
A Compromise Executor Design Sketch
Document #: D1660R0
Date: 2019-06-03
Project: Programming Language C++

SG1
LEWG

Reply-to: Jared Hoberock
<jhoberock@nvidia.com>
Michael Garland
<mgarland@nvidia.com>
Bryce Adelstein Lelbach
<blelbach@nvidia.com>
Michał Dominiak
<mdominak@nvidia.com>
Eric Niebler
<eniebler@fb.com>
Kirk Shoop
<kirkshoop@fb.com>
Lewis Baker
<lbaker@fb.com>
Lee Howes
<lwh@fb.com>
David S. Hollman
<dshollm@sandia.gov>
Gordon Brown
<gordon@codeplay.com>

1 Introduction
We offer a possible design direction for Executors to address Nvidia’s and Facebook’s concerns regarding
certain elements of the design of [P0443R10]. The ultimate goal of this paper is to find consensus for a design
direction that is acceptable to all parties in both SG1 and LEWG.

2 Required Background
This paper is best understood in relation to the two visions for Executors as represented by [P0443R10] “A
Unified Executors Proposal for C++” and [P1341R0] “Unifying Asynchronous APIs in the Standard Library.”
In addition, the following papers published concurrently should be read prior to this paper:

— [P1658R0] “Suggestions for Consensus on Executors”
— [P1777R0] “One-Way execute is a Poor Basis Operation”
— [P1738R0] “The Executor Concept Hierarchy Needs a Single Root”

Given the extent of the Executors back-story, this paper makes no attempt to be entirely self-contained.

1

mailto:jhoberock@nvidia.com
mailto:mgarland@nvidia.com
mailto:blelbach@nvidia.com
mailto:mdominak@nvidia.com
mailto:eniebler@fb.com
mailto:kirkshoop@fb.com
mailto:lbaker@fb.com
mailto:lwh@fb.com
mailto:dshollm@sandia.gov
mailto:gordon@codeplay.com

3 Proposal Summary
We address the concerns raised in [P1777R0] “One-Way execute is a Poor Basis Operation,” and [P1738R0]
“The Executor Concept Hierarchy Needs a Single Root,” by adopting Nvidia’s [P1658R0] “Suggestions for
Consensus on Executors” with an augmented eager one-way execute function that makes it workable as a
low-level primitive for Sender/Receiver.

We reaffirm Nvidia’s position (slightly modified):

We propose a compromise between competing requirements on executors by eliminating interface-changing
properties, establishing a single Executor concept, and re-specifying oneway execute to permit Senders
and Receivers to be layered on top. Proposed changes to [P0443R10]:

— Eliminate interface-changing properties oneway and bulk_oneway.
— Introduce an Executor concept based on a member function named execute that eagerly submits a

function for execution on an execution agent created for it by the executor.
— Eliminate OneWayExecutor and BulkOneWayExecutor concepts.
— Introduce a customizable bulk execution API whose specific shape is left as future work.
— Introduce a Scheduler concept based on a function named schedule that lazily creates a Sender of

a scheduler.
— Introduce Senders, Receivers, and related operations with additions described below.

4 Before and After
Before we get into the meat of the proposal, we present some before-and-after tables for comparison of how
executor definition and use would look in some common scenarios.

4.1 One-way execution

Before: P0443R10 After: Proposed

// compiles only if
// can_require_concept_v<E, oneway_t>
std::require_concept(

ex, std::execution::oneway)
.execute(f);

// always compiles if ex is an Executor:
std::tbd::execute(ex, f);

4.2 One-Way Bulk Execution

Before: P0443R10 After: Proposed (hypothesized)

// compiles only if
// can_require_concept_v<E, bulk_oneway_t>:
std::require_concept(

ex, std::execution::bulk_oneway)
.bulk_execute(f, shape, sf);

// always compiles if ex is an Executor
std::tbd::bulk_execute(ex, f, shape, sf);

2

4.3 Authoring bulk executors

Before: P0443R10 After: Proposed

struct simplest_bulk_executor {
auto operator<=>(...) const = default;

template<Invocable SF,
class S = invoke_result_t<SF&>,
Invocable<size_t, decay_t<S>&> Op>

void bulk_execute(
Op op, size_t n, SF sf) const {

auto shared = sf();
for(size_t i = 0; i < n; ++i)

op(i, shared);
}

};

struct simplest_bulk_executor {
auto operator<=>(...) const = default;

template<Invocable F>
void execute(F f) const {

std::tbd::invoke_callback(f);
}
// All executors are "bulk" by definition.

};

5 Suggestions for Executors
5.1 One Executor concept
Pursuant to the arguments in [P1738R0] and [P1658R0] (“Suggestions for Executors”) in support of a
single Executor concept to serve as the root of a hierarchy, we propose that an Executor should be a
CopyConstructible and EqualityComparable type that provides a function named execute that eagerly
submits work on a single execution agent created for it by the executor.

// An Executor is something with an .execute()
// member function that takes a nullary callable.
template<class Ex, class C = void(*)()>
concept Executor =

Invocable<C> &&
CopyConstructible<remove_cvref_t<Ex>> &&
EqualityComparable<remove_cvref_t<Ex>> &&
requires (Ex&& ex, C&& c) {

((Ex&&) ex).execute((C&&) c);
};

5.2 Generalize one-way execute

[P1777R0] points out particular shortcomings of one-way execute that prevent a truly generic
Sender/Receiver design from being layered on top; especially,

— There is no well-defined in-band (i.e., not unspecified) channel for errors that happen either during task
submission or after submission but before task execution (say, a time-out for a time-bounded executor),
and

— There is no channel, apart from task destruction, whereby an executor can notify a submitted task that
it will not be executed (say, if someone requested cancellation).

3

To address these shortcomings, we propose a refinement of the Invocable concept, tentatively named
Callback, that in addition to being invocable also has .error(E) and .done() members. Callback takes
the place of [P1341R0]’s Receiver. Subsumption of Invocable makes it possible to continue defining one-way
execute in terms of nullary Invocables as in P0443, with additional guarantees if the Invocable models
Callback.

The Callback concept is as follows:
// A CallbackSignal is something with .done() and
// .error() member functions.
template<class T, class E = exception_ptr>
concept CallbackSignal =

requires (T&& t, E&& e) {
{ ((T&&) t).done() } noexcept;
{ ((T&&) t).error(((E&&) e)) } noexcept;

};

// A Callback is an Invocable that is also a
// CallbackSignal.
template<class T, class... An>
concept Callback =

Invocable<T, An...> &&
CallbackSignal<T>;
// axiom: if invoking T exits by throwing an exception, it is well-defined to
// call .error(E)

The CallbackSignal concept permits an algorithm author to write constraints when error types other than
std::exception_ptr are used. For example:
template <Callback<int> C>

requires CallbackSignal<C, std::error_code> // Note extra constraint!
void frobozzle(C&& c, std::error_code ec) try {

if (!ec)
c(42);

else
c.error(ec); // OK, we required this expression to be valid.

} catch (...) {
c.error(std::current_exception());

}

Given Callback, the semantic constraints on an executor’s .execute() member are as follows:

— .execute(fun) is required to eagerly submit fun for execution on an EA that it creates for it. Let
FUN be fun or an object created by copy or move construction from fun. If the type of fun models
Callback then the executor guarantees that exactly one of the following is called at some point prior
to the destruction of fun and all objects copy or move constructed from fun: FUN(), FUN.done(), or
FUN.error(E), where E is as described below. [Note: An executor has wide discretion when deciding
which function to call. — end note]

— If FUN’s error member function is called in response to a submission error, scheduling error, or
other internal executor error, let E be an expression that refers to that error if FUN.error(E)
is well-formed. Otherwise, let E be an exception_ptr that refers to that error. [Note: E could
be the result of calling current_exception or make_exception_ptr — end note] The executor
calls FUN.error(E) on an unspecified weakly-parallel EA ([Note: An invocation of Callback’s
error member is required to be noexcept — end note]), and

4

— If FUN’s error member function is called in response to an exception that propagates out of the
invocation of FUN, let E be make_exception_ptr(callback_invocation_error{}) invoked from
within a catch clause that has caught the exception. The executor calls FUN.error(E) on an
unspecified weakly-parallel EA, and

— A call to FUN.done() is made on an unspecified weakly-parallel EA ([Note: An invocation of a
Callback’s done member is required to be noexcept — end note]).

— If the type of fun does not model Callback, errors are handled in an implementation-defined way.

Enforcing these semantics is aided by defining a std::tbd::invoke_callback algorithm (defined in terms of
a simpler std::tbd::try_invoke_callback algorithm) that takes an Invocable and invokes it, funneling
errors appropriately:

// This definition lives in the stdlib somewhere:
// runtime_error const __invocation_error {"callback invocation error"};
extern runtime_error const __invocation_error; // exposition only

struct callback_invocation_error : runtime_error, nested_exception {
callback_invocation_error() noexcept

: runtime_error(__invocation_error), nested_exception() {}
};

template<CallbackSignal S, class... Args, Invocable<Args...> C>
void std::tbd::try_invoke_callback(S&& s, C&& c, Args&&... args) noexcept

Effects: Equivalent to:

try {
invoke((C&&) c, (Args&&) args...);

} catch (...) {
((S&&) s).error(make_exception_ptr(callback_invocation_error{}));

}

template<class... Args, Invocable<Args...> C>
void std::tbd::invoke_callback(C&& fun, Args&&... args) noexcept(see below);

Remarks: The expression in the noexcept clause is equivalent to

is_nothrow_invocable_v<C> || CallbackSignal<C>

Effects: Equivalent to

if constexpr (CallbackSignal<C>)
try_invoke_callback((C&&) c, (C&&) c, (Args&&) args...);

else
invoke((C&&) c, (Args&&) args...);

With the above definition of Executor and std::tbd::invoke_callback, the inline_executor becomes
the trivial:

struct inline_executor {
auto operator<=>(inline_executor) const = default;

5

template<Invocable C>
void execute(C&& c) {

std::tbd::invoke_callback(forward<C>(c));
}

};

5.3 Reexpress bulk_execute as an algorithm
[Editor’s note: This section is highly speculative.]

In this scheme, all Executors would be required to provide the execute member function. As proposed by
P1658:

[. . .] in order to retain the functionality offered by the bulk_oneway property, we propose to introduce a
customization point object named bulk_execute callable with any Executor to create bulk execution.

At present, we can imagine several possible shapes for such an API for bulk execution, and we may decide
to standardize one or more of them. In particular, we could ship customizable versions of the following
algorithms:

— A bulk execution algorithm with the same shape and semantics as bulk_execute in P0443; that is,
it takes an executor, an iteration function, a loop induction variable, and a state factory, and eagerly
launches execution agents in bulk.

— A eager bulk execution algorithm like the previous, but that additionally takes a Callback that can
receive the final value of the state variable and that can receive an error or done signal.

— A lazy bulk execution algorithm that does not take a Callback but that returns a Sender of either
void or of the final value of the state variable.

— A lazy bulk execution algorithm that returns an asynchronous range of Senders, each Sender repre-
senting a chunk of work to which additional work may be chained.

Whichever bulk execution algorithm(s) we choose to standardize, they will all have the property that they
accept any type that models the Executor concept; that is, they will have a fallback implementation that
uses the one-way execute API.

General, efficient, and customizable interfaces for bulk execution in both lazy and eager forms are prerequisites
for merging P0443 into the working paper. Their exact specifications are left as future work pending the
approval of this design direction.

6 Suggestions for Senders and Receivers
As summarized in Nvidia’s P1658, an Executor as understood above is a factory for execution agents.
However, an Executor from P1341R0 is a factory for execution agent factories. This difference in kind is
why we recommend having separate concepts. In this proposed design, we demonstrate a way in which both
P0443’s Executor and P1341’s Executor, renamed Scheduler, can coexist and interoperate seamlessly.

6.1 One-way Executors are a kind of Sender

Once we have augmented the one-way execute algorithm as described to give clients a way to specify a
channel for error and cancellation signals, it becomes possible to define Sender’s submit operation such that
one-way Executors satisfy the Sender concept. We do that by defining std::tbd::submit as a customization
point as defined below:

template<class T, class C>
concept _SenderTo = // exposition only

6

requires (T&& t, C&& c) { {((T&&) t).submit((C&&) c)} noexcept; } ||
requires (T&& t, C& c) { ((T&&) t).submit(c); };

template<class S, CallbackSignal C>
void std::tbd::submit(S&& s, C&& c) noexcept requires see below ;

Submit a Sender of unknown type and a Callback of unknown type.

Remarks: The expression in the requires clause is equivalent to: _SenderTo<S, C>.

Effects: If noexcept(((S&&) s).submit((C&&) c) is true or if the current EA doesn’t support
exceptions, equivalent to: ((S&&) s).submit((C&&) c); otherwise,

try_invoke_callback((C&&) c, [&]{((S&&) s).submit(c);});

template<Callback C, Executor<C> E>
void std::tbd::submit(E&& e, C&& c) noexcept requires see below ;

Submit a nullary Callback with a one-way Executor.

Remarks: The expression in the requires clause is equivalent to: (!_SenderTo<E, C>).

Effects: Equivalent to: ((E&&) e).execute((C&&) c);.
template<class E, Callback<E> C>
void std::tbd::submit(E&& e, C&& c) noexcept requires see below ;

Submit a Callback that expects an executor with a one-way Executor.

Remarks: The expression in the requires clause is equivalent to: (!_SenderTo<E, C>) &&
Executor<E, with-subex>, where with-subex is the type of the variable c2 in the Effects: clause
below.

Effects: Equivalent to

auto c2 = compose_callback((C&&) c, [=]{ return e; });
((E&&) e).execute(move(c2));

With the above definition of submit, one-way Executors become full-fledged Senders that can participate in
any Sender combinator library.

6.2 One-way Executors are a kind of Scheduler

Once we have defined submit such that Executor satisfy the Sender concept, we can take the additional
step of defining schedule such that Executors also satisfy the Scheduler concept. Recall that an Executor
is an EA factory, and that a Scheduler is an EA factory factory. We can make an Executor an EA factory
factory by defining an overload of schedule that takes an Executor and returns the Executor unmodified.
(schedule is required to return a Sender, but we just defined submit such that Executors are Senders.)

The schedule customization point is defined as follows:

template<class S>
auto std::tbd::schedule(S&& s) noexcept requires(see below);

Remarks: Returns a Sender of a sub-scheduler with the following properties:

— It may be submit’ed at most once with a Callback that expects a Scheduler.
— On success, the Callback shall be called on an EA created for it by S.

7

— On success, the Callback will be called with a Scheduler denoting the EA on which the
Callback is executing.

— If an error happens while enqueuing the Callback, or if an exception propagates out of the
Callback, the Callback’s .error() member will be called with the error on an unspecified
weakly-parallel EA, or std::terminate() will be called.

— If the Callback is unstaged without execution, the Callback’s .done() member will be called
on an unspecified weakly-parallel EA.

Remarks: The expression in the requires clause is equivalent to: ((S&&)).schedule().

Effects: Equivalent to: return ((S&&) s).schedule();.
template<Executor E>
auto std::tbd::schedule(E&& e) noexcept(see below);

Remarks: The expression in the noexcept is equivalent to
is_nothrow_constructible_v<remove_cvref_t<E>, E>

Effects: Equivalent to: return e;

With the above definition, generic code can treat Executors as if they were Schedulers. This is easy to see:
for a given object of type T, one can construct the corresponding factory-of-T that always returns the object
you started with. In other words, there is a trivial isomorphism mapping T’s into factories-of-T.

6.3 Factor submit into a composition of more basic operations
Nvidia’s P1658 observes that Sender’s submit operation conflates two separate responsibilities: (1) connecting
a Sender to a Receiver (aka, Callback), and (2) submitting the resulting async operation for execution.
The former could be an expensive operation that some users may want to decouple from the operation’s
launch.

Also, every asynchronous operation invariably has some state associated with it. Separating submit into two
operations gives us a chance to externalize this state. That is of critical importance when awaiting a Sender
in a coroutine: the ideal place for the operation’s state is on the coroutine frame, where the state would not
incur an extra allocation.

A future paper will propose refactoring the Sender’s submit operation into a connect operation that joins a
Sender with a Callback and returns a nullary Invocable which, when invoked, launches the operation. The
connect primitive looks roughly as follows:
template<class S, class C>
concept _SenderTo =

CallbackSignal<C> &&
requires (S&& s, C&& c) {

{ ((S&&) s).connect((C&&) c) } -> Invocable;
};

// Connect a Sender to a Callback and return the async operation's state:
template<class S, class C>
auto std::tbd::connect(S&& s, C&& c) requires _SenderTo<S, C>;

8

6.4 Other considerations
6.4.1 Polymorphic Executor Wrapper

We note that removing interface-changing properties necessitates changes to the polymorphic executor
wrapper. We do not propose any suggested replacement at this time. The re-specification of the polymorphic
wrapper is left as future work.

6.4.2 Scheduler and Sender in P0443

We observe that the Scheduler and Sender parts of this design sketch are separable from the Executor and
Callback parts. We may choose to amend P0443 with Executor and Callback, and propose Scheduler
and Sender in a separate paper. Alternatively, we could move it all forward together.

We look for guidance from SG1 and LEWG as to how to proceed.

9

7 Appendix 1: Prototype Implementation
This prototype implementation can be found online here: https://godbolt.org/z/RwYbYS.
/**
*
* As in P0443, oneway execute is a function that takes
* a nullary callable, creates an execution agent to execute
* it, and returns void. What is new is the ability to pass
* an enriched callable to execute that, in addition to being
* a nullary callable, also has .error() and .done() members.
* The concept that enriched callables model is named "Callback"
* and it subsumes Invocable.
*
* concept Invocable<C, An...> { // (already standard)
* void operator()(An...);
* }
*
* concept CallbackSignal<C, E = std::exception_ptr> {
* void done() noexcept;
* void error(E) noexcept;
* }
*
* concept Callback<C, An...> {
* requires Invocable<C, An...> && CallbackSignal<C>;
* }
*
* concept Executor< E, C [=void(*)()] > {
* requires Invocable< C >;
* void execute(C);
* }
*
* Authors of oneway executors can accept and execute simple
* callables and use an implementation-defined scheme to deal
* with errors. If passed a Callback, an executor should send
* errors to the Callback's .error() channel. This is made
* simple with a invoke_callback helper that invokes the
* callable inline, routing errors to the error channel if the
* callable is in fact a Callback.
*
* Here, for example, is the inline_executor:
*
* struct inline_executor {
* template<Invocable C>
* void execute(C c) {
* std::tbd::invoke_callback(std::move(c));
* }
* };
*
* With Callbacks instead of raw Invocables, we can implement
* Sender/Receiver in a way that is compatible with oneway
* executors. It is possible to define the submit() and

10

https://godbolt.org/z/RwYbYS

* schedule() customization points such that a oneway executor,
* when used with a Callback, satisfies the requirements of
* Sender and even Scheduler. I show the code below the break.
*
* The final section demonstrates how Sender/Callback/Scheduler
* would be defined in the presence of Executor/Callback
*
**/

#include <string>
#include <utility>
#include <type_traits>
#include <functional>
#include <exception>
#include <stdexcept>

namespace std {
template<class A, class B>
concept Same = __is_same(A, B) && __is_same(B, A);

template<class C, class... An>
concept Invocable = requires (C&& c, An&&... an) {

std::invoke((C&&) c, (An&&) an...);
};

namespace tbd {
// A CallbackSignal is something with .done() and
// .error() member functions.
template<class T, class E = exception_ptr>
concept CallbackSignal =

requires (T&& t, E&& e) {
{((T&&) t).done()} noexcept;
{((T&&) t).error(((E&&) e))} noexcept;

};

// A Callback is an Invocable that is also a
// CallbackSignal.
template<class T, class... An>
concept Callback =

Invocable<T, An...> &&
CallbackSignal<T>;

// A Executor is something with an .execute()
// member function that takes a nullary callable.
template<class T, class C = void(*)()>
concept Executor =

Invocable<C> &&
requires (T&& t, C&& c) {

((T&&) t).execute((C&&) c);
};

11

// Definition in the stdlib somewhere:
extern runtime_error const invocation_error_; // = "invocation error";

// All exceptions from invocations of Callbacks are
// wrapped in callback_invocation_error:
struct callback_invocation_error : runtime_error, nested_exception {

callback_invocation_error() noexcept
: runtime_error(invocation_error_)
, nested_exception()

{}
};

// execute the callable immediately in the current context
// and send any errors to the handler.
template<CallbackSignal F, class... Args, Invocable<Args...> C>
constexpr void try_invoke_callback(F&& f, C&& c, Args&&... args) noexcept
try {

invoke((C&&) c, (Args&&) args...);
} catch (...) {

((F&&) f).error(make_exception_ptr(callback_invocation_error{}));
}

// execute the callable immediately in the current context
// and send any errors to the handler (if any).
template<class... Args, Invocable<Args...> C>
constexpr void invoke_callback(C&& c, Args&&... args)
noexcept(is_nothrow_invocable_v<C, Args...> || CallbackSignal<C>) {

if constexpr (CallbackSignal<C>)
try_invoke_callback((C&&) c, (C&&) c, (Args&&) args...);

else
invoke((C&&) c, (Args&&) args...);

}

template<Invocable Fn, Invocable<invoke_result_t<Fn>> C>
auto compose_callback(C&& c, Fn&& fn) {

struct __local {
remove_cvref_t<C> c_;
remove_cvref_t<Fn> fn_;
void operator()() && {

invoke((C&&) c_, invoke((Fn&&) fn_));
}
void done() && noexcept requires CallbackSignal<C> {

((C&&) c_).done();
}
void error(exception_ptr ep) && noexcept requires CallbackSignal<C> {

((C&&) c_).error(move(ep));
}

};
return __local{(C&&) c, (Fn&&) fn};

}

12

inline constexpr struct __execute_fn {
// Pass the callable and the handler to the executor to create an
// execution agent for execution.
template<Invocable C, Executor<C> E>
constexpr void operator()(E&& e, C&& c) const

noexcept(noexcept(((E&&) e).execute((C&&) c))) {
((E&&) e).execute((C&&) c);

}
} const execute{};

struct inline_executor {
template<Invocable C>
void execute(C c) {

invoke_callback(move(c));
}

};

}} // namespace std::tbd

//
// ^^^^^ Executor machinery ends here ^^^^^
// vvvvv Sender/Scheduler machinery below vvvvv
//

// A helper concept used to constrain part of the implementation
// of submit.
template<class T, class C>
concept _SenderTo =

std::tbd::CallbackSignal<C> &&
(requires (T&& t, C&& c) { {((T&&) t).submit(((C&&) c))} noexcept; } ||
requires (T&& t, C& c) { ((T&&) t).submit(c); });

// The implementation of the submit customization point.
inline constexpr struct __submit_fn {

inline static constexpr auto __with_subex = [](auto e, auto c) {
return std::tbd::compose_callback(std::move(c), [=]{return e;});

};
using __with_subex_fn = decltype(__with_subex);
template<class E, class C>
using __with_subex_t = std::invoke_result_t<__with_subex_fn, E, C>;

// Handle s.submit(c):
template<class C, _SenderTo<C> S>
void operator()(S s, C c) const noexcept {

if constexpr (noexcept(std::move(s).submit(std::move(c))))
std::move(s).submit(std::move(c));

else
std::tbd::try_invoke_callback(std::move(c), [&]{std::move(s).submit(c);});

}
// For use when passed a Executor and a nullary
// Callback.

13

template<std::tbd::Callback C, std::tbd::Executor<C> E>
void operator()(E e, C c) const noexcept requires (!_SenderTo<E, C>) {

std::move(e).execute(std::move(c));
}
// For use when passed a Executor and a Callback that
// is expecting to be passed a sub-executor.
template<class E, std::tbd::Callback<E> C>

requires std::tbd::Executor<E, __with_subex_t<E, C>>
void operator()(E e, C c) const noexcept requires (!_SenderTo<E, C>) {

auto c2 = __with_subex(e, std::move(c));
((E&&) e).execute(std::move(c2));

}
} const submit {};

// A multi-type concept for constraining compatible Senders
// and Callbacks.
template<class S, class C>
concept SenderTo =

requires (S&& s, C&& c) {
submit((S&&) s, (C&&) c);

};

// Below are some nasty implementation details for the
// Scheduler concept, which is inherently self-recursive.
// Basically a Scheduler is a type with a .schedule()
// member that returns a Sender of a Scheduler. We hackishly
// test that constraint with an archetypical Callback that
// requires its argument to be a either a Scheduler, or the
// type we started with. (That terminates the recursion for
// sane definitions of Schedulers.)
template<class, class>
inline constexpr bool __is_scheduler_or_v = false;
template<class S, class T>
concept _IsSchedulerOr = __is_scheduler_or_v<S, T>;
template<class T>
struct __scheduler_callback {

template<_IsSchedulerOr<T> S>
void operator()(S) const {}
void done() const noexcept {}
void error(std::exception_ptr) const noexcept {}

};

// With this definition of schedule(), a type with .schedule()
// is a Scheduler, but so too is a Executor.
struct __schedule_fn {

template<class S>
requires requires(S s) { s.schedule(); }

auto operator()(S s) const noexcept {
return s.schedule();

}
template<std::tbd::Executor E>

14

auto operator()(E e) const noexcept {
return e;

}
};
inline constexpr __schedule_fn const schedule {};

template<class T>
concept Scheduler = requires (T t) {

{schedule(t)} -> SenderTo<__scheduler_callback<T>>;
};

template<class S, class T>
requires std::Same<S, T> || Scheduler<S>

inline constexpr bool __is_scheduler_or_v<S, T> = true;

//
// ^^^^^ Sender/Scheduler machinery ends here ^^^^^
// vvvvv Test code below vvvvv
//

template<class Fn>
struct terminate_on_error : Fn {

constexpr terminate_on_error(Fn fn)
: Fn(std::move(fn)) {}

void done() const noexcept
{}
template <class E>
[[noreturn]] void error(E&&) const noexcept {

std::terminate();
}

};

// Show how an Executor works with execute with either
// a raw Invocable or a Callback
void foo0() {

std::tbd::inline_executor ie;

std::tbd::execute(ie, []() noexcept {});
std::tbd::execute(ie, terminate_on_error{[]() noexcept {}});

}

struct inline_scheduler {
struct inline_executor {

template<std::Invocable C>
void execute(C c) && noexcept {

std::tbd::invoke_callback(std::move(c));
}

};

std::tbd::inline_executor schedule() {
return {};

15

}
};
static_assert(Scheduler<std::tbd::inline_executor>);
static_assert(Scheduler<inline_scheduler>);

// Show how execute works with Schedulers and raw
// Invocables and also Callbacks.
void foo1() {

inline_scheduler is;

std::tbd::execute(schedule(is),
[]() noexcept {});

std::tbd::execute(schedule(is),
terminate_on_error{[]() noexcept {}});

}

template<class... An>
struct inline_callback {

void done() const noexcept {}
void operator()(An...) const noexcept {}
[[noreturn]] void error(std::exception_ptr) const noexcept {

std::terminate();
}

};

template<class... An>
struct inline_sender {

std::tuple<An...> an_;

template<std::tbd::Callback<An&...> C>
void submit(C&& c) {

std::apply([&](An&... an) {
std::invoke((C&&) c, an...);

},
an_);

}
};

// Show how submit works with a Sender and a Callback
void foo2() {

inline_sender<int, float> ie{std::make_tuple(42, 42.0)};

submit(ie, inline_callback<int, float>{});
}

struct full_inline_scheduler {
struct inline_sender {

template<std::Invocable C>
void execute(C c) && noexcept(

noexcept(std::tbd::invoke_callback((C&&) c))) {
std::tbd::invoke_callback((C&&) c);

16

}
template<std::tbd::Callback<full_inline_scheduler> C>
void submit(C c) && noexcept(

noexcept(((C&&) c)(full_inline_scheduler{}))) {
std::invoke((C&&) c, full_inline_scheduler{});

}
};

inline_sender schedule() {
return {};

}
};

// Show how a Scheduler can work with execute, and how an
// Executor can work with submit:
void foo3() {

full_inline_scheduler is;

std::tbd::execute(schedule(is), inline_callback{});
submit(schedule(is), inline_callback<full_inline_scheduler>{});

submit(std::tbd::inline_executor{},
terminate_on_error{[](){}});

submit(std::tbd::inline_executor{},
terminate_on_error{[](std::tbd::inline_executor){}});

}

8 References
[P0443R10] Jared Hoberock, Michael Garland, Chris Kohlhoff, Chris Mysen, H. Carter Edwards, Gordon

Brown, David Hollman. 2019. A Unified Executors Proposal for C++.
https://wg21.link/p0443r10

[P1341R0] Lewis Baker. 2018. Unifying Asynchronous APIs in the Standard Library.
https://wg21.link/p1341r0

[P1658R0] Jared Hoberock. 2019. P1658R0: Suggestions for Consensus on Executors.
http://wg21.link/P1658R0

[P1738R0] Eric Niebler. 2019. P1738R0: The Executor Concept Hierarchy Needs a Single Root.
http://wg21.link/P1738R0

[P1777R0] Eric Niebler, Lewis Baker, Lee Howes, and Kirk Shoop. 2019. P1777R0: One-way execute is a
Poor Basis Operation.
http://wg21.link/P1777R0

17

https://wg21.link/p0443r10
https://wg21.link/p1341r0
http://wg21.link/P1658R0
http://wg21.link/P1738R0
http://wg21.link/P1777R0

	Introduction
	Required Background
	Proposal Summary
	Before and After
	One-way execution
	One-Way Bulk Execution
	Authoring bulk executors

	Suggestions for Executors
	One Executor concept
	Generalize one-way execute
	Reexpress bulk_execute as an algorithm

	Suggestions for Senders and Receivers
	One-way Executors are a kind of Sender
	One-way Executors are a kind of Scheduler
	Factor submit into a composition of more basic operations
	Other considerations
	Polymorphic Executor Wrapper
	Scheduler and Sender in P0443

	Appendix 1: Prototype Implementation
	References

