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I. Introduction 
There are use cases when heap memory allocation should be avoided for the various reasons, which leads 

to loss of availability guarantees and unpredictable execution time. An example of such a use case is in 

safety critical applications, where dynamic memory allocation is highly restricted by respective industry 

standards. 

Standard containers allow replacing the default heap-based std::allocator with a custom allocator, 

which shall fulfill Allocator named requirement, and that custom allocator may replace heap-based 

allocation with a different allocation source. Although, this mechanism allows replacing the allocator, the 

information required to calculate the total amount of memory to be consumed by a container and other 

useful information required to configure custom allocator is hidden within the specific implementation of 

the container. Users need to apply reverse engineering of the specific implementation to correctly configure 

their allocator. Furthermore, one implementation of the other standard library might require a different 

amount of memory than the other one for the same use-case and the problem size. 

We propose an additional API that describes container allocation guarantees, in order to enable calculation 

of total required memory size and provide additional data required to configure specific allocation 

strategies. 

II. Problem description and Scope 
Suppose user has use-case with std::deque that is parametrized with some custom allocator: 

template <typename T, typename Allocator> 

void process(const T& t, const Allocator& alloc) 

{ 

    // fill it with 1000 elements 

    std::deque<T, Allocator> d(1000, t, alloc); 

    // at this point it is using memory blocks. 

    for (auto i = 0; i < 100000; ++i) 

    { 

        d.push_front(t + 3); // make a new element on the front 

        d.pop_back(); // pop one off the back. 

    } 

} 

 

User has no idea of how much memory would be required to fulfill std::deque needs for the example 

above. Thus, user does not know how to configure Allocator instance. 

C++17 introduced a pmr namespace with polymorphic_allocator and configurable memory 

resources that represent different allocation strategies. But user still does not have enough information of 
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allocation patterns of the particular STL container. Thus, user has no information how to configure the 

memory resource. The example below shows it: 

int process() 

{ 

    constexpr std::size_t buffer_size = ?; // how much memory should we 

                                              pre-allocate; 

    std::byte buffer[buffer_size];         // preallocated memory 

 

     

    std::pmr::monotonic_buffer_resource resource{ buffer, buffer_size, 

        std::pmr::null_memory_resource() }; // enough memory assertion 

 

    std::pmr::list<int> list_var(&resource); 

 

    list_var.push_back({}); 

    list_var.push_back({}); 

    list_var.push_back({}); 

} 

In case of polymorphic allocator the standard does not answer the question how much memory is required 

to fulfill container memory expectations and how to guarantee that resource will not call upstream as a 

fallback meaning that the pre-allocated memory is enough. 

So, the problem exists for both custom allocators and standardized allocator interfaces. 

The current paper focuses on an API to reveal allocation patterns underneath the implementation of any 

given container, which would provide enough information to configure an allocator. 

API changes that would be required to achieve the goal of avoiding heap memory allocation is out of scope 

for this proposal, but is lightly touched on in this paper. 

The main goal of this paper is to get feedback on the approach and critical areas of further generalization. 

III. Describing an allocation pattern 
Analysis of typical containers revealed several high-level allocation patterns: 

• List/Map/Set 

o Many allocations with the same block size 

• Vector/String 

o Many allocations of increasing size, but no more than 2 blocks will be non-freed at any given 

time 

• Deque/Unordered_map/Unordered_set 

o 2 very distinct allocation patterns applied in parallel 

▪ Many allocation of small block sizes 

▪ Few allocation of bigger sizes 

We developed the following schema in order to be able to describe the variety of patterns: 

Allocation pattern can be divided in a set of sub-patterns. 

The following structure describes a unit sub-pattern of the allocations: 

struct memory_config 



{ 

    std::size_t max_block_size; 

    std::size_t concurrent_n; 

    std::size_t total_n; 

    std::size_t alignment 

}; 

 

max_block_size – container shall guarantee that each allocation is less than or equal to this value 

concurrent_n – the number of simultaneously allocated blocks that are not freed 

total_n – the number of total block allocations for the whole Container instance lifetime 
alignment – alignment of allocated blocks 
 
The set of sub-patterns is described as a tuple: std::tuple<memory_config, ...>. The estimate of 
the total memory requirements is a combination of requirements described by each tuple element. 
 

IV. Describing container use cases 
Most containers have no upper limit for memory allocation if usage is not restricted in some way. At the 

same time, the allocation pattern may depend on the way by which you limit the usage of a given container. 

Here is an example for std::vector:  

If we restrict usage of std::vector only by limiting the length, we are unable to predict total_n in the 

descriptor. 

If we additionally ban the shrink_to_fit call, we can estimate total_n, but we should assume the 

worst case – std::vector was created small and was increased slowly by resizing by one element, thus 

total_n will be ~ log2(max_length). 

If we additionally require a call to reserve() immediately after std::vector default construction, we 

can estimate total_n = 1 and concurrent_n = 1 (while in other cases concurrent_n = 2). 

That difference led us to add a notion of container use cases into the API. 

Possible set of use-cases for the standard containers is on the table below:



 

 

Container Use case Restrictions total_n concurrent_n max_block_size 

vector 
string 

max_size size & reserve <= 
MAX_N 

? 2 O(sizeof(value_type) * MAX_N) 

max_size_no_shrink max_size plus: no 
shrink_to_fit 

O(MAX_N) 2 O(sizeof(value_type) * MAX_N) 

max_size_no_resize max_size 
_no_shrink plus: no 
more than 1 
resize/reserve 

O(log2(MAX_N)) 2 O(sizeof(value_type) * MAX_N) 

max_size_reserve max_size 
_no_shrink plus: 
one reserve() after 
construction 

1 1 O(sizeof(value_type) * MAX_N) 

[multi]map, 
[multi]set, 
forward_list, 
list 

max_size size <= MAX_N ? MAX_N O(sizeof(node_type<value_type>)) 

max_element_insertions no more element 
insertions 

MAX_N MAX_N O(sizeof(node_type<value_type>)) 

deque max_size size <= MAX_N ? (Possible for 
some cases) 

O(MAX_N) + 
C 

max(sizeof(void*) * O(MAX_N), 
internal_calc(sizeof(T)))  

unordered_[multi]set 
unordered_[multi]map 

max_size* size & reserve < 
max_n && 
max_load_factor 
>= 
passed_load_factor 
&& rehash <= 
max_n / 
passed_load_factor 

? O(MAX_N / 
load_factor) 
+ C 

max(sizeof(void*) * O(MAX_N / 
load_factor), O(sizeof(T)))  

max_element_insertions no more element 
insertions 

TBD TBD TBD 

max_element_insertions_reserve no more element 
insertions plus: one 
reserve() after 
construction 

TBD TBD TBD 



V. Proposed API approaches to query allocation pattern 
The main idea is to be able to query how much memory is required for a particular container with a 

particular use-case and problem size using a specific memory allocation strategy. The API should be 

constexpr to allow getting the required memory size at compilation time if all of the parameters are 

known. 

Proposed API 
The proposal is to introduce the new class template in namespace std named memory_helper with 

two template parameters. memory_helper shall provide a std::tuple of memory_config’s for the 

specified container and use-case: 

template <typename UseCase, typename Container> 

struct memory_helper 

 

UseCase – a tag that describes the use-case for the container 

Container – container type 
 

Use-case is a tag (empty class) representing the use-case for the container. All use cases would be 

introduced in std::usecase namespace. 

memory_helper should have specialization for each container and applicable use-case for that 
container. For example: 
 

template <typename T, typename Alloc> 

struct memory_helper<std::usecase::max_element_insertions, std::list<T, 

Alloc>> 

 

Each specialization of memory_helper must provide the following members: 

config – public data member that has std::tuple<memory_config,…> type. 

memory_helper(/* each specialization specific args */)  - constructor initializing the 

config member. 

 

Example: 

template <typename T, typename Alloc> 

struct memory_helper<std::usecase::max_element_insertions, std::list<T, 

Alloc>> 

{    constexpr memory_helper(std::size_t N) 

       : config(memory_config{ 

                get_max_sizeof_chunk_for_list<T>(), N, N}) 

    { 

    } 

 

    const std::tuple<memory_config> config; 

}; 

 



VI. Usage examples 
Let us look at the solution for std::deque example: 

constexpr std::size_t allocator_overhead = //allocator specific overhead; 

constexpr auto max_size = 1001; 

constexpr std::memory_helper<std::usecase::max_size, std::deque<T>> 

                                           helper{max_size}; 

constexpr auto config = std::get<0>(helper.config); 

constexpr auto memory_size = config.concurrent_n * config.max_block_size 

                             + allocator_overhead; 

const auto memory = std::make_unique<std::byte[]>(memory_size); 

//allocator specific code 

mem::memory_pool<config.concurrent_n, config.max_block_size, 

                    config.alignment> pool(memory.get(), memory_size); 

mem::custom_allocator<T, decltype(pool)> alloc(pool); 

 

std::deque<T, decltype(alloc)> d(max_size - 1, t, alloc); // some type T 

 

for (int i = 0; i < 100000; ++i) 

{ 

    d.push_front(T(t)); // make a new element on the front 

    d.pop_back(); // pop one off the back. 

} 

 

 

The solution works for std::pmr::monotonic_buffer_resource problem as well: 

 
constexpr memory_helper< std::usecase::max_element_insertions, 
std::list<int>> h{3}; 

 

constexpr memory_config mc{std::get<0>(h.config)}; 

 

constexpr std::size_t buffer_size = mc.max_block_size * 

    mc.total_n; 

std::byte buffer[buffer_size]{}; 

auto& null_resource = std::pmr::null_memory_resource(); 

std::pmr::monotonic_buffer_resource resource{buffer, buffer_size, 

    null_resource}; 

std::pmr::list<int> list_var(&resource); 

 

list_var.push_back({}); 

list_var.push_back({}); 

list_var.push_back({}); 

 

list_var.push_back({}); // Out of memory 



VII. Further investigation in plans 

a) Nested containers API 
The case of std::list<std::string> implies allocation on several levels, which would require 

additional information to configure the memory_resource. Early internal investigation showed potential 

for generalization of the API to recurrent level. Details are targeted to the next iteration of the paper. 

b) Allocators contact API 
Need to define an API that could tell the user the allocation strategy overhead if any (e.g. strategy of pool 

replenishment from the upstream), but that should be a separate paper. 
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