
Paper Number: P1731R1

Title: Memory helper functions for Containers

Authors: Ilya Burylov <ilya.burylov@intel.com>

 Ruslan Arutyunyan <ruslan.arutyunyan@intel.com>

 Pablo Halpern <phalpern@halpernwightsoftware.com>

Audience: LEWG-I (Library Evolution Working Group-Incubator)

Date: 2019-10-07

I. Introduction
There are use cases when heap memory allocation should be avoided for the various reasons, which leads

to loss of availability guarantees and unpredictable execution time. An example of such a use case is in

safety critical applications, where dynamic memory allocation is highly restricted by respective industry

standards.

Standard containers allow replacing the default heap-based std::allocator with a custom allocator,

which shall fulfill Allocator named requirement, and that custom allocator may replace heap-based

allocation with a different allocation source. Although, this mechanism allows replacing the allocator, the

information required to calculate the total amount of memory to be consumed by a container and other

useful information required to configure custom allocator is hidden within the specific implementation of

the container. Users need to apply reverse engineering of the specific implementation to correctly configure

their allocator. Furthermore, one implementation of the other standard library might require a different

amount of memory than the other one for the same use-case and the problem size.

We propose an additional API that describes container allocation guarantees, in order to enable calculation

of total required memory size and provide additional data required to configure specific allocation

strategies.

II. Problem description and Scope
Suppose user has use-case with std::deque that is parametrized with some custom allocator:

template <typename T, typename Allocator>

void process(const T& t, const Allocator& alloc)

{

 // fill it with 1000 elements

 std::deque<T, Allocator> d(1000, t, alloc);

 // at this point it is using memory blocks.

 for (auto i = 0; i < 100000; ++i)

 {

 d.push_front(t + 3); // make a new element on the front

 d.pop_back(); // pop one off the back.

 }

}

User has no idea of how much memory would be required to fulfill std::deque needs for the example

above. Thus, user does not know how to configure Allocator instance.

C++17 introduced a pmr namespace with polymorphic_allocator and configurable memory

resources that represent different allocation strategies. But user still does not have enough information of

mailto:ilya.burylov@intel.com
mailto:ilya.burylov@intel.com
mailto:ruslan.arutyunyan@intel.com
mailto:ruslan.arutyunyan@intel.com
mailto:phalpern@halpernwightsoftware.com
mailto:phalpern@halpernwightsoftware.com

allocation patterns of the particular STL container. Thus, user has no information how to configure the

memory resource. The example below shows it:

int process()

{

 constexpr std::size_t buffer_size = ?; // how much memory should we

 pre-allocate;

 std::byte buffer[buffer_size]; // preallocated memory

 std::pmr::monotonic_buffer_resource resource{ buffer, buffer_size,

 std::pmr::null_memory_resource() }; // enough memory assertion

 std::pmr::list<int> list_var(&resource);

 list_var.push_back({});

 list_var.push_back({});

 list_var.push_back({});

}

In case of polymorphic allocator the standard does not answer the question how much memory is required

to fulfill container memory expectations and how to guarantee that resource will not call upstream as a

fallback meaning that the pre-allocated memory is enough.

So, the problem exists for both custom allocators and standardized allocator interfaces.

The current paper focuses on an API to reveal allocation patterns underneath the implementation of any

given container, which would provide enough information to configure an allocator.

API changes that would be required to achieve the goal of avoiding heap memory allocation is out of scope

for this proposal, but is lightly touched on in this paper.

The main goal of this paper is to get feedback on the approach and critical areas of further generalization.

III. Describing an allocation pattern
Analysis of typical containers revealed several high-level allocation patterns:

• List/Map/Set

o Many allocations with the same block size

• Vector/String

o Many allocations of increasing size, but no more than 2 blocks will be non-freed at any given

time

• Deque/Unordered_map/Unordered_set

o 2 very distinct allocation patterns applied in parallel

▪ Many allocation of small block sizes

▪ Few allocation of bigger sizes

We developed the following schema in order to be able to describe the variety of patterns:

Allocation pattern can be divided in a set of sub-patterns.

The following structure describes a unit sub-pattern of the allocations:

struct memory_config

{

 std::size_t max_block_size;

 std::size_t concurrent_n;

 std::size_t total_n;

 std::size_t alignment

};

max_block_size – container shall guarantee that each allocation is less than or equal to this value

concurrent_n – the number of simultaneously allocated blocks that are not freed

total_n – the number of total block allocations for the whole Container instance lifetime
alignment – alignment of allocated blocks

The set of sub-patterns is described as a tuple: std::tuple<memory_config, ...>. The estimate of
the total memory requirements is a combination of requirements described by each tuple element.

IV. Describing container use cases
Most containers have no upper limit for memory allocation if usage is not restricted in some way. At the

same time, the allocation pattern may depend on the way by which you limit the usage of a given container.

Here is an example for std::vector:

If we restrict usage of std::vector only by limiting the length, we are unable to predict total_n in the

descriptor.

If we additionally ban the shrink_to_fit call, we can estimate total_n, but we should assume the

worst case – std::vector was created small and was increased slowly by resizing by one element, thus

total_n will be ~ log2(max_length).

If we additionally require a call to reserve() immediately after std::vector default construction, we

can estimate total_n = 1 and concurrent_n = 1 (while in other cases concurrent_n = 2).

That difference led us to add a notion of container use cases into the API.

Possible set of use-cases for the standard containers is on the table below:

Container Use case Restrictions total_n concurrent_n max_block_size

vector
string

max_size size & reserve <=
MAX_N

? 2 O(sizeof(value_type) * MAX_N)

max_size_no_shrink max_size plus: no
shrink_to_fit

O(MAX_N) 2 O(sizeof(value_type) * MAX_N)

max_size_no_resize max_size
_no_shrink plus: no
more than 1
resize/reserve

O(log2(MAX_N)) 2 O(sizeof(value_type) * MAX_N)

max_size_reserve max_size
_no_shrink plus:
one reserve() after
construction

1 1 O(sizeof(value_type) * MAX_N)

[multi]map,
[multi]set,
forward_list,
list

max_size size <= MAX_N ? MAX_N O(sizeof(node_type<value_type>))

max_element_insertions no more element
insertions

MAX_N MAX_N O(sizeof(node_type<value_type>))

deque max_size size <= MAX_N ? (Possible for
some cases)

O(MAX_N) +
C

max(sizeof(void*) * O(MAX_N),
internal_calc(sizeof(T)))

unordered_[multi]set
unordered_[multi]map

max_size* size & reserve <
max_n &&
max_load_factor
>=
passed_load_factor
&& rehash <=
max_n /
passed_load_factor

? O(MAX_N /
load_factor)
+ C

max(sizeof(void*) * O(MAX_N /
load_factor), O(sizeof(T)))

max_element_insertions no more element
insertions

TBD TBD TBD

max_element_insertions_reserve no more element
insertions plus: one
reserve() after
construction

TBD TBD TBD

V. Proposed API approaches to query allocation pattern
The main idea is to be able to query how much memory is required for a particular container with a

particular use-case and problem size using a specific memory allocation strategy. The API should be

constexpr to allow getting the required memory size at compilation time if all of the parameters are

known.

Proposed API
The proposal is to introduce the new class template in namespace std named memory_helper with

two template parameters. memory_helper shall provide a std::tuple of memory_config’s for the

specified container and use-case:

template <typename UseCase, typename Container>

struct memory_helper

UseCase – a tag that describes the use-case for the container

Container – container type

Use-case is a tag (empty class) representing the use-case for the container. All use cases would be

introduced in std::usecase namespace.

memory_helper should have specialization for each container and applicable use-case for that
container. For example:

template <typename T, typename Alloc>

struct memory_helper<std::usecase::max_element_insertions, std::list<T,

Alloc>>

Each specialization of memory_helper must provide the following members:

config – public data member that has std::tuple<memory_config,…> type.

memory_helper(/* each specialization specific args */) - constructor initializing the

config member.

Example:

template <typename T, typename Alloc>

struct memory_helper<std::usecase::max_element_insertions, std::list<T,

Alloc>>

{ constexpr memory_helper(std::size_t N)

 : config(memory_config{

 get_max_sizeof_chunk_for_list<T>(), N, N})

 {

 }

 const std::tuple<memory_config> config;

};

VI. Usage examples
Let us look at the solution for std::deque example:

constexpr std::size_t allocator_overhead = //allocator specific overhead;

constexpr auto max_size = 1001;

constexpr std::memory_helper<std::usecase::max_size, std::deque<T>>

 helper{max_size};

constexpr auto config = std::get<0>(helper.config);

constexpr auto memory_size = config.concurrent_n * config.max_block_size

 + allocator_overhead;

const auto memory = std::make_unique<std::byte[]>(memory_size);

//allocator specific code

mem::memory_pool<config.concurrent_n, config.max_block_size,

 config.alignment> pool(memory.get(), memory_size);

mem::custom_allocator<T, decltype(pool)> alloc(pool);

std::deque<T, decltype(alloc)> d(max_size - 1, t, alloc); // some type T

for (int i = 0; i < 100000; ++i)

{

 d.push_front(T(t)); // make a new element on the front

 d.pop_back(); // pop one off the back.

}

The solution works for std::pmr::monotonic_buffer_resource problem as well:

constexpr memory_helper< std::usecase::max_element_insertions,
std::list<int>> h{3};

constexpr memory_config mc{std::get<0>(h.config)};

constexpr std::size_t buffer_size = mc.max_block_size *

 mc.total_n;

std::byte buffer[buffer_size]{};

auto& null_resource = std::pmr::null_memory_resource();

std::pmr::monotonic_buffer_resource resource{buffer, buffer_size,

 null_resource};

std::pmr::list<int> list_var(&resource);

list_var.push_back({});

list_var.push_back({});

list_var.push_back({});

list_var.push_back({}); // Out of memory

VII. Further investigation in plans

a) Nested containers API
The case of std::list<std::string> implies allocation on several levels, which would require

additional information to configure the memory_resource. Early internal investigation showed potential

for generalization of the API to recurrent level. Details are targeted to the next iteration of the paper.

b) Allocators contact API
Need to define an API that could tell the user the allocation strategy overhead if any (e.g. strategy of pool

replenishment from the upstream), but that should be a separate paper.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific

computer systems, components, software, operations and functions. Any change to any of those factors

may cause the results to vary. You should consult other information and performance tests to assist you in

fully evaluating your contemplated purchases, including the performance of that product when combined

with other products.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk,

and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and

SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or

effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-

dependent optimizations in this product are intended for use with Intel microprocessors. Certain

optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to

the applicable product User and Reference Guides for more information regarding the specific instruction

sets covered by this notice.

Notice revision #20110804

