
Stroustrup P1491R0 signed/unsigned

1

Doc. No. P1491R0
Date: 2019-02-14

Programming Language C++
Audience: LEWG and EWG

Reply to: Bjarne Stroustrup (bs@ms.com)

Don’t add to the signed/unsigned mess

Bjarne Stroustrup

Abstract
There are many ways of writing a simple loop. Too many, and we are proposing to add more. My
suggestion: don’t.

The root problem is that in C and C++ signed and unsigned integers don’t mix well. We should begin the
process of minimizing that problem by not adding more opportunities for such mixing.

Please note that this is not a suggestion to change the WP. It is an argument for keeping status quo until
we are certain we have something better.

Loops
As an example, I will use a very simple loop that simply zeros out the elements of a vector.

Use a range for:

for (auto& x : v) x=0;

That’s the simplest and often the best, but people – many people – like to play with loop variables and
occasionally they actually need to:

for (int i = 0; i<v.size(); ++i) v[i]=0; // naive and natural

for (unsigned i = 0; i<v.size(); ++i) v[i]=0; // hard to optimize (e.g., [Carruth,2016])

for (auto i = 0; i<v.size(); ++i) v[i]=0;

for (auto i = 0u; i<v.size(); ++i) v[i]=0;

for (vector<double>::size_type I = 0; i<v.size(); ++i) v[i]=0; // verbose and error-prone

for (decltype(v)::size_type i = 0; i<v.size(); ++i) v[i]=0;

for (size_t i = 0; i<v.size(); ++i) v[i]=0;

for (ptrdiff_t i = 0; i<v.size(); ++i) v[i]=0;

And more variations. This is too much and offers many opportunities for confusion; we should not add
to that.

Now people are proposing [p0330r4] [p1227R1]:

Stroustrup P1491R0 signed/unsigned

2

for (auto i = 0; i<v.ssize(); ++i) v[i]=0;

for (auto i = 0z; i<v.ssize(); ++i) v[i]=0;

for (auto i = 0uz; i<v.size(); ++i) v[i]=0;

As ever, people will get confused and - in addition to my examples - use some of the many more variants
that I haven’t mentioned.

Workarounds and alternatives
Of course, some (but not all) compilers warn about common cases:

for (int i = 0; i<v.size(); ++i) v[i]=0; // warning

That is most annoying because most vectors have far fewer than 2 billion elements. In fact, the standard
limits the number of elements of a vector to the largest positive value of its difference type (General
Container Requirements, table 64). This leads people to complain bitterly about C++, especially novices
and people coming to C++ from other languages. New people come to C++ faster than we can teach
them to do such basic things differently from what they were used to.

So, people and organizations ignore those warnings or suppress them, setting a dangerous example for
other warnings and causing trouble when you do get a 2B+ vector. False positives do harm.

People also look for alternatives:

for (int i = 0; i < (int)v.size(); ++i) v[i]=0; // use a cast

That’s unnecessarily verbose, dangerous in the sense that it could be wrong (here, narrowing on some
machines), and teaches people to use the terse, general, and error-prone C-style cast.

Here is a variant that does not use a cast:

for (int i = 0, n = v.size(); i < n; ++i) v[i]=0; // verbose

Such workarounds avoid warnings (but narrows and converts unsigned to signed). They also make
people wonder about the sanity of C++.

In places, people use a helper function. For example:

for (int i = 0; i < elem_count(v); ++i) v[i]=0;

where elem_count() is a function that takes a container or a range and returns a signed value (and hides
the cast).

For many examples, there are alternatives to C-style for-loops. I mentioned the range-for up front, but
algorithms often offer alternatives

std::fill(v.begin(),v.end(),0);

std::fill(v,0); // when we get ranges

std::for_each(v.begin(),v.end(),[](int& x){ x=0; });

Stroustrup P1491R0 signed/unsigned

3

Again, try to explain that to a C++ novice. Better still, try to get the point across to a novice for whom
you are not formally a teacher or a Mentor. Or for someone you will never meet. Unless somehow
advised otherwise, such people often (typically?) start with

for (int i = 0; i<v.size(); ++i) v[i]=0; // annoying, incomprehensible warning

For almost all uses, that warning is a false positive; that is, irrelevant.

Actual proposals
[p0330r4] proposes to add to the – already confusing – set of suffixes by adding uz and z (or maybe
some other letters). We’d have u, U, l, L, z, Z, f, F, and p (has p been formally proposed?) plus
combinations in addition to user-defined suffixes. There are also decimal floating point and soon short
floats.

[p1227R1] proposes to change size() in the ranges TS and for span to unsigned (making them bug
compatible with the STL) and adding ssize() to all containers and range accessors

• embeds a type in a function name (and it makes me think of Parseltongue)
• leaves the wrong solution (IMO) with the better, more established, and simpler name
• adds a few more cases to the wrong (IMO) solution [P1428R0]

What other types deserves suffixes? What other types could “benefit” from similar addition of signed-
type alternatives to current unsigned ones? Are there types for which such additions would offer more
help to programmers that the current proposals for (just) signed and unsigned? I suspect so. The quest
for patches would be open-ended.

For C++, signed sizes and subscripts are the best solution: make all size()s signed!. That is not perfect,
and I don't propose that for C++20, but it is the solution with the least problems and the best
opportunities to catch problems (e.g., contracts and run-time checks) [P1428R0]. We should aim for that
and start gathering facts/data, rather than adding to the problem (e.g., by changing span<T>::size() to
be unsigned).

Acknowledgements
Thanks to Peter Dimov, Tony Van Eerd, Peter Sommerlad, Sergey Zubkov, Herb Sutter, and others for
constructive comments of a draft of this.

References
• [P0330R4] JeanHeyd Meneide and Rein Halbersma: Literal Suffixes for ptrdiff_t and size_t.
• [p1227R1] Jorg Brown: Signed ssize() functions, unsigned size() functions.
• [P1227R3] Jorg Brown: http://wiki.edg.com/pub/Wg21kona2019/StrawPolls/p1227r2.htm (the

document voted on in Kona).
• [P1428R0] Bjarne Stroustrup: Subscripts and sizes should be signed .
• [Carruth,2016] Chandler Carruth: Garbage In, Garbage Out: Arguing about Undefined Behavior

with Nasal Demons CppCon 2016 (starting around 40min in).

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0330r4.html
http://wg21.link/p1227r1
http://wiki.edg.com/pub/Wg21kona2019/StrawPolls/p1227r2.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1428r0.pdf
https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o

	Don’t add to the signed/unsigned mess
	Bjarne Stroustrup
	Abstract
	Loops
	Workarounds and alternatives
	Actual proposals
	Acknowledgements
	References

