspend-point handle to the coroutine then this forces the
compiler to store the resumption state in a shared location in the coroutine frame so that the
coroutine can be resumed by any of the handles, even if the coroutine is ultimately resumed by a
non-type-erased handle.
If we remove this capability then we allow implementations to store the resumption state in the
handle itself, either encoded in the handle's type or stored in a type-erased form as a data-member
of the handle, rather than in the coroutine frame. This can avoid stores to the coroutine state.

● This change opens the door to supporting async return-value-optimisation in future.
To support return-value optimisation a suspend_point_handle will need to carry information
about the result-type and the address of the result of the co_await /co_yield expression so that it
can construct the result in-place.
This will potentially require a different suspend-point handle type for each suspend-point as the
handle will need to know about the return-type and return-value address of that particular
suspend-point, which could be different for each suspend-point in a coroutine.

● This change also supports using different kinds of suspend-point handle for different kinds
of suspend-points in a coroutine.
eg. to support a coroutine where some suspend-points use async RVO-style awaitables and a
corresponding async RVO-style suspend-point handle and other suspend-points use Coroutines
TS-style awaitables with a resume()-style suspend-point handle.
In general, the only way to know what kind of handle is valid to resume a coroutine from its current
suspend point is to use the handle that was provided by that suspend-point's expression.

Modify the compiler to pass compiler-generated, per-suspend-point
handle types to get_return_object() and await_suspend()
With this change we make the compiler generate a unique, anonymous handle type for each suspend-point
in each coroutine and have the compiler invoke the get_return_object() or await_suspend()
method with an instance of that suspend-point type instead of invoking with an instance of a
suspend_point_handle type.

The per-suspend-point handle type can encode information about which suspend-point in the coroutine it
represents in the type itself, allowing the compiler to avoid indirect jumps when resuming the coroutine via
this handle.

This change also adds a number of named concepts to the library that allow await_suspend() methods
to constrain their arguments to requiring particular operations to be present on the passed
suspend-point-handle type: SuspendPointWithDone , SuspendPointWithResume ,
SuspendPointWithPromise , SuspendPointWithDestroy .

Motivation for this change:

Needed to support type-erasing to different flavours of suspend_point_handle with different sets
of operations as template arguments.

The per-suspend-point handle type can be cast to any suspend_point_handle type as long as the
suspend-point supports all of the operations listed in the template arguments of the
suspend_point_handle type.

See the generator<T> example in Appendix A which type erases the handle passed to
get_return_object() as both a suspend_point_handle<with_resume, with_destroy,
with_promise<promise_type>> and suspend_point_handle<with_resume,
with_set_done> .

However, a suspend_point_handle cannot be cast to a suspend_point_handle with a different
subset of operations. If the compiler were to pass an already-type-erased suspend_point_handle type
then we wouldn't be able to obtain a type-erased handle that contained a subset of the set of operations, eg.
so that the handle could be stored in a variable that also needs to store a handle from a different kind of
supsend-point.

Adding support for passing non-type-erased handles later could be a breaking change.

Let's say that, initially, we decided to specify that the compiler will pass a particular type-erased
suspend_point_handle for a given co_await expression. eg.

template<typename Promise = void>

using await_suspend_point_handle =

 suspend_point_handle<with_resume, with_set_done, with_promise<Promise>>;

And let's say that we also define the suspend_point_handle type so it is possible to implicitly cast from
await_suspend_point_handle<Promise> to await_suspend_point_handle<void> .

Then it would be possible (and indeed likely) that someone could write an Awaitable type with the following
interface:

struct my_awaitable {

 bool await_ready();

 template<typename Promise>

 continuation_handle await_suspend(await_suspend_point_handle<Promise> h);

 void await_resume();

};

If coroutines in C++20 were to be specified such that the await_suspend() method were to be invoked
with an instance of type await_suspend_point_handle<concrete_promise_type> then the
compiler's invocation of this await_suspend() method would compile fine - the Promise template
parameter would be deduced to concrete_promise_type .

However, if in C++Next we wanted to change the rule to allow invocation of the await_suspend()
method with a compiler-generated per-suspend-point handle type which was convertible to
await_suspend_point_handle<concrete_promise_type> then the compiler would no longer be
able to deduce the Promise template parameter and the code would stop compiling.

This particular problem could be alleviated by having the per-suspend-point handle type inherit from
await_suspend_point_handle<concrete_promise_type> .
However, this would not solve a more subtle problem that could lead to a silent change in behaviour.

Consider an Awaitable that changes its behaviour based on whether or not the promise of the awaiting
coroutine supports some capability:

struct my_awaitable {

 bool await_ready();

 template<typename Promise>

 requires requires (Promise& promise) {

 { promise.get_stop_token() } -> std::stop_token;

 }

 continuation_handle await_suspend(await_suspend_point_handle<Promise> h) {

 // Start operation with cancellation support

 // ...

 }

 template<typename Handle>

 continuation_handle await_suspend(Handle h) {

 // Start operation without cancellation support

 // ...

 }

 void await_resume();

};

Now, if in C++20 the compiler were to invoke the await_suspend() method with
await_suspend_point_handle<concrete_promise_type> and concrete_promise_type
supported the get_stop_token() method then the compiler would end up calling the first overload with
cancellation support.

However, if in C++Next the compiler started calling the await_suspend() method with a
compiler-generated per-suspend-point handle type which inherited from
await_suspend_point_handle<concrete_promise_type> then all of a sudden the second
overload becomes a better match than the first overload and the compiler starts calling the second overload,
silently changing the semantics of the program.

It is possible for users to write this code differently to allow for the possibility of this change so that it does
not change behaviour. However, we cannot guarantee that users will not write code like this.

Thus, It will not be possible to safely add support for passing non-type-erased suspend-point-handles in a
future version without requiring a change in the method name or arity of the call to await_suspend() .

Roadmap of changes for post-C++20
The prior section described the set of changes proposed for C++20. To help give some context to those
changes, this section describes some of the future changes that are being considered. the proposed
changes would enable or greatly simplify adding in future versions of the standard.

Add support for async RAII
The paper P1662R0 "Adding async RAII support to coroutines" describes some use-cases and motivation
for adding support for async RAII in future.

The general idea is to add the ability to define an async operation that is awaited at the end of an async
scope to allow performing async cleanup operations or asynchronously waiting for concurrent operations to
complete before exiting a scope and destroying a resource they were using.

This is expected to be an important feature to add for coroutines to simplify the ability to write correct
concurrent code in the presence of exceptions or other non-trivial control-flow.

However, adding support for async RAII means that we could no longer use
coroutine_handle::destroy() to cancel an async generator as there may be some async cleanup
operations that need to complete before the coroutine can be safely destroyed.

If we do not adopt the changes proposed in this paper for C++20 then if we later add support for async RAII
we will have to find some other mechanism for cancelling async generators currently suspended at a
co_yield expression. The two possibilities is either cancel it by throwing an exception from the co_yield
expression or return a status-code from the co_yield expression which needs to be manually checked.

Adding the set_done() signal proposed in this paper provides an async cancellation resumption path for
cancelling async generators, allowing us to keep the same cancellation model as synchronous generators,
even in the presence of async RAII.

Add support for async return-value optimisation
The paper P1663R0 "Supporting return-value optimisation in coroutines" describes the use-cases and
motivation for adding support for return-value optimisation in coroutines.

One of the key capabilities needed to be able to support return-value optimisation for coroutines is to allow
awaitable types to directly construct the result of a co_await or co_yield expression rather than having
to store the value somewhere, resume the coroutine and return a copy from await_resume() .

To support this capability, the suspend-point handle passed to a co_await expression that uses RVO would
have .set_value<T>(ctorArgs...) and .set_exception(eptr) methods instead of .resume() .
The suspend-point handle would have knowledge of the return-address of the co_await expression and
calling set_value() would directly construct the result of the co_await expression at that address.

This would require a new Awaitable concept that had a different interface - it would not need the
await_ready() and await_resume() methods of the current Awaitable concept.

For example: A simple awaitable type with current awaitable interface vs async RVO awaitable interface

struct simple_awaitable {
 coroutine_handle<> coro_;

 std::variant<std::monostate,

 T,

 exception_ptr> result_;

 bool await_ready() { return false; }

 void await_suspend(coroutine_handle<> h) {
 coro_ = h;

 start();

 }

 T await_resume() {

 // Branch required after result

 // to handle value/error case

 if (result_.index() == 2) {
 std::rethrow_exception(

 std::get<2>(result_));

 }

 // Move-construct resulting value.
 return std::get<1>(std::move(result_));
 }

private:
 void start();

 void on_complete(const X& x) {
 // Construct result
 result_.emplace<1>(x);

 coro_.resume();

 }

 void on_error(std::exception_ptr e) {
 result_.emplace<2>(e);

 coro_.resume();

 }

};

struct simple_awaitable {
 std::suspend_point_handle<

 with_value<T>, with_exception> sp_;

 // Typedef to indicate what the result type

 // will be.

 using await_result_type = T;

 template<typename SuspendPoint>
 auto operator co_await(SuspendPoint sp) {
 sp_ = sp;

 start();

 return std::noop_continuation();

 }

private:
 void on_complete(const X& x) {
 // Directly construct result (no copy)
 auto continuation = sp_.set_value<T>(x);

 // Directly resume value path (no branch)
 continuation();

 }

 void on_error(std::exception_ptr e) {
 // Copies exception_ptr to coroutine frame
 auto continuation = sp_.set_exception(e);

 // Directly resume error path (no branch)
 continuation();

 }

};

Adding this capability requires the ability to support multiple possible resumption paths and also requires
allowing different suspend-points to use different handle types for each operation.

Support for this style of suspend-point handle, with set_value() and set_exception() methods, is
also a pre-requisite for supporting heterogeneous resume (see later section).

Add support for async range-based for-loops
The Coroutines TS originally included the definition of a 'for co_await' range-based for-loop that was based
on a similar pattern to that of synchronous ranges using iterators but where the advancement of an iterator
was an async operation invoked with co_await.

However, this capability was removed from the draft pending further investigation into the design of
async-ranges as it was not clear that an iterator-based lowering was necessarily going to be the most
appropriate representation for async ranges.

There are some interesting possibilities for the lowering of a 'for co_await' loop if we have a co_await
expression able to have set_done(), set_error() and set_value() continuations.

If the loop variable were initialised with the result of a co_await expression then the set_done() continuation
would map to end-of-stream and exit the loop, the set_value() continuation would construct the value for the
loop variable for the next iteration of the loop and the set_error() continuation would exit the loop with an
exception.

More research is required in this area.

Add support for co_return as a suspend-point
The current behaviour of co_return is to immediately execute 'goto final_suspend; ' after the call to
promise.return_value/return_void returns. We cannot currently suspend the coroutine at the
co_return statement.

Adding support for turning co_return into a suspend-point, similar to co_yield except without the ability
to resume with a value, would be useful for some use-cases.

For example, the ability to suspend at a co_return suspend-point would allow an async_generator to
resume its consumer with the 'end-of-stream' value prior to running cleanup of the in-scope objects. When
this is combined with async RAII, which means that cleaning up in-scope objects might not complete
synchronously, this can reduce the latency involved in the consumer receiving and processing the
end-of-stream signal.

With the introduction of the set_done() operation we could expose the co_return keyword as a
suspend-point where set_done() is the only continuation path supported by that kind of suspend-point.

This would make co_return logically and semantically similar to co_yield , except the compiler can take
advantage of the fact that the co_return suspend-point has no 'value' continuation to do things like
dead-code elimination.

Add support for non-type-erased coroutines
Supporting non-type-erased coroutines is an important step to being able to defer creation of the coroutine
frame, defer choice of the promise type and expose coroutine-frames as types.

The paper P1342R0 "Unifying Coroutines TS and Core Coroutines" discusses a potential direction for
incrementally adopting these changes to the current design. This same incremental approach would also be
applicable on top of the changes proposed in this paper.

Add support for delaying choice of promise-type
The ability to delay the choice of the promise_type to use for a coroutine until some point after the coroutine
was invoked, for example when the returned task is subsequently awaited, will allow many important
use-cases.

For example, it will allow context to be injected automatically from the awaiting coroutine into the callee.
This can be used to propagate things like allocators, executors and stop tokens automatically to child
coroutines without needing to explicitly pass them as parameters to the function and without needing to
type-erase them.

The paper [P1342R0] discusses a potential direction for incrementally adding support for this in future.

Add support for exposing coroutine-frames as types
There has been concern raised [P0973R0] about the potential overhead of the implicit heap allocation that
is required by the current design of coroutines. While the heap-allocation elison optimisation can often
eliminate this overhead, it is not guaranteed.

The ability to represent a coroutine-frame as a type in the C++ type system would allow a program to
statically guarantee that coroutine frames were not heap allocated. However, representing the coroutine
frame as a type has some challenges which have been discussed in [P1492R0].

The paper [P1342R0] discusses a potential direction for incrementally adding support for this if and when
these challenges are solved.

Add support for heterogeneous resume
You can think of a coroutine as being a function the compiler transforms into a state-machine and where
co_await expressions are a kind of async operator() that invokes the awaitable object passed as the

operand with the rest of the function as a lambda/callback that captures a reference to the coroutine state
and that has a body that represents the rest of the function body after the co_await expression.

Much of the benefit of coroutines comes from it simplifying callback-based code that you would previously
have to had to manually break up into individual callbacks.

Ideally, coroutines could be used to replace and simplify many existing uses of callbacks.

However, some callback-based APIs allow the caller to pass a generic callback that has an overloaded or
generic operator() and where the callback is invoked with one of several possible types.

For example, the paper [P1341R0] describes the Sender/Receiver design for representing callback-based
asynchronous operations and describes the impedance mismatch between what is possible with coroutines
and Awaitable types today and what is possible with the general callback-based model of Sender/Receiver.

We have been exploring the potential for evolving coroutines to also be able to support operations invoking
the continuation with one of several possible types, something we have been calling "heterogeneous
resume".

Example: A hypothetical coroutine design that matches the semantics of callbacks

Callback-based code Equivalent coroutine-based code

template<typename T>

concept Logger = ...;

template<typename Callback>

void with_logger(std::string_view key,

 Callback cb)

{

 if (key == “syslogd”) {

cb(syslog_logger{});

 } else if (key.starts_with(“file:”)) {

cb(file_logger{key.substr(5)});

 } else {

cb(noop_logger{});

 }

}

void example(int count)

{

 with_logger(

 getenv(“LOGGER”),

 [&](Logger auto logger)

 {

 for (int i = 0; i < count; ++i)

 {

 logger.log(“work start {0}”, i);

 do_work(i);

 logger.log(“work end {0}”, i);

template<typename T>

concept Logger = ...;

auto get_logger(std::string_view key)

 [->] lazy<Logger>

{

 if (key == “syslogd”) {

 co_return syslog_logger{};

 } else if (key.starts_with(“file:”)) {

 co_return file_logger{key.substr(5)};

 } else {

 co_return noop_logger{};

 }

}

void example(int count)

{

 Logger auto logger =

 co_await get_logger(getenv(“LOGGER”));

 for (int i = 0; i < count; ++i)

 {

 logger.log(“work start {0}”, i);

 do_work(i);

 logger.log(“work end {0}”, i);

 }

}

 }

 });

}

In this example, the continuation of the co_await expression is instantiated multiple times, each with a
different type, just like with the callback example. There are multiple resumption paths that can be taken and
each co_return statement in get_logger() will dispatch to the corresponding resumption path.

There is no type-erasure going on here with either of these implementations.
The goal is to make the RHS simply syntactic sugar for what appears on the LHS.

The ability to resume a coroutine with multiple possible types could be used to replace std::visit() ,
iterate over elements of a std::tuple , or other variable-length heterogeneous sequences using a 'for
co_await ' loop.

This capability is part of a long-term vision we have for unifying callbacks with coroutines. This capability
should be able to be built incrementally on top of changes described in [P1342R0], [P1662R0] and this
paper. More research is required to resolve some implementation challenges, however.

Implementation Experience

A prototype of the changes proposed by this paper for C++20 has been implemented in Clang for the
purposes of evaluating the implementability and library impacts of the revised design.

The implementation can be found at: https://github.com/lewissbaker/llvm/tree/P1745

Note: This implementation also incorporates the changes proposed by P1713R0 to allow both
return_value() and return_void() to be defined on the same promise_type .

The compiler changes required in the Clang front-end were straight forward to implement as incremental
changes on top of the existing coroutines implementation.

The changes to merge get_return_object() /initial_suspend() and simplify final_suspend()
simplified the logic required to implement codegen for the corresponding parts of the coroutine.

Rather than have the compiler procedurally generating the per-suspend-point handle type definitions, the
prototype implementation simply instantiates templated implementations of the per-suspend-point handle
types that are provided by a standard library, passing an anonymous tag struct created for each
suspend-point as one of the template arguments to ensure these types were unique.

https://github.com/lewissbaker/llvm/tree/P1745

A production implementation could exercise more control over the codegen for the handle types if it were to
procedurally generate the type definitions; for example to avoid generating code for unused
resumption-paths if it detected that the corresponding method on the per-suspend-point handle type was
never instantiated.

No changes were required to the LLVM intrinsics for coroutines at the IR level to implement the prototype.
However, some changes to the coroutine intrinsics would be necessary to generalise it to support more than
two resumption paths for a given suspend-point (the current intrinsics have a hard-coded 'destroy' and
'resume' resumption-path).

Further changes to the LLVM intrinsics would be required to take advantage of the extra optimisation
possibilities per-suspend-point handle types and the ability to store coroutine suspension state in the
handles offers.

The <experimental/coroutine> header in libc++ was updated to define the suspend_point_handle and
continuation_handle types.

Implementations of some basic coroutine types, task<T> and generator<T>, were modified to incorporate
the proposed changes. These types required relatively small and straight-forward changes, mostly
consisting of changing some type-names, removing methods from the promise_type and adding an extra
method call to create/invoke the continuation. See Appendix A for some examples.

A subsequent revision of this paper will report on further implementation experience gained once the
conversions of existing open-source coroutine libraries to use the revised changes have been completed.

Bikeshedding

Bikeshedding coroutine resumption method names
The proposal as it stands uses the name resume() for the method that returns a continuation_handle
which resumes the coroutine with a result for consistency with the naming of the existing
coroutine_handle::resume() function. However, this naming may be confusing since the method
does not actually resume the coroutine but returns a handle that needs to be invoked to resume the
coroutine.

Some alternative names for the coroutine resumption methods have been considered and can be
bikeshedded if necessary:

Operation Current proposed name Potential alternative names

Resume coroutine with
result of calling

.resume() .continue_with_result()

.set_result()

await_resume()

Resume coroutine and
immediately execute
'goto done; '

.set_done() .continue_with_done()

.continue_with_break()

.stop()

.cancel()

Resume coroutine with
an RVO-constructed
value of type T

.set_value<T>(args...

)

.continue_with_value<T>(args...)

.

Resume coroutine by
calling
std::rethrow_excep

tion() .

.set_exception(eptr)

.continue_with_exception(eptr)

Resume coroutine by
executing 'throw err; '

.set_error<E>(err) .continue_with_error<E>(err)

Notes:

● Using the name 'result' instead of 'resume' may tie in with proposed naming change in P1610R0
which proposes renaming await_resume() to await_result().

● The naming with the 'continue_' prefix is intended to convey an association with the term
'continuation_handle'.

● The term 'break' would tie in with the use of this continuation path as a way of breaking out of a 'for
co_await' loop.

References
[P0913R0] - "Add symmetric coroutine control transfer" - Gor Nishanov
[P0973R0] - "Coroutines TS Use Cases and Design Issues" - Geoff Romer, James Dennett
[P0981R0] - "Halo: coroutine Heap Allocation eLision Optimisation: the joint response" - Richard Smith,

Gor Nishanov
[P1341R0] - "Unifying Asynchronous APIs in the Standard Library" - Lewis Baker
[P1342R0] - "Unifying Coroutines TS and Core Coroutines" - Lewis Baker
[P1477R1] - "Coroutines TS Simplifications" - Lewis Baker
[P1492R0] - "Coroutines: Language and Implementation Impact"
[P1493R0] - "Coroutines: Use-cases and Trade-offs"
[P1610R0] - "Rename await_resume() to await_result()" - Mathias Stearn
[P1660R0] - "A compromise executor design sketch"
[P1662R0] - "Adding async RAII support to coroutines" - Lewis Baker
[P1663R0] - "Supporting return-value-optimisation in coroutines" - Lewis Baker
[P1667R0] - "Cancellation is not an error" - Kirk Shoop

[P1713R0] - "Allowing both co_return; and co_return value; in the same coroutine" - Lewis Baker

Acknowledgements
Many thanks for the comments and feedback from Kirk Shoop, Eric Niebler, Lee Howes and Gor Nishanov.

Appendix A - Examples
Example: A simple async event type that shows usage of type-erased handles

class async_event {

 class awaiter {

 public:

 bool await_ready() noexcept { return event_.ready(); }

 template<AwaitSuspendPointHandle SP>

 std::continuation_handle await_suspend(SP sp) noexcept {

 /

 sp_ = sp;

 void* oldState = nullptr;

 if (event_.state_.compare_exchange_strong(oldState, this)) {

 return std::noop_continuation();

 } else {

 // Use the non-type-erased suspend-point handle.

 return sp.resume();

 }

 }

 void await_resume() noexcept {}

 private:

 friend class async_event;

 explicit awaiter(async_event& e) noexcept : event_(e) {}

 async_event& event_;

 std::suspend_point_handle<with_resume> sp_;

 };

 void set() {

 void* oldState = state_.exchange(this);

 if (oldState != nullptr && oldState != this) {

 awaiter* a = static_cast<awaiter*>(oldState);

 a->sp_.resume()();

 }

 }

 bool ready() const noexcept { return state_.load() == this; }

 awaiter operator co_await() noexcept {

 return awaiter{*this};

 }

private:

 std::atomic<void*> state_ = nullptr;

};

Example: An async task<T> coroutine type before and after the proposed changes.
template<typename T>

struct task {

 struct promise_type {

 std::optional<T> value_;

 std::exception_ptr error_;

 std::coroutine_handle<> consumer_;

 task get_return_object() {

 return task{

 std::coroutine_handle<promise_type>::

 from_promise(*this)};

 }

 suspend_always initial_suspend() { return {};

}

 auto final_suspend() {

 struct awaiter {

 bool await_ready() { return false; }

 auto await_suspend(

 std::coroutine_handle<promise_type> h)

{

 return h.promise().consumer_;

 }

 void await_resume() {}

 };

 return awaiter{};

 }

 template<ConvertibleTo<T> U>

 void return_value(U&& value) {

 value_.emplace((U&&)value);

 }

 void unhandled_exception() {

 error_ = std::current_exception();

 }

 };

 using handle_t =

 std::coroutine_handle<promise_type>;

 handle_t coro_;

 explicit task(handle_t h) : coro_(h) {}

 task(task&& t)

 : coro_(std::exchange(t.coro_, {})) {}

 ~task() {

 if (coro_) coro_.destroy();

 }

 struct awaiter {

 handle_t coro_;

 bool await_ready() { return false; }

 auto await_suspend(auto h) {

template<typename t>

struct task {

 struct promise_type {

 std::optional<T> value_;

 std::exception_ptr error_;

 std::suspend_point_handle<
 std::with_resume, std::with_done> consumer_;

 template<typename Handle>

 task get_return_object(Handle h) {

 return task{h};

 }

 auto done() {

 if (value_ || error_) {

 return consumer_.resume();

 } else {

 return consumer_.set_done();

 }

 }

 template<ConvertibleTo<T> U>

 void return_value(U&& value) {

 value_.emplace((U&&)value);

 }

 void unhandled_exception() {

 error_ = std::current_exception();

 }

 };

 using handle_t =

 std::suspend_point_handle<

 std::with_resume, std::with_destroy,

 std::with_promise<promise_type>>;

 handle_t coro_;

 explicit task(handle_t h) : coro_(h) {}

 task(task&& t)

 : coro_(std::exchange(t.coro_, {})) {}

 ~task() {

 if (coro_) coro_.destroy();

 }

 struct awaiter {

 handle_t coro_;

 bool await_ready() { return false; }

 auto await_suspend(auto h) {

 coro_.promise().consumer_ = h;

 return coro_ .resume() ;

 coro_.promise().consumer_ = h;

 return coro_;

 }

 T await_resume() {

 auto& error = coro_.promise().error_;

 if (error) std::rethrow_exception(error);

 return *std::move(coro_.promise().value_);

 }

 };

 auto operator co_await() && {

 return awaiter{coro_};

 }

};

 }

 T await_resume() {

 auto& error = coro_.promise().error_;

 if (error) std::rethrow_exception(error);

 return *std::move(coro_.promise().value_);

 }

 };

 auto operator co_await() && {

 return awaiter{coro_};

 }

};

Example: A simple generator<T> coroutine type before and after the proposed changes
template<typename T>

struct generator {

 struct promise_type {

 std::add_pointer_t<T> value_;

 generator get_return_object() {

 return generator{

 std::coroutine_handle<promise_type>::

 from_promise(*this)};

 }

 std::suspend_always initial_suspend() {

 return {};

 }

 std::suspend_always final_suspend() {

 return {};

 }

 void return_void() {}

 void unhandled_exception() {

 throw;

 }

 std::suspend_always yield_value(T&& value) {
 value_ = std::addressof(value);

 return {};

 }

 };

template<typename T>

struct generator {

 struct promise_type {

 std::add_pointer_t<T> value_;

 std::suspend_point_handle<

 with_set_done, with_resume> sp_;

 template<typename Handle>

 generator get_return_object(Handle h) {

 sp_ = h;

 return generator{h};

 }

 auto done() {

 sp_ = {};

 return std::noop_continuation();

 }

 void return_void() {}

 void unhandled_exception() {

 sp_ = {};
 throw;

 }

 struct yield_awaiter {

 bool await_ready() { return false; }

 template<typename Handle>

 auto await_suspend(Handle h) {

 h.promise().sp_ = h;

 return std::noop_continuation();

 }

 void await_resume() {}

 };

 yield_awaiter yield_value(T&& value) {
 value_ = std::addressof(value);

 return {};

 }

 };

 using handle_t =

 std::coroutine_handle<promise_type> ;

 handle_t coro_;

 explicit generator(handle_t h) : coro_(h) {}

 generator(generator&& g)

 : coro_(std::exchange(g.coro_, {})) {}

 ~generator() {

 if (coro_) {

 coro_.destroy();

 }

 }

 struct sentinel {};

 struct iterator {

 handle_t coro_;

 iterator& operator++() {

 coro_.resume();

 return *this;

 }

 T&& operator*() const {

 return (T&&)*coro_.promise().value_;

 }

 auto* operator->() const {

 return coro_.promise().value_;

 }

 bool operator==(sentinel) const {

 return coro_ .done() ;
 }

 bool operator!=(sentinel s) const {

 return !operator==(s);

 }

 };

 iterator begin() {

 coro_.resume();

 return iterator{coro_};

 }

 sentinel end() { return {}; }

};

 using handle_t = std::suspend_point_handle<
 std::with_resume, std::with_destroy,

 std::with_promise<promise_type>> ;

 handle_t coro_;

 explicit generator(handle_t h) : coro_(h) {}

 generator(generator&& g)

 : coro_(std::exchange(g.coro_, {})) {}

 ~generator() {

 if (coro_) {

 if (coro_.promise().sp_) {
 coro_.promise().sp_.set_done()();

 }

 coro_.destroy();

 }

 }

 struct sentinel {};

 struct iterator {

 handle_t coro_;

 iterator& operator++() {

 coro_ .promise().sp_ .resume() () ;
 return *this;

 }

 T&& operator*() const {

 return (T&&)*coro_.promise().value_;

 }

 auto* operator->() const {

 return coro_.promise().value_;

 }

 bool operator==(sentinel) const {

 return !! coro_ .promise().sp_ ;
 }

 bool operator!=(sentinel) const {

 return !operator==(s);

 }

 };

 iterator begin() {

 coro_.resume() () ;
 return iterator{coro_};

 }

 sentinel end() { return {}; }

};

Example: A detached-task that launches immediately and self-destructs when it runs to completion

Coroutines TS With proposed changes

struct detached_task {

 struct promise_type {

 detached_task get_return_object() {

 return {};

 }

 std::suspend_never initial_suspend() {

 return {};

 }

 std::suspend_never final_suspend() {

 return {};

 }

 void unhandled_exception() { std::terminate();

}

 void return_void() {}

 };

};

struct detached_task {

 struct promise_type {

 std::suspend_point_handle<with_destroy> sp_;

 template<typename Handle>
 detached_task get_return_object(Handle handle)
{

 sp_ = handle;
 return {};

 }

 auto done() {

 sp_.destroy();

 return std::noop_continuation();

 }

 void unhandled_exception() { std::terminate();

}

 void return_void() {}

 };

};

