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Abstract 
The EWG chair has requested a paper from the authors of various coroutine proposals and compiler experts to 
evaluate language and implementation impacts of several design decisions made by coroutine proposals under 
consideration. 
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1 Overview 
A coroutine is a generalization of a function: regular functions always start at the beginning and exit at the end, 
whereas coroutines can also suspend execution to be resumed later at the point where they were left off. 
Although this concept is one of the older devices of compiler engineering, the C family of languages is, at 
present, without a built-in representation for the generalisation. 

There are differences in currently proposed solutions related to how the resumable concept should be 
represented (and at what level of granularity) .  In some cases, the overt requirements of a given approach lead 1

to derived requirements on changes to the underlying language or its implementation in a realisable toolchain. 

For example, when a regular function executes, its required state is captured in the activation record; this record 
is [currently] private to the implementation (which also controls its creation and destruction), and is also 
permitted to have a different size on each invocation of the function.  Nevertheless, since they are strictly 
nested, it is easy to reason about function activation record lifetimes. 

A coroutine requires the equivalent of such an activation record , although the coroutine variant must support 2

persistence across several suspension/resumption points and will generally escape from the context in which it 
is first created.  The latter properties lead to the desire to model the coroutine activation record (or parts of it) 
as an object or closure of some form,  so that its lifetime may be observed and reasoned about in a familiar 
manner. 

However, removing the privacy (to the implementation) of the activation record and exposing all (or part) of it 
leads to at least two of the main topics to be discussed in this paper: 

● The implementations of all modern optimizing compilers known to us strongly assume the privacy of the 
activation record. 

● If part of the activation frame is exposed as a user-visible complete type, then there is a strongly 
embedded expectation of the language that its size and layout are known very early in the compilation 
pipeline (early enough to be able to produce sizeof and alignof values). 

A common implementation strategy for a coroutine is a compiler-based transformation of a function into a state 
machine (expanding keywords that cause suspension into the control flow and state preservation required).  

● This paper examines several approaches to how to do this transformation and how (or if) the state 
machine can be exposed in the language. 

● Differing schemes also affect perceived usability (e.g. complexity or size of the user-facing portions of 
the designs). 

Thus,  we will look at implementation, usability and language impacts of various approaches. 

There are also minor issues like the exact spelling of keywords which, while they might consume vast amounts of 
time in debate, are not central to the feasibility of any of the proposed solutions.  Those issues are not discussed 
here. 

Current set of proposals: 

1 The expression of whether what the compiler implements should be more (or less) hidden appears as “early split” and 
“late split” in the following discussions. 
2 This variant of the activation record is termed the “coroutine state object” in the following sections. 
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● Coroutines TS (current working draft: N4775) 
● Core Coroutines (P1063R2) 
● Symmetric Coroutines (P1430R0) 
● Unified Proposal (P1342R0) 
● Coroutine TS Plus (Coroutines TS + accrued improved by the time other proposals mature: P1362R0) 

Objective: 

To identify, as far as possible, the pre-existing barriers to key features of the various proposals. 

  

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4775.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1063r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1430r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1342r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1362r0.pdf
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2 Trade-offs at a glance 
 

We’re currently facing the following set of proposals: 

● Coroutines TS today: Hidden State Machine + Late-split 
● Core Coroutines: First Class Object + Late-Split/late-sized types 
● Symmetric Coroutines: First Class Object + Early-Split / Late-Split (not decided yet) 
● Unified Proposal (P1342r0, Lewis): 

o Option A: create_dynamic() only (Hidden State Machine) 
o Option B: create_dynamic() + create_static() returning early-sized types 
o Option C: create_dynamic() + create_static() returning deferred-layout types 

● Coroutine TS Plus: Coroutine TS in C++20 and some type of First Class State Machine later based on 
implementation and deployment experience 

 
Before we dive into the details, let’s take a bird’s-eye view of the trade-offs and challenges of various 
approaches, where the key issues (to be expanded upon later) are identified as: 

● user-facing surface (size and complexity / number of library customization points) 
● when or how the coroutine’s state might be saved on the stack versus the heap 
● effect on current compiler optimization schemes 
● effect on current compiler and toolchain implementation structure 
● effect on underlying language assumptions (primarily in the type system and the ability to determine 

things like sizeof and alignof for the representation of the coroutine state) 

The following table attempts to summarize the various proposals and strategies that have been discussed: 
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Table: Trade-offs at a glance 
 

✓ = “pro”    ✗=”con”   ☠= “infeasible or nearly infeasible”       = strategy      = proposal  
State Machine as a First Class Object 
Coroutine frame is exposed as a type 

Hidden State 
Machine 

Coroutine frame 
type and layout 

hidden from 
program 

✓ Allows application to place coroutine frame as local variable on stack, as a class 
member 

✓ Minimal type 
system impact 

Early-Split 
Compiler front-end 

calculates layout 
based on analysis of 

the source 

Late-Split 
Size/layout of the frame is calculated in a later compilation phase after (some) 

optimisations have been performed 

Unified Proposal 
(option B), 
Symmetric 
Coroutines(?), 
Resumable 
Expressions(?) 

✓ More optimization opportunities 
✗ Difficult/impossible to get accurate sizeof at semantic analysis time 

High Sizeof 
A conservative 

estimate of 
coroutine frame 

size is made early 

Late-sized types 
Classes can end 
with a coroutine 
whose layout is 
determined late 

Deferred layout 
types 

Layout decisions are 
in general deferred 
until after coroutine 

split 

✗ Frame size is not 
a constant at 
semantic analysis 
time, so dynamic 
allocation is 
required (but may 
be optimized out) 
 

✓ constant sizeof 
available for 
coroutine state 
✗ Inhibits 
optimisations of 
function across 
suspend-points in at 
least some (possibly 
many) cases. 
☠Excessively 
expensive in some 
current frontends 
(would require major 
reengineering) 

(no proposal) Core Coroutines Unified Proposal 
(option C) 

✓ sizeof is a 
constant 
expression 
✗ Could 
significantly 
overestimate than 
what is actually 
required 
✗ Some 
optimizations 
need to be 
disabled 
☠Unclear that it 
would be feasible 
to compute a 
reliable upper 
bound 

✗ sizeof is not a 
constant at 
semantic analysis 
time 
✓ But it is 
accurate, if 
provided 
✗ Can only be 
embedded as a last 
field of a structure; 
makes the 
enclosing type 
late-sized too 
✓ Offsets of fields 
are still constant 
✗ ODR problems if 
a coroutine type is 
used across 
translation units 
and layout is 
exposed 

✗ sizeof is not a 
constant at semantic 
analysis time 
✓ But it is accurate, 
if provided 
✓ Can be embedded 
as a field anywhere 
in the structure; 
makes the enclosing 
type deferred layout 
type too 
✗ Field offsets not 
constant at semantic 
analysis time 
☠Significant 
increase in 
implementation 
complexity even 
compared to 
late-sized types 

Coroutines TS, 
Unified Proposal 
(any option) 

✗ Fixed wrapping 
algorithm with 
many 
customization 
points 
✓ Fits current 
compiler structure 
✓ Can perform 
coroutine-to- 
coroutine tail calls 
without language 
changes 
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3 Coroutine Usability 
The coroutine state machine object (like the activation record for a regular function) is by necessity immovable 
and uncopyable . 3

A coroutine state machine object is often not useful by itself and requires wrapping into a class with higher level 
semantics. Usually, a type-erased wrapper that involves heap allocation and type erasure or an embedded 
wrapper which wraps the immutable coroutine objects into a semantically meaningful immovable class and in 
case of symmetric coroutines the behaviour is customized via subclassing the base coroutine class.  

The following is an illustration of user facing syntax for both (using Core Coroutines syntax). 

Type-erased coroutine Embedded coroutine (expected to be simpler in r3) 
 

auto Traverse(BstNode<int> *node) 
        [node][->]generator<string> 
{ 
  if ( node == nullptr ) 
    return; 
  
  [<-]Traverse(node->left); 
  [<-]std::yield(node->value); 
  [<-]Traverse(node->right); 
} 

 

template <typename Range> 
auto traverser(const Range& range) { 
  using Sg = stack_generator< 
            decltype(*begin(range)), void>; 
  return Sg([&] {  
    return [&] [->] Sg { 
      for ( auto & element : range ) 
         [<-] std::yield ( element ); 
    });  
  }); 
} 

While we expect that r3 of Core Coroutines paper will bring embedded coroutine syntax closer to that of the 
type-erased coroutines, there are still usability challenges associated with the approach of embedding of the 
concrete coroutine state machine into the return type (or expose it as named class as in Symmetric Coroutines 
proposal). 

Type-erased coroutines Embedded coroutines 
 

✓ Can be forward declared 
✓ Can be called recursively 
✓ Can be put on ABI boundary 
✓ Does not require solution to 
sizeof challenge 
✓ Definition can reside in the 
implementation file 
✓ Can be virtual 
✗ BUT!!! Requires heap 
allocation & indirect calls 

 

✗ Cannot be forward declared 
✗ Cannot be called recursively 
✗ Cannot be put on ABI boundary  

4

✗ Requires solution to a sizeof 
challenge 
✗ Definition must reside in the header 
/ module interface file 
✗ Cannot be virtual 
✓ Does not require heap allocation  

 

3 Producing relocatable stack frames might be fun, but it’s not part of any existing proposal. 
4  otherwise extremely fragile, as any change to implementation immediately leaks through an 
interface. 
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Coroutines TS offers only type-erased coroutines at the moment. While non-type-erased coroutines can be 
added to any type-erased coroutine solution as an (essentially) separate mechanism, authors of this paper do 
not have consensus whether non-type-erased coroutines can be added to the Coroutines TS design while 
maintaining a single coherent interface to the coroutines mechanism.  

We agree that finishing the design of Core Coroutines as an alternative to Coroutines TS is not expected to solve 
the same set of use cases as Coroutines TS with the same end-user convenience and the same performance (as 
in less convenient and less performant for some use cases, see use cases document). 
 

4 Compiler-based wrapping vs Library-based 

wrapping 
The Coroutines TS today does not expose the coroutine state machine object directly and uses compiler-based 
wrapping of the coroutine state machine guided by a set of customization points. 

The Core Coroutines and Symmetric Coroutines proposals, on the other hand, provide a manifestation of the 
coroutine state machine as a function object that allows implementing most of the coroutine wrapping 
algorithm in the library. 

Compiler based type-erasure Library based type-erasure 
 

✗ Wrapping algorithm fixed by 
core language 
✗ Has more customization points 
✓ Allocation can be optimized 
out 
✓ Indirect calls can be replaced 
with direct calls 
✓ Can be inlined (after 
devirtualization) 
✓ Does not require solution to a 
sizeof problem 
 

 

✓ Flexible wrapping algorithm 
✓ Fewer customization points 
✗ Substantially harder to optimize out 
heap allocation 
✗ Substantially harder devirtualize 
indirect calls 
✗ Substantially harder to inline 
(because needs devirtualization) 
✗ Requires solution to a sizeof problem 
 

 

The Unified Coroutines proposal provides an incremental improvement to the Coroutines TS design to allow a 
library to control the algorithm for constructing the coroutine frame rather than using a hard-coded algorithm 
that is controlled via customization points, while still retaining the compiler-based type-erasure. This allows the 
library to defer creation of the coroutine frame until later. 

5 Early-split vs Late-Split 
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Early Split 
Early-Split is a shorthand for the coroutine transformation performed at the front-end time before any 
optimizations applied to the coroutine body and therefore its representation as an object can be considered a 
complete type with sizeof being a constant expression at semantic analysis time. 

Good Points: The early split produces an accurate size of a coroutine state machine, and a human 
reader of the code can reason about the size of the coroutine frame in a similar way to how they 
would reason about the size of a struct. However, the coroutine frame may potentially be bigger than 
in the late-split approach (where the optimizer would be able to simplify the body of the coroutine 
before the transforming it into a state machine), if the programmer does not optimize it “by hand” by 
carefully arranging what local state is live across suspension points. 
 
Bad Points: Early split does not take advantage of an ever-growing set of transformations produced 
by the emergent complexity of increasingly-sophisticated compiler optimization techniques, which 
both improve coroutine efficiency and/or reduce its footprint. For example: 
 
[[gnu::pure]] // annotated or inferred 
int compute_value(std::array<char, kAsLargeAsYouLike> &); 
 
generator<int> f() { 
  co_yield 123; 
  std::array<char, kAsLargeAsYouLike> arr; 
  co_yield compute_value(arr); 
} 
 
Note that the lifetime of the array extends across the second co_yield, but the optimizer can tell that 
the array is never accessed after the call to compute_value because that function is pure, so the array 
does not need to be part of the suspension state of the coroutine. 
 
Similar things happen with constant propagation, with inlining removing the last escape of a local 
variable, etc, etc. 
 
Other optimizations that might remove heap allocations, eliminate suspends points reducing code 
size and increasing run-time efficiency are not available for early-split coroutine transformation. 
Early Split is essentially syntactic sugar avoiding the need to manually create a coroutine state 
machine, though in this approach compiler unlikely to match the efficiency of a hand-crafted state 
machine.  

Does not fit traditional frontend structure for a frontend structured with distinct Parser, Semantic 
Analysis, Codegen Preparation steps. 

Codegen preparation inserts handling of cleanups, destructors, exception handling and may introduce 
extra temporaries that will need to be included into the coroutine state. While it is theoretically not an 
insurmountable challenge, it might be a major re-engineering effort to the front-end structure and 
experts on two compiler front ends (Clang, EDG)  have indicated that this is not a practical approach. 5

5 MSVC and GCC experts agree that significant restructuring might be  required, but have not yet reached a conclusion how 
drastic it is. 
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The section describing High-Sizeof approach will cover the implementation complexity in more details, 
since early-split shares some of its implementation complexity with high-sizeof approach. 

Late Split 
Late-Split is a shorthand for the coroutine transformation performed in the middle-end or a back-end of the 
compiler. A key property of the late-split is that it allows to delay the transformation until the function body was 
simplified through various optimizations in the middle-end of the compiler. 

This technique is easier to fit in the modern compiler structure and results in coroutines that are optimizable, 
however obtaining an accurate sizeof during semantic analysis is extremely challenging, and the amount of 
memory actually allocated for the coroutine state may be smaller or larger than the programmer had 
anticipated. 

It is highly desirable that the implementation have as much control over the splitting actions as possible; for 
example the LTO pipelines are different in LLVM and GCC, and the optimal points for carrying out splitting are 
almost certainly going to be placed differently. Pre- and post-split optimizations may be applied, ignorant of the 
coroutine nature of the function. 

Note, current implementations using type-erasure represent the size of the coroutine state as an internal 
compiler intrinsic, until the point at which it is known (by completing the coroutine body transform), this 
constant is then fed into all users of the intrinsic, and constant folded etc. to optimize those uses.  

 

6 Schemes for dealing with unknown object 

sizes 
 

We recognise that one of the primary and significant challenges in exposing the coroutine state object is related 
to the fact that its size is indeterminate in the face of optimisations and some transformations typically carried 
out in support of exception handling.  

To that end, there are a number of early suggestions about how this might be handled in the compiler.  These 
broadly move between “keep the size ‘known’ early (i.e. estimate it)” to “modify the behaviour of the compiler 
so that a complete type is permitted to have unknown size” at, or up to, various points in the compilation 
pipeline. 

7 High-Sizeof 
High-Sizeof approach refers to the technique where we allow the coroutine transformation to happen late after 
the coroutine body is simplified, but, we are making an estimate of the size required for the additional content 
needed for the coroutine state machine at semantic analysis time.  In this way, the size of the object is fixed and 
known (we stay within the expectations of the compiler for complete types). 

A likely limitation is that such approach may highly overestimate the required size. It is possible to construct 
examples for the coroutine state to be 10,000x higher than it should be, though we expect that in ordinary 
programming the overestimation will be on the order of 3-10x. 
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Another hazard of the High-Sizeof estimate that some of the optimizations might increase the size require for 
the coroutine frame, such as promoting small allocations to stack temporaries and heap allocation elision 
optimizations. To work with high-sizeof approach those optimizations need to be disabled for coroutines which 
are using high-sizeof estimate. Auditing optimizations to determine whether they can be safely run will be 
significant effort.  There are cases where the only safe action is to disable them. It is similar to the tension 
between holding more state locally, and running out of registers. Except that in this case we arrive at a failure to 
compile, rather than spilling to a stack frame (and potentially degrading performance). 

Frontend also has to make provisions for data inserted by sanitizers and other tooling. 

It is likely that there will be a compile time check in the middle end to confirm that the estimate is sufficiently 
large for the coroutine state to fit in and report compile time error otherwise. To workaround, it would be 
necessary to have a pragma that allows to increase per-file or per-function estimate to make the program 
compile. Users will inevitably use this pragma to select exactly the right size, resulting in very brittle programs 
that fail to compile at the slightest source change, differing options, or compiler update. 

The high-sizeof approach requires the semantic analysis stage of the compiler to have knowledge of how the 
state of the coroutine will initially be represented (prior to any optimizations being applied). As a simple 
example, consider a program such as: 

generator<int> f(X v) { 
  Y arr[10]; 
  const X &x = some_condition ? v : X(1, 2, 3); 
  co_yield 42; 
  co_yield g(arr, x); 
} 

Here, the coroutine state must contain sufficient space not only for the parameter v and the local reference x, 
but also potentially for invisible state indicating whether x.~X() must be run at the end of the coroutine body, 
which depends on whether some_condition was true on the second line. Additionally, the mechanism for 
emitting destructors for arr may need invisible state indicating how many elements of arr have been constructed 
(this is primarily of interest if an exception is thrown part-way through constructing the array, but for some 
implementations the same state might be reused for normal destruction when the variable goes out of scope). 
Whether such state is necessary and how large it is will vary based on conditions that semantic analysis 
traditionally has not needed to know or care about, so high-sizeof will need to make a conservative guess. 

Essentially, we’re saying here that we identify the user’s exposed variables and then we allocate some bucket of 
memory that the optimiser can have to do what it wants with (and to hard fail if it can’t work within that).  From 
an implementation point of view, that seems achievable but likely to be quite an invasive change to 
optimisations (although some most likely already have parameterisation of allowable growth etc. equally likely, 
different between different vendors).   As with any case where the user’s variables are exposed in the frame, it 
ties the compiler’s hands with respect to elision of such. 

It is worth noting that the complexity necessary to implement high-sizeof without ever guessing too low is 
essentially the same work that is required to implement an early split. The key difference is that with high-sizeof, 
layout optimizations are still permitted on the output of early split so long as they do not make the coroutine 
state larger than it was initially. 
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8 Late-sized types 
Late sizing treats the coroutine state as a trailing array of a structure, where the size is determined at some later 
point of the compilation process — unlike the current meaning of the “flexible array member”, where the size is 
potentially undetermined until run time.  

As soon as a late-sized type is embedded as a last member of a structure, the type of the enclosing structure 
becomes a late-sized type as well. Thus, late-sized types have a non-trivial impact on the type system. Late-sized 
types cannot be base classes. The sizeof operator applied to a late-sized type cannot be a constant expression: It 
must instead be either a run-time value or ill-formed. 

If the size is exposed at run time, a further issue emerges: either the size of the type can vary between 
translation units, leading to further type system problems and/or ODR issues, or the size (and layout) of the type 
is the same across all translation units, hindering the ability to optimize (and, in particular, partially inline) the 
coroutine. 

9 Deferred-layout types 
 

If deferred layout types are to become full members of the type system, the backend of the compiler becomes 
capable of driving template instantiation. Current implementations of link time optimizations use a different 
compiler than the C++ parser — more akin to a compiler reading a “link-time” language — and therefore the 
template machinery is not available.  Furthermore, even if the template implementation were available, the 
source representation needed for instantiation is not retained past the C++ front end’s hand-off of the IR to the 
middle end. The IR is incapable of representing the necessary information. For instance, type information may 
well have been obscured, by placing base classes as regular members of their containing classes. 

Reorganizing a compiler to allow this kind of feedback loop would be a person-decade level of effort or more. It 
would be invasive throughout the compiler, resulting in pushback from other members of the compiler 
development community, all having to pay a cost for a language they might have no interest in. 

Further there is simply the specification problem of which entities such late-invoked instantiations might see -- 
just those from the originating source (which, the coroutine’s definition, the direct caller it is inlined into, the 
ultimate container of an inline nest?). These questions have proved vexing for the modules development . 6

At some point of lateness, we reach the status quo - where the [variable part of] the frame layout is fully under 
control of the optimisation process (i.e. we have the same freedom now applied to objects as was previously 
used only for the activation record).  However, we are still unable to elide exposed user variables, even if some 
optimisation or transform makes them unused. 

10 Guaranteed Tail-call convention 
Coroutine transformation may convert loops into unbounded recursion leading to stack exhausting. Core 
Coroutine proposed a partial solution that does not yet work for asynchronous coroutines and coroutines 
defined across translation units and ABI boundaries. 

6 It’s perhaps amusing to note that this very thinking is what got us “export” templates: A vendor (SGI) had claimed that 
they had a well-advanced plan for template instantiations performed as a step of the back end and even as part of the 
dynamic linker/loader. Those plans never resulted in demonstrable products.  
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While no detail design work was done yet, it is likely that a solution would involve adding a guaranteed tail-call 
calling convention to the C++ language and the type system. Functions that contain “tail return” statement are 
likely to require declaring them as tail-callable as well. Such changes are required so that tail-callability becomes 
part of the function type and the property of tail-callability is preserved across indirect calls and across TUs.. 

Additionally, it is likely that all (most) platform-specific compiler backends would have to be updated to correctly 
handle the new calling convention. 

At least for GCC, tailcalling is discovered during optimization, and marked explicitly (by the back end) at the 
calling point. Providing the user with the ability to specify a tail call, will require some error checking, along the 
lines described in P1063, to ensure a tail call is well formed (generally, the caller and callee require the same 
space for arguments and there are no local entities whose lifetime cannot be shortened to before the tailcall). 

11 Symmetric Coroutine Definition Syntax 
The Symmetric Coroutines proposal contains a novel syntax for declaring classes: 

template <typename R, typename T> R f(T u) { do1(); u(); do2(); } 

The definition above could be defining a function or a class, depending on what is the type R is. Clearly allowing 
this would raise new ambiguity concerns. 

Note also that the invocation of u() may or may not represent a suspension point depending on what type T is. 

 

12 Symmetric Coroutine Calling Convention 
The Symmetric Coroutines proposal depends on a special calling convention. As specified, only operator() of 
types coroutine, derived from type coroutine and resume_continuation have this calling convention. 

Invoking operator() from a coroutine suspends the current coroutine and tail-resumes the coroutine associated 
with the object operator() belongs to. 

Implementing this calling convention would likely require changes to platform-specific compiler backends to 
correctly handle the new calling convention. 

It is unclear from the Symmetric Coroutine paper whether this property 
“suspend-current-coroutine-and-tail-resume another one” is a property of the function type of the operator(), 
which would mean that taking an address or using a function object wrapper would retain it, or decayed to a 
normal function call. 

If this new calling convention has to propagate further than the C++ front end, it will be invasive to implement. 
It is very concerning that the possibility of linker (and debugger/debug info) changes may be needed. 
Alternatively, if the semantics can be reduced to a set of regular {tail}call operations during the conversion of the 
C++ representation to the middle end IR, this is unlikely to be a burden. 
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13 Implementation 
Coroutines TS has been implemented in publicly released compilers in MSVC (5 years), Clang (2 years and was 
available earlier in a public fork), EDG (4 years) and an in-progress (partial) implementation is available as a GCC 
public branch today. 

Implementability of Core Coroutines and Symmetric Coroutines depends of feasibility of the proposed solutions 
to exposing the coroutine state object to a compiler at semantic analysis time, and the work required to 
implement new calling conventions guaranteed tail call convention or symmetric coroutine call convention as 
they require. 

 

14Conclusion  
We consider that given current understanding of the compiler technology, there are in practice two feasible 
points in the coroutine design space. 

1) late-split coroutine with hidden state machine object (the TS approach)  
2) late-split coroutine represented as a type with a non-exposed layout (the Core coroutines approach) 

Deferred layout types are a research problem that have uncertain language and implementation impact. 
Late-sized types with fixed upper layout bound are not obviously feasible (not are they formally proposed). Early 
split is not practical for at least two of the major front end implementations. 

To get a first-class state machine from the first approach (e.g., the TS), requires manual sizing as described in 
part 3 of [P1362R0] or high-sizeof estimator. Both of these are possible today using existing compiler 
technology. Though the latter may have undesirable user experience as highlighted in the high-sizeof section. 

Introducing late-sized types in the second approach (e.g., Core coroutines) has non-trivial impact on the 
language type system and does not achieve the same near-term  efficiency as the Coroutine TS approach for the 7

type-erased asynchronous coroutines [P1362R0] and may not match expectations of the users hoping to get a 
“normal” object representing a coroutine.  
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Dennett, Chandler Carruth 

7 In the longer term (5+ years), equivalent performance gains may be achievable via non-coroutine-specific 
optimizer technology and language features. 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1362r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1362r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4775.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1063r2.pdf
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P1342R0 Unifying Coroutines TS and Core Coroutines  Lewis Baker 

P1362R0 Incremental Approach: Coroutine TS + Core Coroutines  Gor Nishanov 

P1477R0 Coroutines TS Simplifications  Lewis Baker 

P1430R0 First-class symmetric coroutines in C++  Mihail Mihaylov, Vassil 
Vassilev 

 

Appendix 
 

Algorithm for creating coroutine frame 

Hard-coded Algorithm 
Coroutines TS 

Optional Hard-coded Algorithm 
Core Coroutines 

Customisable Algorithm 
Unified Coroutines 

Compiler allocates coroutine frame 
unconditionally when coroutine is 
called. 
 
Hard-coded algorithm calls 
methods on the promise type. 
 
- promise_type::operator new 
- copying/capturing parameters 
- promise constructor 
- get_return_object() 
- initial_suspend() 
- coroutine_hande::destroy() 
 

Provides access to coroutine 
lambda primitive that lets you 
write algorithm to wrap/create 
coroutine yourself. 
 
Using the “sugar syntax” maps to a 
different hard-coded algorithm. 
Construct return-type, passing a 
lambda which when invoked 
returns the coroutine 
lambda/frame object. 
 
More parts of the algorithm are 
under library control. 

- Heap allocation or not 
- Type erasure or not 

 
Allows deferring creation of 
coroutine frame until after the call. 
 
Library responsible for type 
erasure of coroutine frame. 
 
Some open problems to solve with 
sugar syntax to avoid needing to 
type-erase coroutine frame. 

Invocation of coroutine function is 
directly translated to a call to 
get_return_object() that is passed 
a factory function that constructs 
coroutine state. 
 
Allows deferring creation of 
coroutine frame. 
 
Allows deferring choice of 
promise_type used to instantiate 
coroutine. 
 
Allows customising allocation - 
compiler-type-erased + heap 
allocated or first-class type. 
 
Allows customising return-type - 
does not need to be the same as 
the wrapper-type. 
 
Default algorithm based on 
function signature if you don’t 
specify. 
 
Allows optionally overriding the 
algorithm independently of the 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1342r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1362r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1477r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1430r0.pdf
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function signature. 
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A very nice table, most of the content was absorbed in the Trade-offs at a glance table, but it was a shame to delete this one. 

Hidden Frame Type 
Coroutine frame type and 

layout hidden from 
program. 

Expose Coroutine Frame as a Type 

 
Coroutine frame is exposed as a type. 
 
Allows application to place coroutine frame as local variable on stack, as a class 
member. 
 
Requires a solution to the “sizeof” problem: various options below. 

Coroutines TS 
 
Fixed wrapping algorithm 
with customization 
points 

 
 
An opaque handle to the 
frame is exposed to the 
program. 
 
Frame is heap-allocated 
by the compiler. 
Allocation may be 
customisable by 
application. 
 
Compiler is allowed to 
elide the allocation by 
inlining into the frame of 
the caller. 

Early-Sized Type Late-Sized Type 

Compiler front-end 
calculates layout based 
on analysis of the source. 
 
sizeof(T), alignof(T) and 
offsetof(T, member) are 
all constexpr 
 
All variables/temporaries 
that span a 
suspend-point are placed 
in coroutine frame. 
 
Inhibits optimisations of 
function across 
suspend-points in at least 
some (possibly many) cases. 
 
Allows stable ABI/layout for 
inline coroutine functions. 
 
Can allow coroutine frame 
objects to be passed 
between TUs. 
 
Computing a 
conservatively-correct 
upper bound for the frame 
size would be excessively 
expensive in some current 
frontends (would require 
major reengineering) and 
hard to specify in ABI. 

Size/layout of the frame type is calculated in a later 
compilation phase. 
 
sizeof(T), alignof(T) are constant but not constexpr, or 
sizeof(T), alignof(T) are ill-formed. 
 
Allows compiler to calculate the layout of the 
coroutine frame after (some) optimisations have 
been performed. 
 
Frame layout for inline coroutines may be calculated 
differently in each TU it is used in, resulting in ODR 
problems if the layout is exposed to the program. 
 
Cannot forward-declare/pass coroutine frame objects 
between TUs without type-erasure. 

Hidden-Layout Type Deferred-Layout-Type 

Hidden-layout type is 
only allowed in 
tail-position (not in a 
base class, not in an 
array, not in a class with 
virtual base classes) 
 
Offsets of other data 
members of a class with a 
coroutine member are 
still constant expressions. 

Allows composing 
structures containing 
multiple deferred-layout 
objects. 
 
offsetof(T, member) is 
not constexpr 
 
Severe implementation 
burden in some 
implementations. 

 


