
p1744r0: Avoiding Misuse of Contract-Checking 

By Rostislav Khlebnikov and John Lakos 

Revised June 16th, 2019 

ABSTRACT 
The C++ contract-checking facility (CCF) was designed as a means to achieve multiple 

goals: (a) improvement of robustness of software that employs functions with narrow 

contracts by redundantly checking that such functions are not called out-of-contract at 

run-time; (b) improvement of software robustness and security by providing supplemental 

information to the static analysis tools; and (c) improvement of code generation by allowing 

optimizers to make additional assumptions. All these goals share similar understanding of 

what the contract-checking statements denote: They document and codify the developer’s 

expectations of what must be true for the program to function correctly.  

However, as any other powerful tool in programmer’s toolbox, contract assertions may be 

misused in a variety of ways ranging from easily fixable minor issues to their application 

to inappropriate problems. In this paper, we demonstrate that CCF misuses may be 

identified based on two important principles: (I) in a defect-free program, function contracts 

should never be violated, and (II) whether any given aspect of a contract is checked should 

make no observable (meaningful) difference except, perhaps, runtime performance. We 

show why heeding these principles is important when employing a CCF for development of 

production code, how they apply to the intended usage scenarios, and analyze several real-

world cases where using a CCF might seem appropriate, but in reality is a mistake. Along 

the way, we also pay special attention to the cases where strict adherence to the principles 

might suggest misuse, but which make sense from a practical engineering standpoint, and 

can therefore be deemed acceptable.  

INTRODUCTION 

When defining an interface of a library function, the developer is faced with a 

decision of whether to impose limitations on semantically valid inputs that have to 

be respected before the function invocation. In many cases, the most reasonable 

decision is to identify and clearly document the preconditions, leave the behavior 

undefined should the preconditions be unmet, and implement defensive checks to 

allow early detection of program defects leading to out-of-contract calls.1 

Breach of a contract, i.e., a caller failing to satisfy all preconditions of a function or 

failures of the function itself to satisfy all of its postconditions when all its 

preconditions are satisfied, is necessarily a defect in the program – on part of the 

function caller or its author respectively. As such, function contracts should never 

be violated in a defect-free program, regardless of any external input that the 

program receives. In reality, however, code often contains bugs leading to 

inadvertent out-of-contract function invocations. Contract checks are extra code 

that allow detecting such violations early in the development process, facilitating 

their eradication and, ultimately, helping to improve the robustness of software.  

Since (defensive) contract checks are redundant, it should be possible to disable 

them, e.g., to attain better performance, once the program owner has sufficient 

                                       

1 See p1743: Contracts, Undefined Behavior, and Defensive Programming paper for an in-depth analysis of the 
rationale behind such decisions. 
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confidence that no contracts are violated. To maintain this ability, however, it is 

also essential to ensure that the predicates of the contract checks themselves have 

no side effects2 that affect the essential behavior of the program. Furthermore, lack 

of side effects in the predicates combined with understanding that contract 

assertions should never be violated in a correct program, significantly simplify 

reasoning about the code containing the defensive checks: For the code to function 

properly, all the predicates must evaluate to true and no additional control flow 

paths are introduced by the contract checks. Depending on the goals of the reader, 

the contract checking statements could be summarily ignored to focus the 

attention on the essential behavior of the function, or could serve as additional 

clarification of the code. 

Analyzing code in terms of whether these principles hold, allows identifying 

scenarios where the contract-checking statements can be relied upon and where 

they are a wrong tool for the job. 

INTENDED USE SCENARIOS 

Runtime Contract Checking: One of the primary uses for a CCF is detection of 

out-of-contract invocations of functions with narrow contracts. Consider a function 

that processes a sorted sequence of integers in a half-open range [0, 100): 

void processSequence(const std::vector<int>& sequence); 

    // Process the specified 'sequence'.  The behavior is undefined unless for 

    // every element 'e' of the 'sequence', '0 <= e < 100'. 

To help detect inadvertent out-of-contract calls, the implementation of 

processSequence might have defensive precondition checks: 

void processSequence(const std::vector<int>& sequence) 

    [[pre: std::all_of(sequence.begin(), sequence.end(), in_range{0, 100})]] 

The code invoking this function correctly will ensure that the preconditions are 

satisfied by construction. If a caller of processSequence fails to do so, indicating a 

program defect, a contract violation will be detected by the defensive checks in 

certain specific build modes, leading to invocation of the violation handler, which 

will typically fail-fast, immediately alerting the developer of the exact point of failure 

(simplifying the analysis) early in the development process: 

std::vector<int> sequence(50); 

std::default_random_engine eng; 

std::uniform_int_distribution<int> dist{1, 100}; // BUG: should be {1, 99} 

 

std::generate(sequence.begin(), sequence.end(), [&] { return dist(eng); }); 

 

processSequence(sequence); // Defect detected close to the source  

Once the defects are fixed, however, the precondition checks may be removed 

completely without having any effect on the essential behavior of the program 

except, perhaps, improved performance. 

Static Analysis: Another important use for contract annotations is to inform the 

static analyzers of the pre- and postconditions allowing them to detect code paths 

                                       

2 Note that in the current WP any side effects in contract-checking statements are considered UB. Our arguments, 
however, are based on extensive experience with a macro-based CCF, and would equally apply to C++ language-
based CCF should P1670 be adopted.  
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necessarily leading to out-of-contract calls without a need to run the application. 

Static analyzers are capable of detecting potential contract violations that might 

only occur at run time in very specific corner cases, allowing to further improve 

robustness and security of the software. In addition, static analysis tools are 

capable of using predicates that cannot be checked at run time (e.g., predicates 

that cannot be implemented, have infeasible run-time cost, or inevitable significant 

side effects), supplementing run-time checking even further: 

class multiset { 

    // . . . 

    std::pair<iterator, iterator> equal_range(const Key& key) 

        [[post axiom r: is_reachable(r.first, r.second)]]; // unimplementable 

}; 

 

template<class ITERATOR, class FUNC> 

void for_each(ITERATOR first, ITERATOR last, FUNC func) 

    [[pre axiom: is_reachable(first, last)]]; 

 

using Data = multiset<Datum>; 

using DataIt = Data::iterator; 

Data data; 

// . . .  

std::pair<DataIt, DataIt> range = data.equal_range(someKey); 

for_each(range.first, range.second, &processDatum);  // OK 

for_each(range.second, range.first, &processDatum);  // static analyser warning 

Similar to run-time checking, however, should a program be defect-free, even 

physically removing the contract annotation from source code would not affect the 

essential behavior of the program.  

Improved Code Generation: Contract checking statements (CCSs) are in essence 

statements of what must be true in the program. If the optimizer is instructed to 

treat violations of such statements as (language) undefined behavior, it can use 

them to generate more efficient code. For example, consider a function that 

performs highly efficient fast Fourier transform, but relies on data being properly 

aligned for vectorization: 

void FFT(std::complex<float>* result, std::complex<float>* signal, int nSamples) 

    [[pre: 0 == reinterpret_cast<std::uintptr_t>(signal) % 64]] 

    [[pre: 0 == reinterpret_cast<std::uintptr_t>(result) % 64]] 

    [[pre: 0 == nSamples % (64 / sizeof(std::complex<float>))]]; 

With these preconditions assumed to evaluate to true, the compiler may generate 

minimal vectorized machine code. Having such function requirements codified as 

precondition checks not only to positively affects code generation, but also allows 

such assumptions to be easily both checked at run time and taken in consideration 

during static analysis prior to using them for optimization, without requiring any 

changes to the source code: Same annotations can be used to improve both 

robustness and performance. And again, should the contract annotations be 

removed from a defect-free program, the only observable change would be a change 

in run-time performance, but the essential behavior would stay identical. 

POTENTIAL PITFALLS IN CORRECT USE SCENARIOS 

Reliance on Side Effects: Even if the program is correct and no contracts are 

violated at run time, contract predicates having side effects that impact the 

essential program behavior not only complicates reasoning about the code by 
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harboring non-redundant side effects and possibly additional flow control (e.g., 

throwing an exception), but also takes away the program owner’s ability to create 

high-performance builds with contract checks disabled: 

[[assert: setOfIntegers.insert(value).second]]; 

Such code would have no effect if the contracts are not checked at run time, altering 

the essential program behavior. In some cases, the side effects might be more 

subtle, but still have a significant impact:  

int encrypt(int value); 

int decrypt(int value); 

int corrupt(int value); 

bool isCorrupted(int value); 

 

class EncryptedStore { 

    std::map<int, int> d_map; 

 

  public: 

    int getValue(int index) const { return decrypt(d_map.at(index)); } 

 

    void setValue(int index, int value) { d_map[index] = encrypt(value); } 

 

    void corruptValue(int index) 

        [[pre: !isCorrupted(d_map[index])]] // Has a side effect! 

    { 

        d_map[index] = corrupt(getValue(index)); 

    } 

}; 

When the precondition check of corruptValue is run, an element is inserted into 

the map if it is not already present. This leads to very different behavior of getValue, 

that corruptValue invokes, in case the index is not present in the map – if the 

contract checks are enabled, getValue will simply observe 0, whereas if contract 

checks are disabled, getValue will throw a std::out_of_range exception. 

In some cases, however, it is acceptable to allow the predicates to have observable 

side effects that do not alter the essential function behavior. For example, logging 

the object state or performing a check that might require a temporary heap 

allocation, might be acceptable, especially when such side effects are temporarily 

introduced during the routine process of code development and maintenance: 

class HttpHeaderFields { 

    std::vector<Field> d_fields; 

 

  public: 

    bool contains(std::string_view name) const 

    { 

        LOG_TRACE << "Checking whether '" << name << "' is present among " 

                  << d_fields.size() << " fields."; 

        // . . . 

    } 

 

    void addField(std::string_view name, std::string_view value) 

        [[pre: !contains(name)]]  // Writes to log 

        [[pre: "content-length" != name ||  

               0 <= std::stoi(std::string(value))]]  // Potentially allocates 

    { 

        // . . . 

    } 

}; 
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While technically with such side effects, the observable behavior of the program 

would differ in different build modes (different log output or slightly changed 

memory layout), it does not violate the spirit of the principle in that the core 

behavior (the primary purpose) is not affected by the presence of contract checks.  

SCENARIOS WHERE CCF IS UNSUITABLE 

Input Validation: Contract violations always indicate a programming error, should 

be reported to the developer, and, in general, cannot be recovered from by the 

running application (since the programmer’s expectations were not met). Contract 

assertions are, therefore, a poor choice for checking the validity of any external 

input to the program – e.g., command line arguments, data read from configuration 

files, or received over-the-wire: 

int main(int argc, const char* argv[]) 

{ 

    [[assert: 1 < argc]]; 

 

    std::ifstream dataFile(argv[1]); 

    [[assert: dataFile]]; 

 

    int rowCount, columnCount; 

    dataFile >> rowCount >> columnCount; 

    [[assert: dataFile && 0 < rowCount && 0 < columnCount]]; 

 

    // . . . 

} 

Since the program has no control of such data, it is impossible for the developer to 

avoid violations of such contracts, and disabling the contract checks would more 

often than not lead to hard UB. Such issues might arise not only when using the 

CCSs to test the data validity directly, but also when passing unsanitized external 

input to functions having narrow contracts. Consider the following scenario of use 

of processSequence: 

std::vector<int> sequence; 

std::copy(std::istream_iterator<int>(std::cin), 

          std::istream_iterator<int>(), 

          std::back_inserter(sequence)); 

 

processSequence(sequence); 

Attempting to circumvent the core problem by installing a custom violation handler 

does not resolve the issue of contracts being violated during normal execution: 

std::vector<int> sequence; 

std::copy(std::istream_iterator<int>(std::cin), 

          std::istream_iterator<int>(), 

          std::back_inserter(sequence)); 

 

set_violation_handler([](auto&&) { throw ContractViolationException{}; }); 

try { 

    processSequence(sequence); 

} 

catch (const ContractViolationException& e) { 

    std::cout << "Received an incorrect sequence."; 

} 

While this code might work as expected in some build modes, its behavior will 

radically change should the application be built with all or some of the contract 
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checks disabled.  

Note that in some cases, separating input validation from function execution might 

be impractical. For example, consider a function that builds an abstract syntax 

tree of C++ code represented as a string: 

AST build_AST(std::string_view sourceCode) 

    [[pre: is_valid_cpp_code(sourceCode)]]; 

Any client of build_AST would be required to ensure that data, typically read from 

a file, is valid C++ code before passing it to build_AST, which would essentially 

double the time required to attain the result. This indicates that such a function 

would be better served to have a wide, rather than a narrow, contract: 

std::expected<AST, ParseError> build_AST(std::string_view sourceCode); 

    // Return an 'AST' on success and a 'ParseError' otherwise. 

Replacement for English Contracts: Since a language-based CCF that allows the 

predicates for pre- and postconditions to be attached to the function declaration 

might suggest that they can replace the natural-language function contracts in 

their entirety, it is important to highlight several significant limitations in the 

expressivity of CCS. Descriptive names of the function and its arguments in 

combination with pre- and postconditions might be good enough for relatively 

simple functions: 

double squareRoot(double value) 

    [[pre: 0.0 <= value]]; 

For more complex functions, however, many intricacies of the full function contract 

might become difficult to communicate using CCSs. Consider a contract that a 

logMessage function of the Logger class might have: 

class Logger { 

    // . . . 

    void logMessage(const Category& cat, Severity svr, Record *record); 

        // Log the specified '*record' after setting its category attribute to 

        // the name of the specified 'cat' and severity attribute to the 

        // specified 'svr'.  (See the component-level documentation of 

        // 'ball_record' for more information on the fields that are logged.) 

        // Store the record in the buffer held by this logger if 'svr' is at 

        // least as severe as the current "Record" threshold level of 'cat'. 

        // Pass the record directly to the observer held by this logger if 

        // 'svr' is at least as severe as the current "Pass" threshold level of 

        // 'cat'.  Publish the entire contents of the buffer of this logger if 

        // 'svr' is at least as severe as the current "Trigger" threshold level 

        // of 'cat'.  Publish the entire contents of all buffers of all active 

        // loggers if 'svr' is at least as severe as the current "Trigger-All" 

        // threshold level of 'cat' (i.e., via the callback supplied at 

        // construction).  The behavior is undefined unless 'record' was 

        // previously obtained by a call to 'getRecord' on this logger.  Note 

        // that this method will have no effect if 'svr' is less severe than 

        // all of the threshold levels of 'cat'.  Also note that 'record' must 

        // not be reused after invoking this method. 

};  

Many aspects of such a contract, and especially the details of the essential behavior 

of the function, would often require introduction of additional predicates that, if 

implemented, would necessitate storage of additional state, or would need to be left 

unimplemented and only be used in axiom-level CCSs only: 
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void logMessage(const Category& cat, Severity svr, Record *record); 

  [[pre  axiom: is_valid_record_ptr(this, record)]] 

  [[post axiom: svr < Severity::Record     || is_buffered(d_buf, record)]] 

  [[post axiom: svr < Severity::Pass       || is_published(d_observer, record)]] 

  [[post axiom: svr < Severity::Trigger    || is_published(d_observer, d_buf)]] 

  [[post axiom: svr < Severity::TriggerAll || is_published_all(d_publishAllCb)]] 

  [[post axiom: !is_valid_record_ptr(this, record)]]   

Furthermore, for most non-trivial member functions, the contract predicates would 

need to access encapsulated implementation details of the class, not only 

unnecessarily exposing them to the client, but also requiring their thorough 

understanding for correct use. Such exposition increases the likelihood that the 

clients will depend on these details, making it much more difficult to add, remove, 

or modify the implementation during maintenance.  

Finally, checks even for some simple contract clauses cannot be implemented in a 

straightforward manner with the CCF specified in the current WP, because 

specification of necessary functionality has been deferred. For example, 

documenting that vector<T>::push_back() increases its size by exactly 1, cannot 

currently be replicated using a CCS without workarounds. 

Substitute for Testing: While contract checks might supplement unit and 

integration tests by helping to uncover bugs in function implementations and in 

the test drivers themselves (e.g., postcondition and assertion violations indicating 

flaws in internal logic, and precondition violations indicating incorrect use of other 

functions), attempting to replace testing with even the most thorough set of CCSs 

is ill-conceived. Corner cases might not be checked until the system arrives into a 

very rare specific state (possibly in production, potentially leading to disastrous 

results especially if the code is built with contract check disabled), reproducing the 

failure state might be inherently difficult, repeating the tests after code changes 

becomes an issue again, pinpointing the root of the problem might be unnecessarily 

hard because essentially the entire application is the code “under test”, etc. In 

essence, while an untested program that has contract checks in place might be 

marginally easier to maintain than an untested program without them, it would 

still suffer from the same well-known drawbacks that rigorous testing aims to 

alleviate. 

CONCLUSION 
In order to attain all the benefits afforded by a contract-checking facility, it is 

crucial to identify the scenarios for which it is the right tool and those where using 

a CCF would be counterproductive or even dangerous. Any correct application of a 

CCF should abide by the two principles: (I) in a defect-free program, function 

contracts should never be violated, and (II) its essential behavior should remain 

unchanged whether or not contracts are enabled at all. Heeding these principles 

prevents introduction of hidden control flow paths and side effects, thereby 

significantly simplifying reasoning about both the functions that contain contract-

checking statements as well as their callers, while enabling production of builds 

with all checks disabled (or even used for optimization), squeezing every last bit of 

performance possible.  


