
The Executor Concept Hierarchy Needs a Single Root
Document #: P1738R0
Date: 2019-06-17
Project: Programming Language C++

SG1
LEWG

Reply-to: Eric Niebler
<eniebler@fb.com>

1 Abstract
The executor concepts in [P0443R10] (OneWayExecutor and BulkOneWayExecutor) do not participate in
a subsumption hierarchy with a root Executor concept that can be used to constrain an algorithm that
schedules work. The design of P0443 is intended to accommodate even more executor concepts – also not in
any subsumption relationship to a conceptual root – over time. In the place of a usable executor concept
hierarchy, P0443 has a mechanism for querying an executor whether it supports a particular interface and
fetching that interface, similar to locale facets, but statically polymorphic.

This design has negative consequences for generic components that accept executors. In particular, it has
disastrous consequences for overloading that become worse over time as third parties add more executor
concepts.

2 Without a usable root Executor concept
2.1 Writing a generic async algorithm, take 1
[P0443R10] specifies concepts in the pre-C++20 style using requirements tables. Both of its executor concepts
refer to the “General requirements of executors” in section (1.2.2). These requirements are:

— CopyConstructible
— EqualityComparable
— is_executor_v<Ex> == true

Additionally, the operations are required to be non-throwing and free of data races.

We can affix a label to this collection of requirements and call it Executor. So, does P0443 have a hierarchy
with a single root? To answer that, let’s try to write a generic algorithm that is constrained with Executor.
namespace std
{

// Constrain the executor with Executor, the root of the Executor concept hierarchy(?):
template<Executor Exec, RandomAccessIterator I>
void simple_sort(Exec ex, I first, I last)
{

if constexpr (can_require_concept_v< Exec, bulk_oneway_t >)
{

auto ex2 = require_concept(bulk_oneway, ex);
// Bulk oneway implementation in terms of ex2

}

1

mailto:eniebler@fb.com

else if constexpr (can_require_concept_v< Exec, oneway_t >)
{

auto ex2 = require_concept(oneway, ex);
// Oneway implementation in terms of ex2

}
else
{

// OOPS, what do we do here?
}

}
}

As shown above, if we constrain the algorithm with the Executor concept, we end up stuck because there is
no interface that is required for particular model of Executor to support. For instance, a user might pass
to this function an executor that implements a third_party_whizbang_t executor interface without also
providing a conversion to either the oneway_t or bulk_oneway_t interfaces, which would result in a hard
error.

In other words, P0443 does not have a usable Executor concept that can function as the root of a hierarchy.

2.2 Writing a generic async algorithm, take 2
Constraining a generic algorithm with P0443’s (implicit) Executor concept is insufficient. Let’s additionally
require that the executor type provides either the oneway_t or the bulk_oneway_t interface.
namespace std
{

// Additionally constrain the executor so that it provides either the oneway
// or the bulk oneway interface:
template<Executor Exec, RandomAccessIterator I>

requires can_require_concept_v< Exec, bulk_oneway_t > ||
can_require_concept_v< Exec, oneway_t >

void simple_sort(Exec ex, I first, I last)
{

if constexpr (can_require_concept_v< Exec, bulk_oneway_t >)
{

auto ex2 = require_concept(bulk_oneway, ex);
// Bulk oneway implementation in terms of ex2

}
else
{

auto ex2 = require_concept(oneway, ex);
// Oneway implementation in terms of ex2

}
}

}

This works now, at the cost of some verbosity in the algorithm constraints.

If we consider the stated intention of P0443 to have a user-extensible Executor concept hierarchy with
additional interface-changing executor properties provided by third parties, we run into additional problems.

2

2.3 Function overloading in the presence of interface-changing properties
Suppose the Acme Parallel Runtime vendor devises a custom mechanism for launching work in bulk that is
better that bulk_oneway_t, so they implement an interface-changing property acme_bulk_oneway_t that can
be used to accelerate algorithms. They also use acme_bulk_oneway_t to provide an accelerated simple_sort
algorithm in their namespace that outperforms the default simple_sort algorithm, which knows nothing
about acme_bulk_oneway_t.
namespace acme
{

// Constrain the executor with can_require_concept_v< acme_bulk_oneway_t >
template<std::Executor Exec, std::RandomAccessIterator I>

requires std::can_require_concept_v< Exec, acme_bulk_oneway_t >
void simple_sort(Exec ex, I first, I last)
{

auto ex2 = std::require_concept(acme_bulk_oneway, ex);
// An implementation of simple_sort in terms of acme_bulk_oneway

}
}

This works well until someone tries to call simple_sort with an executor that implements both
acme_bulk_oneway_t and either oneway_t or bulk_oneway_t. Then the call to simple_sort is ambiguous
because neither the overload in namespace std nor the one in namespace acme have constraints that subsume
the other.

2.4 Disjunction in the Executor concept
Imagine that instead of the degenerate Executor concept defined above, we defined the Executor concept to
be the disjunction between OneWayExecutor and BulkOneWayExecutor. Does that solve any problems?
namespace std
{

template <class Ex>
concept Executor =

CopyConstructible<Ex> &&
EqualityComparable<Ex> &&
is_executor_v<Ex> &&
(can_require_concept_v< Exec, bulk_oneway_t > ||

can_require_concept_v< Exec, oneway_t >);
}

We can now constrain algorithms to take an Executor without verbose requires clauses, and users can pass
types that satisfy one or both of the standard executor concepts.
namespace std
{

// Require users to pass something that satisfies one of standard
// executor concepts
template< Executor Exec, RandomAccessIterator I >
void simple_sort(Exec ex, I first, I last)
{

if constexpr (can_require_concept_v< Exec, bulk_oneway_t >)
{

auto ex2 = require_concept(bulk_oneway, ex);
// Bulk oneway implementation in terms of ex2

3

}
else
{

auto ex2 = require_concept(oneway, ex);
// Oneway implementation in terms of ex2

}
}

}

Disregarding the fact that disjunctions in concept hierarchies cause worst-case exponential behavior in partial
ordering by constraints ([temp.constr.order]), this formulation of the Executor concept has problems. The
implications are:

— Every algorithm constrained with this Executor concept is required to provide two implementations:
one for one-way executors, and another for bulk one-way executors.

— We would never be able to extend the Executor concept to include other types of execution interfaces
that we might add in the future. That would force everybody who wrote an algorithm constrained with
this concept to provide an additional implementation expressed in terms of that new interface. Recall
that enabling open extension of the Executor concept design space is one of the stated intentions of the
design of P0443’s properties mechanism.

This also does not solve the problem with ambiguous overloading.

In short, we can have either an open, extensible, ad hoc collection of Executor concepts; or maintainable
generic async algorithms and open overloading, but not both.

3 With a usable root Executor concept
Instead of the P0443 model, where all usable executor concepts are siblings, let’s take one concept – say,
OneWayExecute – rename it “Executor”, and promote it to be the root of an executor hierarchy. Note
that in so doing, we require all executor authors to provide a usable one-way execution interface, even if
that is not interesting for them. Additionally note that in moving one concept to the root of a hierarchy,
we are not requiring that such a hierarchy be linear. There may be many sibling concepts under the root
Executor concept, just as directly under C++20’s Range concept there is View, SizedRange, InputRange,
and OutputRange.

Here is what an Executor concept might look like:
template <class Ex, class Fn = void(*)()>
concept Executor =

Invocable<Fn> &&
CopyConstructible<Ex> &&
EqualityComparable<Ex> &&
requires (Ex&& ex, Fn&& fn) {

((Ex&&) ex).execute((Fn&&) fn);
};

We could add refinements of this concept, like BulkExecutor:
template <class Ex, [...additional args]>
concept BulkExecutor =

Executor<Ex> && [...additional requirements];

With an Execute concept at the root of the hierarchy, we can express the simple_sort example as follows:

4

namespace std
{

// Constrain simple_sort to simply take an Executor:
template< Executor Exec, RandomAccessIterator I>
void simple_sort(Exec ex, I first, I last)
{

if constexpr (BulkExecutor< Exec >)
{

// Bulk oneway implementation
}
else
{

// Oneway implementation
}

}
}

Third party code would be able to add refinements of any of the standard executor concepts, as follows:
namespace acme
{

template <class Ex>
concept AcmeBulkExecutor =

std::Executor<Ex> &&
[...additional requirements]

}

Given the AcmeBulkExecutor concept, users would be free to add an overload constrained with that concept
without introducing an ambiguity into the overload set:
namespace acme
{

// Constrain the algorithm with AcmeBulkExecutor
template< AcmeBulkExecutor Exec, std::RandomAccessIterator I>
void simple_sort(Exec ex, I first, I last)
{

// ... Acme bulk implementation
}

}

This introduces no ambiguity because AcmeBulkExecutor subsumes Executor, so the compiler can order the
overloads.

If any down-casting of executors must take place, it is the responsibility of the callers of the simple_sort
algorithm, not the simple_sort algorithm itself. That is how to make the set of executor concepts extensible
while also guarding against ambiguity and keeping libraries of async algorithms maintainable over time.

4 Satisfying multiple Executor concepts
With an Executor hierarchy that has a single root, there is nothing wrong with an executor satisfying multiple
concepts simultaneously; e.g., a std::BulkExecutor and an acme::AcmeBulkExecutor, just like std::span
is simultaneously a ContiguousRange, a View, and a SizedRange. There is still no ambiguity in the call to
simple_sort.

5

There are a number of implementation strategies an executor might use to satisfy multiple executor concepts:

— It may natively provide multiple interfaces on top of its execution context, or
— It may use something like require_concept internally to create the necessary executor on demand, or

(if that is too expensive)
— It may be implemented as a std::variant of a handful of concrete executors created on demand and

cached.

An algorithm that needs both a Standard and an Acme bulk executor would simply require both:
template < std::BulkExecutor Ex >

requires acme::AcmeBulkExecutor<Ex>
void the_best_algorithm(Ex ex, ...);

It is up to the caller of the_best_algorithm to provide an executor that satisfies both concepts (possibly
with one of the approaches described above).

5 Conclusion
Although intended to permit a natural evolution within the executor design space over time, the ad hoc and
fungible executor concept hierarchy implicit in the design of P0443 is actively hostile to generic programming
and gets in the way of the very kind of design evolution it was intended to enable. We recommend a executor
hierarchy with a single root to avoid intractable maintenance problems.

6 References
[P0443R10] Jared Hoberock, Michael Garland, Chris Kohlhoff, Chris Mysen, H. Carter Edwards, Gordon

Brown, David Hollman. 2019. A Unified Executors Proposal for C++.
https://wg21.link/p0443r10

6

https://wg21.link/p0443r10

	Abstract
	Without a usable root Executor concept
	Writing a generic async algorithm, take 1
	Writing a generic async algorithm, take 2
	Function overloading in the presence of interface-changing properties
	Disjunction in the Executor concept

	With a usable root Executor concept
	Satisfying multiple Executor concepts
	Conclusion
	References

