
One-Way execute is a Poor Basis Operation
Document #: D1525R0
Date: 2019-06-17
Project: Programming Language C++

SG1
LEWG

Reply-to: Eric Niebler
<eniebler@fb.com>
Kirk Shoop
<kirkshoop@fb.com>
Lewis Baker
<lbaker@fb.com>
Lee Howes
<lwh@fb.com>

1 Abstract
The OneWayExecutor concept of [P0443R10] has a single basis operation: a void-returning ex.execute(fun)
member function, where ex is a OneWayExecutor and fun is a nullary Invocable. Any errors that happen,
whether during task submission, after submission and prior to execution, or during task execution, are handled
in an implementation-defined manner, which can vary from executor to executor. The implication is that
no generic code can respond to asynchronous errors in a portable way. That prevents higher-level control
structures that require flexible error handling from being built on top of the one-way execute() function.

In addition, if an Executor chooses for some reason to not execute a callback that has been submitted for
execution, at present there is no mechanism – apart from destruction – for the Executor to notify the callback
that it will never be executed. For reasons described in this paper, destruction is an unsatisfactory way to
communicate cancellation.

Paper [P1660R0] will discuss how most of the below issues can be addressed with a modified design for
one-way execute.

1.1 Terms and Definitions
1.1.1 One-way execute

For the purpose of this document, by “one-way execute,” we mean a void-returning function that accepts a
nullary Invocable and eagerly submits it for execution on an execution agent that the executor creates for it.

We contrast one-way execute with a submit operation that takes a Sender and a Receiver, as described in
[P1341R0].

1.1.2 Basis Operation

In generic programming, the basis operations of a concept are those expressions that are required to be valid
for types satisfying that concept, in addition to the required semantics for those expressions. For example,
the basis operations for C++20’s InputIterator are unary *; prefix and postfix ++; and == and != with a
sentinel (and associated semantic requirements for each operation).

1

mailto:eniebler@fb.com
mailto:kirkshoop@fb.com
mailto:lbaker@fb.com
mailto:lwh@fb.com

The basis operations of a well-designed concept or concept hierarchy is the minimal set of operations that are
both sufficient and necessary for efficiently implementing all algorithms of interest within a particular domain.

1.1.3 Sender

A Sender is a general representation of a (possibly deferred, possibly async) computation. Its single basis
operation, submit, takes a Receiver and returns void. Like execute, submit eagerly submits a task for
execution. The Receiver’s functions are called from whatever execution context the Sender completed in.
(Senders returned from a Scheduler’s schedule operation place extra requirements on that execution context;
see below.)

1.1.4 Receiver

A Receiver is a general representation of a callback. It has three basis operations:

— value, which is invoked with the result of the Sender’s computation, if any, when that operation
completes.

— error, which is invoked with any errors from enqueueing the work, or if the task itself completes with
an error.

— done, which is invoked on a Receiver by a Sender when the Sender’s computation has been cancelled.

The execution context in which these operations are invoked is specific to each Sender. In general, they will
execute inline; that is, in whatever context the Sender completed on.

1.1.5 Scheduler

A Scheduler (formerly an “Executor ” in [P1341R0]) is a factory for Senders that complete in the execution
context of the Scheduler. For a Scheduler sched and a Receiver rec, submit(schedule(sched), rec) is
guaranteed to call value on rec in the execution context of sched if that is at all possible. If not, it will call
error on rec with the reason for the failure in an unspecified execution context.

Note: In the current design, the Senders returned by schedule will pass a sub-executor to the Receiver’s
value member to facilitate the construction of nested work within the same execution context.

2 No reliable error propagation
2.1 Errors cannot be intercepted
Consider the following strategies that a tasking system might employ to respond to scheduling or execution
errors:

1. On error, ignore the error and propagate a default value instead.
2. On error, cancel some dependent execution.
3. On error, send the error information to a particular error log before propagating the error.
4. On error, re-schedule the task on a fallback execution context.

All of these are reasonable responses to scheduling and execution errors in a tasking system, and all can be
built using higher-level control structures, but only if the executor passes scheduling and invocation errors to
those callbacks that desire it.

For instance, Appendix B shows how a failure to execute work on one executor can reschedule the work on a
fallback executor.

In that example, note that the separation of the value and error channels gives us the ability to place
independent constraints on the execution contexts of the two. The Sender returned from schedule requires
that the value channel completes in the Scheduler’s execution context, which is how we achieve predictable

2

scheduling. But if there is an error, the context on which the Receiver’s error() channel is run is unspecified.
We have an easy way to guarantee that there is always an execution context available to process errors – inline,
for instance – while also guaranteeing that task submission is non-blocking when we need that guarantee.

2.2 One-way execute cannot be noexcept in general
In [P0443R10]’s one-way execute function, it is specified that the submitted function is required to be
decayed in the caller’s thread of execution; presumably any exceptions from that operation are propagated
back to the caller on their thread. If some other kind of error happens – say, the Executor fails to create an
execution agent – it is unspecified how that error is reported. It is reasonable then to assume that for some
Executors, these errors are also reported to the caller on their thread via an exception. The implication is
that generic code using an Executor must be ready for a call to execute to throw.

With schedule and Sender/Receiver, any errors in submit are sent to the Receiver’s error channel. submit
can be a guaranteed no-throw operation.

2.3 Errors that happen after submission but before invocation have no place
in-band to go

Although an Executor may choose to report submission errors to the caller with an exception, that is not an
option for errors that happen after submission but before execution. Firstly, there is no requirement that an
Executor create an execution agent eagerly, when execute is called; it may defer the creation until a later
time, at which point it may fail. Also consider the case of deadline executor that un-stages work that hasn’t
been started before a certain time-out. If one-way execute is the basis operation, then once work has been
submitted there is no way to communicate to the work that an error happened because there is no defined
channel for errors.

With schedule and Sender/Receiver, such a deadline executor can pass a error_timeout_exceeded error
to the receiver’s error channel.

2.3.1 Corollary: One-way execute can be implemented in terms of schedule but not vice versa

As a corollary of the preceding points, we cannot implement schedule generally in terms of one-way execute.
In P0443, for one-way Executors it is unspecified what happens when execute fails to enqueue the function
for execution. As a consequence, there is no way to pass those errors to a Receiver’s error channel.

In contrast, execute can be implemented in terms of schedule/submit. See Appendix A for an example
implementation.

2.4 There is no way to compile the normal code differently than the exceptional
code

Should we decide to address the above issues by extending one-way execute to requires users to pass an
Invocable that accepts a std::error_code (for example), we run into a different problem: the same function
is now used for both normal and exceptional execution. If the execution context is an Nvidia GPU, that
means that both the normal function execution as well as error handling must be compiled for the GPU.

With schedule and Sender/Receiver, value and error are separate channels, and they can be compiled
differently. value can be compiled for and execute on the GPU, whereas error can be compiled for and
execute on the host. This also has the advantage that a bulk algorithm can have a scalar error handler,
something that is much harder to craft in the bulk_execute design of [P0443R10].

3

3 No reliable propagation of a cancellation signal
This section describes the problems with one-way execute as a basis operation that stem from its lack of
support for a “done” signal to propagate cancellation information. First we discuss what “done” means for
async computations, and why it is separate from destruction.

3.1 What does done() mean?
The reason for a Receiver’s “error” channel is pretty straightforward; it is the same reason C++ has exceptions:
it is greatly advantageous to isolate the exceptional control flow from the normal control flow.

The reasons for a Receiver’s “done” channel are less obvious, but it comes down to cancellation. In the
presence of cancellation, all async operations look like functions that return std::optional: they either
complete successfully with a result, they exit via an exception, or else they return with neither a result nor
an exception. These options correspond to the Receiver’s three channels: value, error, and done.

In functional programming circles, optional is represented as the Maybe monad, which has two constructors:
Just and None, which correspond to an optional with a value and nullopt. Composing operations in
the Maybe monad uses short-circuiting: if the preceding computation results in None, the subsequent
computations are not even tried; the result is simply None.

The same is true of composing asynchronous computations. If a preceding computation is cancelled, dependent
computations should likewise be canceled, bypassing the normal control flow. Think of it as exception unwind,
but without the exception. That is the meaning of done().

3.2 Why is the error() channel a bad way to report cancellation?
The error() channel of a Receiver, like C++ exceptions, is for exceptional circumstances: things like dropped
network connections, resource allocation failure, or inability to create an execution agents. Cancellation is
not exceptional; it is the normal operating mode for many interesting async algorithms. For instance, a
when_any() algorithm would take many tasks, enqueue them all for execution, and then cancel the rest when
the first completes. The exceptional code path should not have to deal with normal control flow. Cancellation
requests is something distinct from value propagation or error propagation. That is why we believe they
deserve their own distinct channel.

See [P1677R0] “Cancellation is not an Error” for a full discussion of cancellation in relation to asynchronous
errors.

3.3 Why is callback destruction-without-execution insufficient for communicat-
ing cancellation?

Even if one accepts that async cancellation is fundamental, and that it is still not an error, it is not obvious
that we need a dedicated channel to communicate cancellation. After all, isn’t it sufficient to simply destroy
a continuation without executing it?

There are lots of reasons the destructors of a continuation might get called:

1. It is being destroyed after .value() has been called on it.
2. It is being destroyed after .error() has been called on it.
3. It is a moved-from object that is being cleaned up.
4. It has been cancelled.

Only for reason (4) should a destructor call be interpreted as the “done” signal. In order to distinguish (4)
from the other four cases, a continuation would need to keep state.

4

Also, it’s not clear what it would mean to destroy a continuation due to stack unwinding because of an active
exception. Presumably, that would be an error situation and not a cancellation, but clearly if the destructor
is being called, error() never will be. Would that be a logic error? Or should it be simply ignored, which
would require the continuation to keep additional state and two calls to std::unhandled_exceptions() (see
the design of scope_success [P0052R10])?

In contrast, we hypothesize that most executors will know when a particular work item is being cancelled
and can propagate the “done” signal without tracking extra state. Executors generally un-stage work items
to execute them and then either immediately destroy them or move them to a separate queue for lazy
reclamation. The executor knows that any work items that are currently staged for execution have not yet
been run (that is, value() has not been called), and that scheduling has not failed nor has invocation failed
(that is, error() has not been called). So, if the executor supports work cancellation, any request to cancel
one or all of the currently staged work items can trivially call done() on the them before un-staging and
destroying them. Such executors – which we imagine to be the vast majority – can trivially insert a call to
done() without tracking any additional state.

Any executor that does not support work cancellation can safely ignore the done() channel. No cancellation
means no need to ever send a cancellation signal.

3.4 Example: Adding a “done” channel to ASIO’s scheduler

The scheduler class in [ASIO] permits the scheduler to be shut down while there are still outstanding work
items in its queue. These are simply destroyed at present. We believe that supporting the done() channel in
ASIO would be as simple as inserting a call to done() on line 165 of <asio/detail/impl/scheduler.ipp>
before the call to o->destroy().

This demonstrates that adding support for the “done” channel to an executor is not an onerous requirement.

4 Additional problems with one-way execute

4.1 When using coroutines, one-way execute cannot take advantage of no-
allocation scheduling

One-way execute cannot take advantage of the ability to do no-allocation scheduling for coroutines (and
potentially in the future for connect/start-based submit).

By having the schedule() method return a Sender that can be used to lazily start the operation, we can have
this Sender define a custom operator co_await() method that returns an Awaiter object that contains
storage for the queue item needed to track the schedule operation.

When a coroutine executes co_await ex.schedule(), this allows the Sender to allocate storage required for
the queue entry as a local variable on the coroutine frame rather than the executor having to allocate the
storage for the continuation/Receiver internally to execute(), in the case of one-way execute, or submit()
in the case of Sender/Receiver.

For an example of an executor that does not require heap-allocating any storage when co_awaited within a
coroutine see Appendix C.

It is not possible to build this kind of non-allocating executor-schedule operation if one-way execute() is the
basis operation.

A similar approach can be achieved with Sender/Receiver if we split the submit() operation up into two
separate operations: a connect() operation that accepts the Sender and Receiver and returns a state-machine
object, and a start() method on the state-machine object that launches the async operation. Once the

5

https://github.com/chriskohlhoff/asio/blob/2a1f68845adec11574bfd91a7f860e63edd529a5/asio/include/asio/detail/impl/scheduler.ipp#L165

operation is started, the caller of connect() is required to keep the state-machine object alive until the
operation completes.

This allows the caller to place the state-machine for the async operation inline within the coroutine frame or
as a member of some other object without forcing the state-machine to be heap-allocated (although the caller
can still heap-allocate the state-machine if they choose to).

[Note: Although the other problems with execute described in this paper can be addressed with the
designed sketched by [P1660R0], the inefficiency when used with coroutines is not addressed by that paper.
— end note]

5 Appendix A: One-way execute as a generic algorithm
Implementation of one-way execute in terms of schedule(), submit() and pinvoke()

inline constexpr struct execute_cpo {
private:

template<Invocable Func>
struct receiver {

Func func_;

template<Executor SubEx>
void value(SubEx&&) noexcept(std::is_nothrow_invocable_v<Func>) {

static_cast<Func&&>(func_)();
}

template<typename E>
[[noreturn]] void error(E&&) noexcept { std::terminate(); }

[[noreturn]] void done() noexcept { std::terminate(); }
};

template<Executor Ex, Invocable F>
friend void pinvoke(execute_cpo, Ex&& ex, F&& func) {

submit(
schedule((E&&)ex),
receiver<std::remove_cvref_t<F>>{(F&&)func});

}

public:
template<Executor Ex, Invocable Func>

requires std::is_void_v<pinvoke_result_t<execute_cpo, Ex, Func>>
void operator()(Ex&& ex, Func&& func) const

noexcept(is_nothrow_pinvocable_v<execute_cpo, Ex, Func>) {
pinvoke(*this, (Ex&&)ex, (Func&&)func);

}
} execute{};

6 Appendix B: Composing Executors based on Sender/Receiver
With a sender/receiver-based schedule operation as a basis operation we can more easily build composed
executors.

6

template<Sender S1, Sender S2>
struct fallback_sender {

S1 primary;
S2 fallback;

template<Receiver R>
struct wrapped_receiver {

S2 fallback;
R receiver;

template<typename... Values>
void value(Values&&.. values) {

set_value(receiver, (Values&&)values...);
}

void done() {
set_done(receiver);

}

template<typename Error>
void error(Error&&) {

submit(std::move(fallback), std::move(receiver));
}

};

template<Receiver R>
void submit(R receiver) && {

submit(std::move(primary), wrapped_receiver<R>{std::move(receiver)});
}

};

template<Sender S1, Sender S2>
fallback_sender<S1, S2> fallback(S1 primary, S2 fallback) {

return {std::move(primary), std::move(fallback)};
}

template<Executor Ex1, Executor Ex2>
struct fallback_executor {

Ex1 primary;
Ex2 fallback;

auto schedule() {
return fallback(primary.schedule(), fallback.schedule());

}
};

void example() {
thread_pool tp;
manual_executor fallback;

fallback_executor ex{tp.get_executor(), fallback};

7

std::for_each(std::par.on(ex), range, [](auto& x) {
process(x);

});
}

7 Appendix C: Allocation-free scheduling from a coroutine
Example executor that does not require heap-allocation of the queue items when awaited from a coroutine.
https://wandbox.org/permlink/nxjpIdlqyz7DUXbm https://godbolt.org/z/NJb60u
class thread_dispatcher {

struct queue_item {
queue_item* next_;
virtual void execute() noexcept = 0;

};

queue_item* head_ = nullptr;
bool stopRequested_ = false;
std::mutex mut_;
std::condition_variable cv_;
std::thread thread_;

class executor {
thread_dispatcher& dispatcher_;
class schedule_sender {

thread_dispatcher& dispatcher_;

class awaiter final : private queue_item {
thread_dispatcher& dispatcher_;
std::experimental::coroutine_handle<> continuation_;

void execute() noexcept final {
continuation_.resume();

}

public:
awaiter(thread_dispatcher& dispatcher) noexcept
: dispatcher_(dispatcher)
{}

bool await_ready() noexcept { return false; }
void await_suspend(

std::experimental::coroutine_handle<> continuation) noexcept {
continuation_ = continuation;
dispatcher_.enqueue(this);

}
void await_resume() noexcept {}

};

public:

8

explicit schedule_sender(thread_dispatcher& dispatcher) noexcept
: dispatcher_(dispatcher)
{}

awaiter operator co_await() noexcept {
return awaiter{dispatcher_};

}

template<typename Receiver>
void submit(Receiver r) noexcept {

struct receiver_queue_item final : queue_item {
thread_dispatcher& dispatcher_;
Receiver receiver_;

explicit receiver_queue_item(thread_dispatcher& d, Receiver&& r)
: dispatcher_(d)
, receiver_((Receiver&&)r)
{}

void execute() noexcept final {
set_value(receiver_, executor{dispatcher_});
set_done(receiver_);
delete this;

}
};
try {

dispatcher_.enqueue(
new receiver_queue_item{dispatcher_, (Receiver&&)r});

} catch (...) {
set_error(r, std::current_exception());

}
}

};
public:

executor(thread_dispatcher& dispatcher) noexcept
: dispatcher_(dispatcher)
{}

schedule_sender schedule() noexcept {
return schedule_sender{dispatcher_};

}
};

public:
thread_dispatcher()
: thread_([this] { this->run(); }) {}

~thread_dispatcher() {
request_stop();
thread_.join();

}

9

executor get_executor() { return executor{*this}; }

private:
void request_stop() {

std::lock_guard lock{mut_};
stopRequested_ = true;
cv_.notify_one();

}

void run() {
std::unique_lock lock{mut_};
while (!stopRequested_) {

cv_.wait(lock);
while (head_ != nullptr) {

auto* item = head_;
head_ = item->next_;
lock.unlock();
item->execute();
lock.lock();

}
}

}

void enqueue(queue_item* item) noexcept {
std::lock_guard lock{mut_};
item->next_ = head_;
head_ = item;
cv_.notify_one();

}
};

8 References
[ASIO] Asio C++ Library.

https://github.com/chriskohlhoff/asio

[P0443R10] Jared Hoberock, Michael Garland, Chris Kohlhoff, Chris Mysen, H. Carter Edwards, Gordon
Brown, David Hollman. 2019. A Unified Executors Proposal for C++.
https://wg21.link/p0443r10

[P1341R0] Lewis Baker. 2018. Unifying Asynchronous APIs in the Standard Library.
https://wg21.link/p1341r0

[P1660R0] Jared Hoberock, Michael Garland, Bryce Adelstein Lelbach, Michał Dominiak, Eric Niebler, Kirk
Shoop, Lewis Baker, Lee Howes, David S. Hollman, and Gordon Brown. 2019. P1660R0: A Compromise
Executor Design Sketch.
http://wg21.link/P1660R0

[P1677R0] Kirk Shoop. 2019. P1677R0: Cancellation is not an Error.
http://wg21.link/P1677R0

10

https://github.com/chriskohlhoff/asio
https://wg21.link/p0443r10
https://wg21.link/p1341r0
http://wg21.link/P1660R0
http://wg21.link/P1677R0

	Abstract
	Terms and Definitions
	One-way execute
	Basis Operation
	Sender
	Receiver
	Scheduler

	No reliable error propagation
	Errors cannot be intercepted
	One-way execute cannot be noexcept in general
	Errors that happen after submission but before invocation have no place in-band to go
	Corollary: One-way execute can be implemented in terms of schedule but not vice versa

	There is no way to compile the normal code differently than the exceptional code

	No reliable propagation of a cancellation signal
	What does done() mean?
	Why is the error() channel a bad way to report cancellation?
	Why is callback destruction-without-execution insufficient for communicating cancellation?
	Example: Adding a ``done'' channel to ASIO's scheduler

	Additional problems with one-way execute
	When using coroutines, one-way execute cannot take advantage of no-allocation scheduling

	Appendix A: One-way execute as a generic algorithm
	Appendix B: Composing Executors based on Sender/Receiver
	Appendix C: Allocation-free scheduling from a coroutine
	References

