
Document Number: p1701r0
Date: 2019-06-14
To: SC22/WG21 EWG

Reply to: Nathan Sidwell nathan@acm.org

Inline Namespaces: Fragility Bites
Nathan Sidwell

Inline namespaces were added with the goal of allowing vendors to provide different source-compatible
and link-interoperable library variants. Unfortunately there was at least one defect with the design, and
that has opened the door to a conflicting unexpected use.

1 Background
Inline namespaces introduce a named scope that is almost invisible. Users do not need to name the
scope in order to access members within. Qualified and unqualified namespace-scope name lookup is
modified to also search inline namespace nests, adding any found entities to the lookup set.

The intent is to be able to write:

namespace std {
#ifdef SMALL_STRING_OPTIMIZATION
inline namespace __sso
#endif

template <typename T> string
 { /* details unimportant. */ }

#ifdef _SMALL_STRING_OPTIMIZATION
}
#endif
}

The user of the vendor’s library can name ‘string’ with ‘std::string’. The vendor can provide different
flavours of ‘string’ depending on _SMALL_STRING_OPTIMIZATION. Howard Hinnant noted:

Despite the weaknesses, I can report the transition period went remarkably smoothly.
libstdc++’s COW string never got confused at run-time with libc++’s SSO string.

p1701r0:Inline Namespaces: Fragility Bites - 1 - Nathan Sidwell

An unqualified declaration does not redeclare a declaration visible in an inline namespace nest,
however a qualified name does:

inline namespace A {
 void foo () {} // #1
 void bar () {} // #2
}

void foo () {} // OK, not redefinition of #1
void ::bar () {} // ERROR, redefinition of #2

However, template specializations do locate their general template within an inline namespace:

inline namespace A {
 template <int I> void foo () {} // #1
}

template<> void foo<1> () {} // OK, specializes #1

2 DR2061
Core DR20611 concerns a problem introduced by resolving DR1795:2

After the resolution of issue 1795, 10.3.1 [namespace.def] paragraph 3 [...] appears to break
code like the following:

 namespace A {
 inline namespace b {
 namespace C {
 template<typename T> void f();
 }
 }
 }

 namespace A {
 namespace C {
 template<> void f<int>() { }
 }
 }

because (by definition of “declarative region”) C cannot be used as an unqualified name to
refer to A::b::C within A if its declarative region is A::b.

1 https://wg21.link/cwg2061
2 https://wg21.link/cwg 1795

p1701r0:Inline Namespaces: Fragility Bites - 2 - Nathan Sidwell

https://wg21.link/cwg2061
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1795
https://wg21.link/cwg2061
https://wg21.link/cwg2061

Proposed resolution (September, 2015):

Change 10.3.1 [namespace.def] paragraph 3 as follows:

In a named-namespace-definition, the identifier is the name of the namespace. If the
identifier, when looked up (6.4.1 [basic.lookup.unqual]), refers to a namespace-name (but
not a namespace-alias) that was introduced in the declarative region namespace in which
the named-namespace-definition appears or that was introduced in a member of the
inline namespace set of that namespace, the namespace-definition extends the
previously-declared namespace. Otherwise, the identifier is introduced as a namespace-
name into the declarative region in which the named-namespace-definition appears.

I.e when opening a namespace N, look for Ns indirectly reachable via nested inline namespaces. It is
only if there are no such Ns that we create a new namespace.

This behaviour is different to other unqualified declarations, as described in Section 1, where no such
inline namespace search occurs.

3 PR90291
I implemented DR2061 in GCC 8. Bug report PR902913 was raised. The bug reporter relates that their
software’s organization has the following hierarchy:

inline namespace A {
 namespace detail { // #1
 void foo() {} // #3
 }
}

namespace detail { // #2
 inline namespace C {
 void bar() {} // #4
 }
}

The intent is to have functions A::detail::foo (#3) and detail::C::bar (#4). However, with
DR2061 implemented, the namespace declaration #2 no longer creates a new top-level
namespace, but locates the previously opened A::detail at #1. Thus the second function’s fully
qualified name is A::detail::C::bar.

3 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291

p1701r0:Inline Namespaces: Fragility Bites - 3 - Nathan Sidwell

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291

As the reporter expands in comments 6 & 7, A is a utility component name:

// header file
namespace component {
 inline namespace utility {
 namespace detail {
 // stuff
 }
 }
}

// source file
#include “header file”
namespace component {
 namespace detail {
 // oops, component::utility::detail
 }
}

If two different headers use the same hierarchy, but with different ‘utility’ names, a user that includes
both will discover that detail has become a poisoned namespace, as any attempt to open it will result in
an ambiguous lookup.

This problem was discussed on the core mailing list.4 Gaby dos Reis commented that while DR2061 is
addressing the issue it intends to address:

However, this is already extremely fragile: if the namespace is also opened
before including the header [example] ... then this doesn't work: #2 reopens #3 instead of
#1.

However, inline namespaces have *also* been adopted for another behavior
entirely unrelated to versioning: as a way of providing an optional
namespace name component (eg, std::inline literals::inline chrono_literals,
or the example in that GCC bug report). In that guise, it is not reasonable
to look through the inline namespace set when considering reopening a
namespace.

Davis Herring suggested:

... any namespace declaration that would cause a subsequent (fully-qualified) namespace
lookup to be ambiguous due to inline namespaces should be rejected immediately.

That is, not accepting DR2061, but making namespace definition #2 in the bug report example above
ill-formed due to it (also) matching definition #1.

4 http://lists.isocpp.org/core/2019/04/6102.php

p1701r0:Inline Namespaces: Fragility Bites - 4 - Nathan Sidwell

http://lists.isocpp.org/core/2019/04/6102.php

GCC 8 was released in May 2018, PR90291 was filed in April 2019. I note the following related PRs,
both fallout from implementing DR2061

• 87155,5 anonymous namespaces inside inline namespaces (see Section 4)

• 81064,6 libstdc++ breakage, because it had exactly this structure. The library was changed.

Given those issues, and Richard Smith’s comment that:

Clang intends to implement DR2061, but it looks like we get it wrong in
some ways …

perhaps DR2061’s direction is suboptimal?

4 Unnamed Namespaces
The standard specifies:

An unnamed-namespace-definition behaves as if it were replaced by

inlineopt namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body }

… all occurrences of unique in a translation unit are replaced by the same identifier, and
this identifier differs from all other identifiers in the translation unit

 [namespace.unnamed]

This wording means that placing an unnamed namespace inside an inline namespace could cause issues
with other unnamed namespaces within the same inline namespace nest:

namespace {}
inline namespace bob {
 namespace {}
}

namespace {} // error, ambiguous

In addressing PR87155 (& PR89068) I accepted the above by not searching an inline namespace nest
when opening an unnamed namespace. Again, this was discussed on the core mailing list.7 That
discussion concluded this was well-formed, but it predates the above-mentioned DR2061 discussion,
and I now consider the argument incomplete.

5 https://gcc.gnu.org/bugzilla/show_bug.cgi?id= 87155
6 https://gcc.gnu.org/bugzilla/show_bug.cgi?id= 81064
7 http://lists.isocpp.org/core/2018/08/4912.php

p1701r0:Inline Namespaces: Fragility Bites - 5 - Nathan Sidwell

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291
http://lists.isocpp.org/core/2018/08/4912.php

5 Discussion
The use shown in PR90291 conflicts with the direction taken in DR2061. The user’s rationale is
reasonable. That the report was nearly a year after compiler release is probably indicative of the user’s
compiler-update cadence (rather than bug obscurity). As G dos Reis notes, a scheme with similar
behaviour is now used in the STL. GCC encountered a few other bug reports related to the DR2061
change, and has implemented a workaround for that change in the unnamed namespace case.

Questions:

1. Should inline namespaces be searched when opening the namespace of a namespace definition?
This agrees with DR2061’s resolution but breaks the use case of PR90291.

2. When a namespace definition uses a qualified name, should lookup of the qualifying names
search inline namespaces? That would match the behaviour of other qualified-name
declarations, but break the equivalence between using a qualified name, or an explicit nest of
namespace definitions.

3. (If answer 1 is ‘no’), should an approach suggested by D Herring be taken, and prevent creating
new namespaces whose name matches an existing namespace within their local inline
namespace nest?

6 Revision History
R0 First version

p1701r0:Inline Namespaces: Fragility Bites - 6 - Nathan Sidwell

	1 Background
	2 DR2061
	3 PR90291
	4 Unnamed Namespaces
	5 Discussion
	6 Revision History

