
Paper Number: P1731R0
Title: Memory helper functions for Containers
Authors: Ilya Burylov <ilya.burylov@intel.com>
 Ruslan Arutyunyan <Ruslan.Arutyunyan@intel.com>
 Pablo Halpern <phalpern@halpernwightsoftware.com>

Audience: LEWG (Library Evolution Working Group)
Date: 2019-06-03

I. Introduction
There are use cases when heap memory allocation should be avoided for the various reasons, which leads
to loss of availability guarantees and unpredictable execution time. An example of such a use case is in
safety critical applications, where dynamic memory allocation is highly restricted by respective industry
standards.

Standard containers allow replacing the default heap-based std::allocator with a custom allocator,
which shall fulfill Allocator named requirement, and that custom allocator may replace heap-based
allocation with a different allocation source. Although this mechanism allows replacing the allocation
strategy, the information required to calculate the total amount of memory to be consumed by a container
and other details required to configure custom allocator is hidden within the specific implementation of the
container. Users need to apply reverse engineering of the specific implementation to correctly configure
their allocator. Furthermore, one implementation of the other standard library might require a different
amount of memory than another one for the same use-case and the problem size.

We propose an additional API that describes container allocation guarantees, in order to enable calculation
of total required memory size and provide additional data required to configure specific allocation
strategies.

II. Motivation and Scope
C++17 introduced a pmr namespace with polymorphic_allocator and different memory resources
that represent several allocation strategies.

That became a step forward to address a problem of providing a standard mechanism to configure
underlying allocation mechanism for a given use case, but it does not address the other part of the story:
data required to configure some memory resource.

The current paper focuses on an API to reveal allocation patterns underneath the implementation of any
given container, which would provide enough information to configure a memory resource.

API changes that would be required to achieve the goal of avoiding heap memory allocation is out of scope
for this proposal, but is lightly touched on in this paper.

The main goal of this paper is to get initial feedback on the feasibility of the approach and get an advice on
critical areas of further approach generalization. A proposal along these lines would be targeted for C++23.

III. Problem description
Let us consider the following code snippet:

constexpr std::size_t buffer_size = ? // how much memory should we pre-allocate;

std::byte buffer[buffer_size]{}; // preallocated memory
auto null_resource = std::pmr::null_memory_resource(); // assertion that memory is
enough

std::pmr::monotonic_buffer_resource resource{ buffer, buffer_size,
 null_resource };

std::pmr::list<int> list_var(&resource);

list_var.push_back({});
list_var.push_back({});
list_var.push_back({});

The main question is how much memory would be required to fulfill container memory expectations and
guarantee that resource won’t call upstream as a fallback meaning that the pre-allocated memory is
enough?

IV. Describing an allocation pattern
Analysis of typical containers revealed several high-level allocation patterns:

• List/Map/Set
o Many allocations with the same block size

• Vector/String
o Many allocations of increasing size, but no more than 2 blocks will be non-freed at any given

time
• Deque/Unordered_map/Unordered_set

o 2 very distinct allocation patterns applied in parallel
§ Many allocation of small block sizes
§ Few allocation of bigger sizes

We developed the following schema in order to be able to describe the variety of patterns:

Allocation pattern can be divided in a set of sub-patterns.

The following structure describes a unit sub-pattern of the allocations:

struct memory_config
{
 std::size_t max_block_size;
 std::size_t concurrent_n;
 std::size_t total_n;
};

max_block_size – Container shall guarantee that each allocation is less than or equal to this value
concurrent_n – the number of simultaneously allocated blocks that are not freed
total_n – the number of total block allocations for the whole Container instance lifetime

The set of sub-patterns is described as a tuple: std::tuple<memory_config, ...>. The tuple
means that allocations describing all elements of the pattern can be interleaved. That means that the
estimate of the total memory requirements is a sum of requirements described by each element.

V. Describing container use cases
Most containers have no upper limit for memory allocation if usage is not restricted in some way. At the
same time, the allocation pattern may depend on the way by which you limit the usage of a given container.
Here is an example for std::vector:

If we restrict usage of std::vector only by limiting the length, we are unable to predict total_n in the
descriptor.

If we additionally ban the shrink_to_fit call, we can estimate total_n, but we should assume the
worst case – std::vector was created small and was increased slowly by resizing by one element, thus
total_n will be ~ log2(max_length).

If we additionally require a call to reserve() immediately after std::vector default construction, we
can estimate total_n = 1 and concurrent_n = 1 (while in other cases concurrent_n = 2).

That difference led us to add a notion of container use cases into the API.

Most use-cases are container-specific: e.g. shrink_to_fit is specific to vector/deque/string and irrelevant to
everything else. Limitation on max_load_factor is relevant only to unordered containers, where it is critical
to calculate memory consumption.

VI. Possible approaches to query allocation pattern data
The main idea is to be able to query how much memory is required for a particular container with a
particular use-case and problem size using a specific memory allocation strategy. The API should be
constexpr to allow getting the required memory size at compilation time if all of the parameters are
known.

a) Standalone API
The proposal is to introduce the new class template in namespace std named memory_helper with
two template parameters. memory_helper shall provide a std::tuple of memory_config’s for the
specified container and use-case:

template <typename UseCase, typename Container>
struct memory_helper

UseCase – a tag that describes the use-case for the container
Container – container type

Use-case is a tag (empty class) representing the use-case for the container. All use cases would be
introduced in std::usecase namespace.

memory_helper should have specialization for each container and applicable use-case for that
container. For example:

template <typename T, typename Alloc>

struct memory_helper<std::usecase::monotonic_growth, std::list<T, Alloc>>

Each specialization of memory_helper must provide the following members:

config – public data member that has std::tuple<memory_config,…> type.

memory_helper(/* each specialization specific args */) - constructor initializing the
config member.

Example:

template <typename T, typename Alloc>
struct memory_helper<std::usecase::monotonic_growth, std::list<T, Alloc>>
{ constexpr memory_helper(std::size_t N)
 : config(memory_config{
 get_max_sizeof_chunk_for_list<T>(), N, N})
 {
 }

 const std::tuple<memory_config> config;
};

b) Use case as a part of the container
We don’t introduce memory_helper API and don’t do use-case tags. Instead, we make memory helper
and use-case the same instance and make additional aliases for implementation-defined classes inside each
Container for every applicable use-case. E.g.

template<typename T, typename Alloc> class list

{

 ...

 using value_type;

 ...

 using monotonic_growth_helper = /* implementation defined */;

}

monotonic_growth_helper (as all other helpers) shall provide the following API:

config – public member variable that has std::tuple<memory_config,…> type.

monotonic_growth_helper (/* each helper specific args */) - constructor initialized
config member with dedicated memory_config.

Example:

constexpr std::list<int>::monotonic_growth_helper h{6};

However, this approach gives impossibility to write partial template specialization with specific helper
Consider the following example:
template <typename T> struct A{};

We cannot write something like that:

template <typename T, typename Alloc>

struct A<typename std::list<T,Alloc>::monotonic_growth_helper >

{};

VII. Usage examples
Let’s consider the possible solution with std::pmr::monotonic_buffer_resource.

a) Standalone API
constexpr memory_helper< std::usecase::monotonic_growth, std::list<int>>
h{3};

constexpr memory_config mc{std::get<0>(h.config)};

constexpr std::size_t buffer_size = mc.max_block_size *
 mc.concurrent_n;
std::byte buffer[buffer_size]{};
auto& null_resource = std::pmr::null_memory_resource();
std::pmr::monotonic_buffer_resource resource{buffer, buffer_size,
 null_resource};
std::pmr::list<int> list_var(&resource);

list_var.push_back({});
list_var.push_back({});
list_var.push_back({});

list_var.push_back({}); // Out of memory

b) Part of the container API
constexpr std::list<int>>::monotonic_growth_helper h{3};

constexpr memory_config mc{std::get<0>(h.config)};

constexpr std::size_t buffer_size = mc.max_block_size *
 mc.concurrent_n;
std::byte buffer[buffer_size]{};
auto& null_resource = std::pmr::null_memory_resource();
std::pmr::monotonic_buffer_resource resource{buffer, buffer_size,
 null_resource};
std::pmr::list<int> list_var(&resource);

list_var.push_back({});
list_var.push_back({});
list_var.push_back({});

list_var.push_back({}); // Out of memory

VIII. Further investigation in plans
a) Nested containers API

The case of std::list<std::string> implies allocation on several levels, which would require
additional information to configure the memory_resource. Early internal investigation showed potential
for generalization of the API to recurrent level. Details are targeted to the next iteration of the paper.

b) Different use-case description
We are going to propose an initial set of use cases for existing standard containers.

c) Allocators contact API
Need to define an API that could tell the user the allocation strategy overhead if any (e.g. strategy of pool
replenishment from the upstream)

d) Potential solution for variable-length local arrays
The C++ standard committee has struggled to define a way to support variable-length arrays, as the C
approach is insufficient to support user-defined types (and is counter to C++ style in other ways).
Conceivably, an approach to VLAs could be based on the facilities proposed in this paper.

IX. Additional extensions required
This API serves well for both monotonic and pool allocation strategies. Unfortunately, current
pool_resource implementation has lack of configurability and implementation specification required to
provide a guarantee on memory consumption.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the performance of that product when combined
with other products.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk,
and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

