
Formatting of Negative Zero
Document number: P1496R1
Date: 2019-10-06
Reference Document: N5410
Audience: Library Evolution Working Group, Library Working Group
Reply to: Alan Talbot cpp@alantalbot.com

Jorg Brown jorg.brown@gmail.com

History
During the Library Evolution Working Group review of Victor Zverovich’s Text Formatting pro-
posal (P0645R7) at the Kona 2019 meeting, it was suggested that the user be given a choice of
whether or not to display negative zero when formatting floating point numbers. We wrote and
presented the first version of this paper (P1496R0) during the meeting to propose that change.
The vote on the issue was a palindromic paragon of equivocation:

SF F N A SA
1 5 2 5 1

This was quite appropriately deemed no consensus for change, but we believe that our paper did
not correctly describe the problem. (Alan takes full credit for this oversight.) We realized after
the vote that the examples of alternative solutions we presented did not actually address the real
issue. This revision will hopefully provide clarification.

Status Quo
Floating point format in the new text formatting facilities in C++20 (20.20 [format]) is expressed
in terms of to_chars which in turn is expressed in terms of printf. The C standard does not
appear to explicitly specify whether printf should add a minus sign to negative zeros in the
formatted output. Several popular C++ Standard Library implementations do add minus signs to
negative zeros, and there is no way to prevent this.

The Problem
The concern here is not about handling the IEEE 754 floating point negative zero value. The
number of cases where that particular value is involved are assumed to be vanishingly small, and
dealing with that case is trivially easy. The problem arises because of negative values near zero
which are rounded up to zero by the requested formatting precision.

In almost all applications floating point values are displayed at some appropriate precision which
depends on the domain and is often controlled by the user. Negative zeros appear all the time,
especially in cases where zero is a common calculated answer, because floating point calculations
which would result in zero mathematically often end up being very small numbers on either side
of zero.

Unfortunately there is no easy way to catch negative zero (unless you write your own text
formatter) because you don’t know if you will have a zero until the rounding is done. Your options
boil down to:

mailto:cpp@alantalbot.com
mailto:jorg.brown@gmail.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0645r7.html

P1496R1

2

A. Round the number first, detect -0.0 and change the sign, then format the number using
std::format (in C++20) or lower level utilities.

B. Parse the text representation after formatting to detect the negative zero character
pattern, then remove the minus sign.

Neither of these solutions is efficient or easy to get right, and both will inevitably result in writing
home-grown wrappers for the text formatting operations, thus partially defeating the purpose
of the new standard text formatting facilities.

We believe that this should be handled internally by std::format, where it can be done with
maximum efficiency and perfect reliability. The formatting algorithm can detect this trivially, and
removing the minus sign once the string is formed is an O(1) operation.

Proposed Solution
We propose adding a new format specifier ‘z’ to suppress the output of the minus sign for nega-
tive zeros. With the ‘z’ option a negative zero after rounding is formatted as a (positive) zero.

Currently supported by N5410

format("{0:.0} {0:+.0} {0:-.0} {0: .0}", 0.1) 0 +0 0 0

format("{0:.0} {0:+.0} {0:-.0} {0: .0}", -0.1) -0 -0 -0 -0

Additionally supported with this proposal

format("{0:z.0} {0:+z.0} {0:-z.0} {0: z.0}", 0.1) 0 +0 0 0

format("{0:z.0} {0:+z.0} {0:-z.0} {0: z.0}", -0.1) 0 +0 0 0

Who Benefits?
In a use case Alan is familiar with, an engineering application generates dozens of different
tabular reports, each of which has between tens and hundreds of columns, most of which display
floating point numbers rounded to various domain-specific precisions. These numbers are
frequently calculated values near zero, leading to lots of negative zeros. The customers who
receive these reports do not care about or understand negative zeros, and report them as a must-
fix issue. The problem was addressed in this software using option A above, which has proven to
be a source of subtle bugs.

Who What

Everybody
(millions)

Most applications round floating point numbers and do not want
negative zeros.

Power user
(10,000)

Industrial engineering and financial applications also round floating
point numbers and do not want negative zeros.

Expert
(1,000)

Certain specialized mathematical and scientific applications care about
negative zeros. The default behavior is unchanged, so these use cases
are not affected by this proposal.

P1496R1

3

Default Behavior
As mentioned above, whether std::format shows negative zero is inherited from printf, and
therefore is implementation-defined. This proposal does not change that.

However, the fact that all but a very few specialized applications are unlikely to want negative
zeros strongly suggests that suppressing them should be the default behavior. Making the default
be to suppress negative zero and adding a new option to show negative zero would have two
benefits over this proposal: it would make the default unsurprising to most users, and it would
provide a way to force negative zero to be shown. This would directly support the expert use
cases where negative zero is desired. These cases are not supported today or under this proposal
if the library vendor chooses not to show negative zero.

(Yet another solution would be to leave the default undefined and provide two new options, hide
and show, but that seems unnecessarily elaborate.)

Proposed Wording

20.20.2.2 Standard format specifiers [format.string.std]

¶ 5:
The sign option applies to floating-point infinity and NaN. [Example:

double inf = numeric_limits<double>::infinity();
double nan = numeric_limits<double>::quiet_NaN();
string s0 = format("{0:},{0:+},{0:-},{0: }", 1); // value of s0 is "1,+1,1, 1"
string s1 = format("{0:},{0:+},{0:-},{0: }", -1); // value of s1 is "-1,-1,-1,-1"
string s2 = format("{0:},{0:+},{0:-},{0: }", inf); // value of s2 is "inf,+inf,inf, inf"
string s3 = format("{0:},{0:+},{0:-},{0: }", nan); // value of s3 is "nan,+nan,nan, nan"
string s4 = format("{0:z.0},{0:+z.0},{0:-z.0},{0: z.0}", -0.1);
 // value of s4 is "0,+0,0, 0"

— end example]

Table 59: Meaning of sign options [tab:format.sign]

Option Meaning

+ Indicates that a sign should be used for both non-negative and negative numbers.

- Indicates that a sign should be used only for negative numbers (this is the default
behavior).

space Indicates that a leading space should be used for non-negative numbers, and a
minus sign for negative numbers.

z Indicates that a sign should not be used for negative numbers that display as zero
(after rounding to the formatting precision).

[Editorial issue: In N5410 Tables 58 and 59 are interleaved with the code in the Example in ¶ 5.]

	History
	Status Quo
	The Problem
	Proposed Solution
	Who Benefits?
	Default Behavior
	Proposed Wording

