
p1744r0: Avoiding Misuse of Contract-Checking

By Rostislav Khlebnikov and John Lakos

Revised June 16th, 2019

ABSTRACT
The C++ contract-checking facility (CCF) was designed as a means to achieve multiple

goals: (a) improvement of robustness of software that employs functions with narrow

contracts by redundantly checking that such functions are not called out-of-contract at

run-time; (b) improvement of software robustness and security by providing supplemental

information to the static analysis tools; and (c) improvement of code generation by allowing

optimizers to make additional assumptions. All these goals share similar understanding of

what the contract-checking statements denote: They document and codify the developer’s

expectations of what must be true for the program to function correctly.

However, as any other powerful tool in programmer’s toolbox, contract assertions may be

misused in a variety of ways ranging from easily fixable minor issues to their application

to inappropriate problems. In this paper, we demonstrate that CCF misuses may be

identified based on two important principles: (I) in a defect-free program, function contracts

should never be violated, and (II) whether any given aspect of a contract is checked should

make no observable (meaningful) difference except, perhaps, runtime performance. We

show why heeding these principles is important when employing a CCF for development of

production code, how they apply to the intended usage scenarios, and analyze several real-

world cases where using a CCF might seem appropriate, but in reality is a mistake. Along

the way, we also pay special attention to the cases where strict adherence to the principles

might suggest misuse, but which make sense from a practical engineering standpoint, and

can therefore be deemed acceptable.

INTRODUCTION

When defining an interface of a library function, the developer is faced with a

decision of whether to impose limitations on semantically valid inputs that have to

be respected before the function invocation. In many cases, the most reasonable

decision is to identify and clearly document the preconditions, leave the behavior

undefined should the preconditions be unmet, and implement defensive checks to

allow early detection of program defects leading to out-of-contract calls.1

Breach of a contract, i.e., a caller failing to satisfy all preconditions of a function or

failures of the function itself to satisfy all of its postconditions when all its

preconditions are satisfied, is necessarily a defect in the program – on part of the

function caller or its author respectively. As such, function contracts should never

be violated in a defect-free program, regardless of any external input that the

program receives. In reality, however, code often contains bugs leading to

inadvertent out-of-contract function invocations. Contract checks are extra code

that allow detecting such violations early in the development process, facilitating

their eradication and, ultimately, helping to improve the robustness of software.

Since (defensive) contract checks are redundant, it should be possible to disable

them, e.g., to attain better performance, once the program owner has sufficient

1 See p1743: Contracts, Undefined Behavior, and Defensive Programming paper for an in-depth analysis of the
rationale behind such decisions.

p1744r0: Avoiding Misuse of Contract-Checking

confidence that no contracts are violated. To maintain this ability, however, it is

also essential to ensure that the predicates of the contract checks themselves have

no side effects2 that affect the essential behavior of the program. Furthermore, lack

of side effects in the predicates combined with understanding that contract

assertions should never be violated in a correct program, significantly simplify

reasoning about the code containing the defensive checks: For the code to function

properly, all the predicates must evaluate to true and no additional control flow

paths are introduced by the contract checks. Depending on the goals of the reader,

the contract checking statements could be summarily ignored to focus the

attention on the essential behavior of the function, or could serve as additional

clarification of the code.

Analyzing code in terms of whether these principles hold, allows identifying

scenarios where the contract-checking statements can be relied upon and where

they are a wrong tool for the job.

INTENDED USE SCENARIOS

Runtime Contract Checking: One of the primary uses for a CCF is detection of

out-of-contract invocations of functions with narrow contracts. Consider a function

that processes a sorted sequence of integers in a half-open range [0, 100):

void processSequence(const std::vector<int>& sequence);

 // Process the specified 'sequence'. The behavior is undefined unless for

 // every element 'e' of the 'sequence', '0 <= e < 100'.

To help detect inadvertent out-of-contract calls, the implementation of

processSequence might have defensive precondition checks:

void processSequence(const std::vector<int>& sequence)

 [[pre: std::all_of(sequence.begin(), sequence.end(), in_range{0, 100})]]

The code invoking this function correctly will ensure that the preconditions are

satisfied by construction. If a caller of processSequence fails to do so, indicating a

program defect, a contract violation will be detected by the defensive checks in

certain specific build modes, leading to invocation of the violation handler, which

will typically fail-fast, immediately alerting the developer of the exact point of failure

(simplifying the analysis) early in the development process:

std::vector<int> sequence(50);

std::default_random_engine eng;

std::uniform_int_distribution<int> dist{1, 100}; // BUG: should be {1, 99}

std::generate(sequence.begin(), sequence.end(), [&] { return dist(eng); });

processSequence(sequence); // Defect detected close to the source

Once the defects are fixed, however, the precondition checks may be removed

completely without having any effect on the essential behavior of the program

except, perhaps, improved performance.

Static Analysis: Another important use for contract annotations is to inform the

static analyzers of the pre- and postconditions allowing them to detect code paths

2 Note that in the current WP any side effects in contract-checking statements are considered UB. Our arguments,
however, are based on extensive experience with a macro-based CCF, and would equally apply to C++ language-
based CCF should P1670 be adopted.

p1744r0: Avoiding Misuse of Contract-Checking

necessarily leading to out-of-contract calls without a need to run the application.

Static analyzers are capable of detecting potential contract violations that might

only occur at run time in very specific corner cases, allowing to further improve

robustness and security of the software. In addition, static analysis tools are

capable of using predicates that cannot be checked at run time (e.g., predicates

that cannot be implemented, have infeasible run-time cost, or inevitable significant

side effects), supplementing run-time checking even further:

class multiset {

 // . . .

 std::pair<iterator, iterator> equal_range(const Key& key)

 [[post axiom r: is_reachable(r.first, r.second)]]; // unimplementable

};

template<class ITERATOR, class FUNC>

void for_each(ITERATOR first, ITERATOR last, FUNC func)

 [[pre axiom: is_reachable(first, last)]];

using Data = multiset<Datum>;

using DataIt = Data::iterator;

Data data;

// . . .

std::pair<DataIt, DataIt> range = data.equal_range(someKey);

for_each(range.first, range.second, &processDatum); // OK

for_each(range.second, range.first, &processDatum); // static analyser warning

Similar to run-time checking, however, should a program be defect-free, even

physically removing the contract annotation from source code would not affect the

essential behavior of the program.

Improved Code Generation: Contract checking statements (CCSs) are in essence

statements of what must be true in the program. If the optimizer is instructed to

treat violations of such statements as (language) undefined behavior, it can use

them to generate more efficient code. For example, consider a function that

performs highly efficient fast Fourier transform, but relies on data being properly

aligned for vectorization:

void FFT(std::complex<float>* result, std::complex<float>* signal, int nSamples)

 [[pre: 0 == reinterpret_cast<std::uintptr_t>(signal) % 64]]

 [[pre: 0 == reinterpret_cast<std::uintptr_t>(result) % 64]]

 [[pre: 0 == nSamples % (64 / sizeof(std::complex<float>))]];

With these preconditions assumed to evaluate to true, the compiler may generate

minimal vectorized machine code. Having such function requirements codified as

precondition checks not only to positively affects code generation, but also allows

such assumptions to be easily both checked at run time and taken in consideration

during static analysis prior to using them for optimization, without requiring any

changes to the source code: Same annotations can be used to improve both

robustness and performance. And again, should the contract annotations be

removed from a defect-free program, the only observable change would be a change

in run-time performance, but the essential behavior would stay identical.

POTENTIAL PITFALLS IN CORRECT USE SCENARIOS

Reliance on Side Effects: Even if the program is correct and no contracts are

violated at run time, contract predicates having side effects that impact the

essential program behavior not only complicates reasoning about the code by

p1744r0: Avoiding Misuse of Contract-Checking

harboring non-redundant side effects and possibly additional flow control (e.g.,

throwing an exception), but also takes away the program owner’s ability to create

high-performance builds with contract checks disabled:

[[assert: setOfIntegers.insert(value).second]];

Such code would have no effect if the contracts are not checked at run time, altering

the essential program behavior. In some cases, the side effects might be more

subtle, but still have a significant impact:

int encrypt(int value);

int decrypt(int value);

int corrupt(int value);

bool isCorrupted(int value);

class EncryptedStore {

 std::map<int, int> d_map;

 public:

 int getValue(int index) const { return decrypt(d_map.at(index)); }

 void setValue(int index, int value) { d_map[index] = encrypt(value); }

 void corruptValue(int index)

 [[pre: !isCorrupted(d_map[index])]] // Has a side effect!

 {

 d_map[index] = corrupt(getValue(index));

 }

};

When the precondition check of corruptValue is run, an element is inserted into

the map if it is not already present. This leads to very different behavior of getValue,

that corruptValue invokes, in case the index is not present in the map – if the

contract checks are enabled, getValue will simply observe 0, whereas if contract

checks are disabled, getValue will throw a std::out_of_range exception.

In some cases, however, it is acceptable to allow the predicates to have observable

side effects that do not alter the essential function behavior. For example, logging

the object state or performing a check that might require a temporary heap

allocation, might be acceptable, especially when such side effects are temporarily

introduced during the routine process of code development and maintenance:

class HttpHeaderFields {

 std::vector<Field> d_fields;

 public:

 bool contains(std::string_view name) const

 {

 LOG_TRACE << "Checking whether '" << name << "' is present among "

 << d_fields.size() << " fields.";

 // . . .

 }

 void addField(std::string_view name, std::string_view value)

 [[pre: !contains(name)]] // Writes to log

 [[pre: "content-length" != name ||

 0 <= std::stoi(std::string(value))]] // Potentially allocates

 {

 // . . .

 }

};

p1744r0: Avoiding Misuse of Contract-Checking

While technically with such side effects, the observable behavior of the program

would differ in different build modes (different log output or slightly changed

memory layout), it does not violate the spirit of the principle in that the core

behavior (the primary purpose) is not affected by the presence of contract checks.

SCENARIOS WHERE CCF IS UNSUITABLE

Input Validation: Contract violations always indicate a programming error, should

be reported to the developer, and, in general, cannot be recovered from by the

running application (since the programmer’s expectations were not met). Contract

assertions are, therefore, a poor choice for checking the validity of any external

input to the program – e.g., command line arguments, data read from configuration

files, or received over-the-wire:

int main(int argc, const char* argv[])

{

 [[assert: 1 < argc]];

 std::ifstream dataFile(argv[1]);

 [[assert: dataFile]];

 int rowCount, columnCount;

 dataFile >> rowCount >> columnCount;

 [[assert: dataFile && 0 < rowCount && 0 < columnCount]];

 // . . .

}

Since the program has no control of such data, it is impossible for the developer to

avoid violations of such contracts, and disabling the contract checks would more

often than not lead to hard UB. Such issues might arise not only when using the

CCSs to test the data validity directly, but also when passing unsanitized external

input to functions having narrow contracts. Consider the following scenario of use

of processSequence:

std::vector<int> sequence;

std::copy(std::istream_iterator<int>(std::cin),

 std::istream_iterator<int>(),

 std::back_inserter(sequence));

processSequence(sequence);

Attempting to circumvent the core problem by installing a custom violation handler

does not resolve the issue of contracts being violated during normal execution:

std::vector<int> sequence;

std::copy(std::istream_iterator<int>(std::cin),

 std::istream_iterator<int>(),

 std::back_inserter(sequence));

set_violation_handler([](auto&&) { throw ContractViolationException{}; });

try {

 processSequence(sequence);

}

catch (const ContractViolationException& e) {

 std::cout << "Received an incorrect sequence.";

}

While this code might work as expected in some build modes, its behavior will

radically change should the application be built with all or some of the contract

p1744r0: Avoiding Misuse of Contract-Checking

checks disabled.

Note that in some cases, separating input validation from function execution might

be impractical. For example, consider a function that builds an abstract syntax

tree of C++ code represented as a string:

AST build_AST(std::string_view sourceCode)

 [[pre: is_valid_cpp_code(sourceCode)]];

Any client of build_AST would be required to ensure that data, typically read from

a file, is valid C++ code before passing it to build_AST, which would essentially

double the time required to attain the result. This indicates that such a function

would be better served to have a wide, rather than a narrow, contract:

std::expected<AST, ParseError> build_AST(std::string_view sourceCode);

 // Return an 'AST' on success and a 'ParseError' otherwise.

Replacement for English Contracts: Since a language-based CCF that allows the

predicates for pre- and postconditions to be attached to the function declaration

might suggest that they can replace the natural-language function contracts in

their entirety, it is important to highlight several significant limitations in the

expressivity of CCS. Descriptive names of the function and its arguments in

combination with pre- and postconditions might be good enough for relatively

simple functions:

double squareRoot(double value)

 [[pre: 0.0 <= value]];

For more complex functions, however, many intricacies of the full function contract

might become difficult to communicate using CCSs. Consider a contract that a

logMessage function of the Logger class might have:

class Logger {

 // . . .

 void logMessage(const Category& cat, Severity svr, Record *record);

 // Log the specified '*record' after setting its category attribute to

 // the name of the specified 'cat' and severity attribute to the

 // specified 'svr'. (See the component-level documentation of

 // 'ball_record' for more information on the fields that are logged.)

 // Store the record in the buffer held by this logger if 'svr' is at

 // least as severe as the current "Record" threshold level of 'cat'.

 // Pass the record directly to the observer held by this logger if

 // 'svr' is at least as severe as the current "Pass" threshold level of

 // 'cat'. Publish the entire contents of the buffer of this logger if

 // 'svr' is at least as severe as the current "Trigger" threshold level

 // of 'cat'. Publish the entire contents of all buffers of all active

 // loggers if 'svr' is at least as severe as the current "Trigger-All"

 // threshold level of 'cat' (i.e., via the callback supplied at

 // construction). The behavior is undefined unless 'record' was

 // previously obtained by a call to 'getRecord' on this logger. Note

 // that this method will have no effect if 'svr' is less severe than

 // all of the threshold levels of 'cat'. Also note that 'record' must

 // not be reused after invoking this method.

};

Many aspects of such a contract, and especially the details of the essential behavior

of the function, would often require introduction of additional predicates that, if

implemented, would necessitate storage of additional state, or would need to be left

unimplemented and only be used in axiom-level CCSs only:

p1744r0: Avoiding Misuse of Contract-Checking

void logMessage(const Category& cat, Severity svr, Record *record);

 [[pre axiom: is_valid_record_ptr(this, record)]]

 [[post axiom: svr < Severity::Record || is_buffered(d_buf, record)]]

 [[post axiom: svr < Severity::Pass || is_published(d_observer, record)]]

 [[post axiom: svr < Severity::Trigger || is_published(d_observer, d_buf)]]

 [[post axiom: svr < Severity::TriggerAll || is_published_all(d_publishAllCb)]]

 [[post axiom: !is_valid_record_ptr(this, record)]]

Furthermore, for most non-trivial member functions, the contract predicates would

need to access encapsulated implementation details of the class, not only

unnecessarily exposing them to the client, but also requiring their thorough

understanding for correct use. Such exposition increases the likelihood that the

clients will depend on these details, making it much more difficult to add, remove,

or modify the implementation during maintenance.

Finally, checks even for some simple contract clauses cannot be implemented in a

straightforward manner with the CCF specified in the current WP, because

specification of necessary functionality has been deferred. For example,

documenting that vector<T>::push_back() increases its size by exactly 1, cannot

currently be replicated using a CCS without workarounds.

Substitute for Testing: While contract checks might supplement unit and

integration tests by helping to uncover bugs in function implementations and in

the test drivers themselves (e.g., postcondition and assertion violations indicating

flaws in internal logic, and precondition violations indicating incorrect use of other

functions), attempting to replace testing with even the most thorough set of CCSs

is ill-conceived. Corner cases might not be checked until the system arrives into a

very rare specific state (possibly in production, potentially leading to disastrous

results especially if the code is built with contract check disabled), reproducing the

failure state might be inherently difficult, repeating the tests after code changes

becomes an issue again, pinpointing the root of the problem might be unnecessarily

hard because essentially the entire application is the code “under test”, etc. In

essence, while an untested program that has contract checks in place might be

marginally easier to maintain than an untested program without them, it would

still suffer from the same well-known drawbacks that rigorous testing aims to

alleviate.

CONCLUSION
In order to attain all the benefits afforded by a contract-checking facility, it is

crucial to identify the scenarios for which it is the right tool and those where using

a CCF would be counterproductive or even dangerous. Any correct application of a

CCF should abide by the two principles: (I) in a defect-free program, function

contracts should never be violated, and (II) its essential behavior should remain

unchanged whether or not contracts are enabled at all. Heeding these principles

prevents introduction of hidden control flow paths and side effects, thereby

significantly simplifying reasoning about both the functions that contain contract-

checking statements as well as their callers, while enabling production of builds

with all checks disabled (or even used for optimization), squeezing every last bit of

performance possible.

